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Abstract

We show how Statistical Shape Analysis, a set of techniques used to model the shapes
of biological and other kind of objects in the natural sciences, can be used also to model
the geometric shape of a manufactured part. We review Procrustes-based methods, and
emphasize possible solutions to the basic problem of having corresponding, or matching,
labels in the measured “landmarks”, the locations of the measured points on each part
acquired with a CMM or similar instrument.
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1 Introduction

In Statistical Shape Analysis (SSA) the shape of an object is defined as all the information of

the object that is invariant with respect to similarity transformations on the Euclidean space

(rotations, translations, and dilations or changes of scale). The goal of SSA is to analyze the

shapes of objects in the presence of random error.

Analysis of shapes in manufacturing is critical because geometrical tolerances (specifica-

tions) of roundness, flatness, cylindricity, etc., need to be inspected, controlled, or optimized

based on a cloud of 2 or 3 dimensional measurements taken on the machined surfaces of the

part. These tasks are even more complex if the part geometry has a “free form”, i.e., there

is no standard geometrical construction that can represent the shape, a situation common in

advanced manufacturing applications such as in the aerospace sector.
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Over the last 20 years, statistical shape analysis techniques have been developed and applied

in many areas of the natural sciences where interest is in characterizing differences between and

variability within shapes, e.g., Biology, Paleontology and Geology. A considerable intersection

of ideas exist also with image and Pattern Recognition in Computer Science. In particular,

SSA is known as Geometric Morphometrics in Biology, and the type of techniques developed in

the past two decades has been called the “Morphometrics revolution” by some authors [1] given

the success SSA had over previous techniques used to analyzed shapes. For more on the history

and foundations of SSA we refer readers new to this field to the excellent book by Dryden and

Mardia [13].

Our interest on shape analysis stems in part from the recent interest on “profile analysis” in

the field of statistical process control (SPC) [20, 8, 34] (although we do not discuss SPC based

on shape analysis in this chapter, this is certainly another potential area of research where SSA

ideas can be used). In profile-based SPC, a parametric model is sought that describes the form

that the response follows with respect to some variable of interest (in essence, one performs

functional data analysis). The parameters of this model are fitted based on process data and

then multivariate SPC methods are applied to the estimated parameters.

By working with the shape directly, SSA techniques avoid the parametric model definition

step, allow complicated shapes to be studied, and simplify the presentation of results. In SSA,

one works with the whole shape of the object, so the geometry is not “thrown away” [13].

The remainder of the paper is organized as follows. Section 2, describes methods to solve

the landmark matching problem, which occurs when two objects have point labels that do not

correspond to each other. In section 3, we review the main ideas on SSA based on the so-called

Procrustes method. In this section, the notions of shape space, the generalized Procrustes

algorithm, and tangent space coordinates are discussed. The paper concludes with a discussion

of other shape analysis techniques, including areas of further work.

2 The Matching Landmarks Problem

In most of SSA, the main goal is statistical inference with shapes, in particularly, to test if

two or more objects have an equal shape or not, or to determine directions where most of the

variability of a shape occurs. Some other authors’ main interest (for example, in Biology) is

to describe how shapes of objects (e.g., species of animals) change with time. In our case, the

main goal is to study the shape of manufactured parts.

The techniques considered herein are based on shape data obtained by measuring the parts at

specific landmarks, points of special interest or unique characteristics. In order to be amenable

to data analysis, landmarks should refer to homologous points (points of correspondence) that

match between objects. A landmark is given by the 2 or 3 dimensional Cartesian coordinates of a
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point on the object surface and a given label for the point, usually a sequential number 1, 2, ..., k

which corresponds from object to object. Assignment of landmarks to objects is in itself an

important problem; in some areas such as in Archeology or Biology specific points of the objects

are of interest and this assignment is done manually. In manufacturing, considerable amounts

of data can be acquired with a coordinate measuring machine (CMM) or through digital images

of the objects. There is no guarantee in practice, however, that the measurements acquired will

correspond to each other between parts. Homologous landmarks have the same label, hence we

call the case of complete homologous landmarks the labeled case.

All the SSA methods considered in later sections of this chapter require labeled landmark

data. Similar parts measured with a CMM not always contain corresponding or labeled land-

marks. This can be due to the difficulty in orienting the part when mounting it on the CMM. If

the orientation is different between parts, the CMM measurements will not correspond to each

other, since they will have different labels. Therefore, one first important problem that needs

to be addressed is how to “match” the landmarks between 2 or more shapes so that we obtain

corresponding shape data. This problem has received attention in the Pattern Recognition lit-

erature in recent years, where it is called the point matching or shape matching problem. The

work by Ranjaragan and co-workers [14, 7] is based on solving a highly nonlinear optimization

problem where the objective is to minimize the sum of the Euclidean distance between points

{i} in shape 1 and the transformed points {j} in shape 2. The rationale for this approach is

that matching would be relatively easier if the objects would be oriented similarly, and have

similar location and scale (similarity transformations). Jointly determining the matching cor-

respondences and the transformation necessary for “registering” object 2 to object 1 results in

a hard optimization problem.

A completely different approach is that of Belongie et al. [3], who propose an efficient method

for matching two 2-dimensional shapes, although they left undefined some implementation

details, as we will see below. Their method separates the matching landmarks problem from

the problem of registering the objects, that is, their matching method is in principle invariant

with respect to location, scaling and orientation of the two parts. The main idea is to measure

the amount of data in the neighborhood of each point of each shape (given by the frequency

of points in its neighborhood) and use these measures as costs to be minimized in a classical

weighted matching problem, solvable via Linear Programming. For a point i in a shape, Belongie

et al. propose to compute a 2-dimensional histogram where the number of points nearby are

counted. If r is the Euclidean distance between two points of the shape, the 2-dimensional

histogram extends along log r and θ, measuring the distance and direction where the nearby

points are located. The histogram bins are selected such that they are of constant width in

(log r, θ) , giving more importance in this way to closer points. Let hi(l, s) be the observed

frequency of nearby points in cell (l, s), of the histogram, where l = 1, ..., L, s = 1, ..., S. The
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2-dimensional histogram formed by the frequencies hi(·, ·) is called the “context” of point i by

these authors. The idea then is to match those points between two different shapes that have

the most similar “contexts”. For this purpose, define the cost of matching point i in part 1 and

point j in part 2 to be:

Cij =
L∑

l=1

S∑
s=1

[hi(l, s)− hj(l, s)]
2

hi(l, s) + hj(l, s)
, i = 1, 2, ..., k, j = 1, 2, ..., k (1)

which is the classical χ2 statistic (with L·S−1 degrees of freedom) used to test for the difference

between two distributions. Note that Cij 6= Cji. Let B = (U, V, E) be a graph with two disjoint

sets of points (U and V ), i.e., a bipartite graph, and a set of edges (E, to be decided) joining a

point in U with a point in V (the “matching” set). Define the decision variables Xij = 1 if the

edge joining points vi ∈ V and uj ∈ U is included in the matching, and Xij = 0 if otherwise

[30]. Belongie et al. [3] propose to solve the landmark matching or labeling problem by solving

the following weighted matching problem (in our notation):

min
∑k

i=1

∑k
j=1 CijXij (2)

subject to:
∑k

j=1 Xij = 1, i = 1, 2, ..., k
∑k

i=1 Xij = 1, j = 1, 2, ..., k

Xij ≥ 0, i = 1, ..., k; j = 1, ..., k.

The problem is then one of linear programming (LP), for which, as it is well-known, there exist

efficient algorithms. Note that the formulation does not include the constraints Xij ∈ {0, 1},
which turn out to be redundant (the LP solution is always binary) so the problem is not an

integer programming problem, which would imply a considerable harder optimization problem.

The matrix formulation of the problem is based on defining the k2×1 vector of decision variables

x′ = (X11, X12, ..., X1k, X21, X22, ..., X2k, ...., Xk1, Xk2, ..., Xkk)

and defining the 2k × k2 matrix of constraint coefficients:

A =




1 1 . . . 1

1 1 . . . 1
. . .

1 1 . . . 1

1 1 . . . 1

1 1 . . . 1
. . . . . . . . .

. . .

1 1 . . . 1
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14 41 21 25 9 39

21 42 22 19 15 39

29 42 25 22 21 40

35 37 9 39 25 36

32 33 21 27 23 31

26 30 21 40 21 27

16 26 15 39 19 25

25 26 8 17 21 25

29 24 25 36 23 24

33 20 15 17 25 22

30 16 19 25 22 19

23 11 23 31 15 17

16 12 23 24 8 17

Table 1: Input matrices for the “digit 3’s” problem (first 4 columns). Last 2 columns is the

output, sorted matrix.

where all empty spaces are zeroes. If matrix C = {Cij} is put into vector form as follows

c′ = (C11, C12, ..., C1k, C21, C22, ..., C2k, ...., Ck1, Ck2, ..., Ckk)

then the formulation is simply

min c′x

subject to:

Ax = b

x ≥ 0

where b is a 2k × 1 vector of ones. The property that assures a {0, 1} solution is that matrix

A is a Totally Unimodal Matrix (TUM) ([30], Theorem 13.3). A matrix is TUM if 1) it has

zeroes except in 2 locations per column, where it has ones; and 2) the rows can be grouped in

two sets such that the ones in each column belong to different sets. These two properties hold

for matrix A.

An important implementation detail is how to scale the distances. We suggest to define

rij = dij/ max(dij) where dij is the Euclidean distance between points i and j in the figure and

the maximum is measured over all distances between any two points (landmarks). Therefore,

max(rij) = 1.

Example. Landmark Matching. Suppose we have the two shapes shown in Figure 1.

These are two handwritten digit 3’s, each with 13 landmarks. Suppose the landmarks are

5



labeled as shown in the figure and in the first 4 columns of Table 1. We will keep the la-

bels of shape 1 constant and will try to match the labels of the second shape to those of the

first. The cost matrix C is shown on Table 2. This was obtained using a 2-dimensional his-

togram at each point of each shape where L = 10 bins where used for log r (logarithm of

Euclidean distances) and S = 9 bins were used for θ. Specifically, the bin edges where set

at [0.0, exp(−4), exp(−3.5), exp(−3.0), exp(−2.5), exp(−2.0), exp(−1.5), exp(−1), exp(−0.5), 1]

and [−π,−3 ∗ π/4,−π/2,−π/4, 0.0, π/4, π/2, 3 ∗ π/4, π] (this is a higher resolution histogram

that used by Belongie et al. [3]; we found the results vary considerably with the resolution

of the histogram, given by the number of bins. Intuitively, the number of bins should be an

increasing function of k, the number of landmark points). The costs Cij were computed by

excluding those cells in the histograms that would lead to a zero denominator. The structure of

the A matrix, a 26× 169 matrix, is shown diagrammatically in Figure 2. Solving the resulting

LP problem (we used the linprog routine in MATLAB), the optimal solution leads to the

correspondences shown in Figure 3. The re-ordered landmark matrix for the second figure is

shown at the right of Table 1. ¥

We point out how the two figures in the example did not have the same scale. We would

like for a matching algorithm to work even if the figures are not equally oriented (i.e. to be

rotation invariant; the method is already location and scale invariant). For figures with different

orientation, a simple solution, which we used in the previous example, is to compute the angles

θ in the histogram with respect to the line defined by the two closest points to the point in

question (this is a similar procedure as suggested in [3], who suggest to use the “tangent” line

to each point as the axis of reference).

An apparently open problem in the literature is how to solve similar matching problems

when there are n shapes, not only two. A first attempt to such problem may involve matching

shapes (1,2) obtaining 2’ (the re-labeled object 2), then match (2’,3), (3’,4),..., (n-1’,n) and

then repeat matching (n’,1),(1’,2’), etc., until convergence. It is unknown how effective such

approach is, and whether or not convergence is guaranteed.

3 A review of some statistical shape analysis concepts

and techniques

There is a very large body of literature on SSA techniques. Only its main precepts and tech-

niques are presented here. For a more thorough presentation of SSA we refer readers to ref-

erences [13, 15] for developments up to 1998 and for more recent developments we refer to

[1, 25, 24, 17].
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Figure 1: Two handwritten digit “3”s, each with k = 13 landmarks. The labels of the landmarks

of the second digit were shuffled and do not correspond to those of the first digit 3.

The mainstream of SSA that followed the “revolution” in morphometrics is based on two

main steps: first, the objects under consideration are registered or superimposed with respect

to each other in order to filter out rotation, translation and isometric scaling (dilation) effects.

This is done because the objects may have different orientations on the Euclidean space or have

different locations or sizes, and therefore their shapes cannot be initially compared. The main

technique for this task is the Generalized Procrustes Algorithm (GPA). An underlying assump-

tion of GPA is that landmarks refer to homologous or corresponding points in each object.

Since this is not always the case in CMM data, the landmark matching problem discussed in

the previous section must be solved first before attempting the registration. Matching before

registering seems to be a simpler and better strategy than trying to jointly match the landmarks

and register the objects, as attempted in references [14, 7].

Once objects are registered, multivariate statistical methods of inference can be performed

on the projections of the shapes on the space tangent to the mean shape. These two steps are

explained below. We first give some geometrical notions necessary to understand the algorithms.
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1 2 3 4 5 6 7 8 9 10 11 12 13

1 7.0 8.3 7.8 4.7 9.3 6.8 4.4 11.5 10.2 9.5 10.1 10.2 7.3

2 7.7 7.0 9.5 6.8 9.2 5.5 2.0 10.4 8.0 6.7 10.1 9.2 8.0

3 6.2 3.5 6.3 5.7 8.2 1.6 5.9 6.0 6.7 2.7 10.7 7.0 6.8

4 9.6 7.7 8.8 9.0 6.3 7.5 8.2 7.0 2.6 5.3 9.0 3.8 8.5

5 6.3 6.1 8.2 10.7 7.0 7.2 7.7 8.8 5.6 5.8 8.8 3.5 8.7

6 8.5 9.3 12.5 10.7 6.5 7.8 4.8 10.1 7.2 6.9 11.0 9.2 9.7

7 7.8 8.0 10.0 9.0 7.8 6.5 3.2 6.3 7.3 5.3 9.0 7.5 8.5

8 5.0 8.5 9.2 11.7 5.7 6.6 7.7 11.7 7.5 6.8 10.2 7.2 9.4

9 3.0 7.1 6.7 9.8 6.2 4.7 7.7 11.0 6.8 6.7 9.5 7.0 5.2

10 5.2 6.3 4.5 7.5 8.3 4.8 5.8 10.6 7.6 7.7 9.7 8.2 4.3

11 5.8 1.3 4.5 5.8 6.3 3.2 4.2 8.9 7.0 5.4 11.0 5.5 5.7

12 5.3 5.3 8.1 6.1 8.6 2.8 4.7 6.7 4.6 2.0 12.5 9.5 6.1

13 6.3 6.9 7.7 7.7 10.2 3.1 8.9 4.5 5.1 3.3 12.0 9.4 6.2

Table 2: The Cost matrix C for the two digit 3s problem. This is a k × k = 13 × 13 non-

symmetric matrix. Bold numbers correspond to costs for the optimal matching solution.

3.1 Preshape and shape space

Let X be a k×m matrix containing the k landmarks (coordinate pairs or triples) of an object in

m (2 or 3) dimensions. X is sometimes called a configuration matrix, which we could also refer

to as a “profile matrix”, following manufacturing practice for the case of 2D closed contours

[2]. With this notation, the shape of a configuration X is obtained, first, by removing location

and scale effects by computing the so-called pre-shape Z:

Z =
HX

||HX|| (3)

where H is a (k − 1) × k Helmert submatrix [13] and || · || denotes the Frobenius norm of a

matrix (i.e., ||A|| =
√∑

i

∑
j |aij|2). If we define hj = −[j(j + 1)]−1/2, then H is a matrix

whose jth row is: (hj, hj, ..., hj︸ ︷︷ ︸
j times

,−jhj, 0, ..., 0︸ ︷︷ ︸
k−j−1 times

) for j = 1, ...k−1. Note that HH ′ = Ik−1 and

that the rows of H are contrasts. Alternatively, one could start with the centered preshapes,

defined by Zc = H ′Z (these are k ×m matrices).

Transformation (3) removes location effects via the numerator, and re-scales the configura-

tions to unit length via the denominator. Since we have not removed rotations from Z it is

not yet the shape of X, hence the name preshape. The centered preshapes are equivalent to

centering each coordinate of each configuration by its centroid and dividing each by its norm.
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Figure 2: The A matrix in the weighted matching linear programming formulation applied to

the 2 digit 3’s matching problem (where k = 13). Dots indicate ones, empty spaces indicate

zeroes. This is a 2k × k2 = 26× 169 matrix.

The shape of configuration X, denoted [X], is defined as the geometrical information that

is invariant to similarity transformations. Once location and scale effects are filtered as above,

the shape is then defined as:

[X] = {ZΓ : Γ ∈ SO(m)} (4)

where Z is the preshape of X and Γ is a rotation matrix (i.e., a matrix such that Γ′Γ = ΓΓ′ =

Im with det(Γ) = +1) and SO(m) is the space of all m × m rotation matrices, the special

orthogonal group. Multiplication by a suitable matrix Γ reorients (rotates) the object. Note

that a shape is therefore defined as a set.

The following geometrical interpretation of these transformations is due to Kendall [21, 22].

Given that preshapes are scaled and centered objects, they can be represented by vectors on

a sphere of dimension (k − 1)m, because the numerator in (3) removes m degrees of freedom

for location parameters and the denominator removes one additional degree of freedom for

the change of scale. The preshapes, having unit length, are therefore on the surface of this

(hyperspherical) space, which has (k− 1)m− 1 dimensions by virtue of being on the surface of

a unit sphere. As one rotates a pre-shape Z via (4), the vectors ZΓ describe an orbit, in effect,

a geodesic, on the preshape space. All these vectors correspond to the same shape, since by

definition the shape of an object is invariant to rotations. Thus, the orbits (also called fibres) of

the preshape space are mapped one to one into single points in the shape space, the space where

shapes reside. Two objects have the same shape if and only if their preshapes lie on the same
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Figure 3: Optimal solution to the linear programming matching problem, digit 3 problem.

Compare to Figure 1.

fibre. Fibres do not overlap. The shape space, the space of all possible shapes, has dimension

M = (k − 1)m − 1 −m(m − 1)/2 since in addition to losing location and dilation degrees of

freedom we also lose m(m − 1)/2 degrees of freedom in the specification of the (symmetric)

m×m rotation matrix Γ.

Example. Preshape space and shape space. In order to explain these ideas, consider

one of the simplest possible cases, where we have 2 lines in R2. Thus, we have that m = 2

and k = 2, where the obvious landmarks are the endpoints of the lines. After centering and

scaling the two lines using (3), one obtains the preshapes with matrices Z1 and Z2. Since

the original objects evidently have the same shape (that of a line in Euclidean space) these

two preshapes lie on the same fibre or orbit, generated as the preshapes are rotated using (4).

The shape space is of dimension (k − 1)m − 1 = 1, namely, the circumference of a circle.

As the preshapes rotate (they can rotate clockwise or counterclockwise) they will eventually

coincide, which corresponds to the centered and scaled lines coinciding. Finally, since there is

a single shape, the shape space is the simplest possible, namely, a single point (dimension is

M = (k − 1)m− 1−m(m− 1)/2 = 0). ¥
In general, the shape space will also be a spherical, nonlinear space, of reduced dimension

than the preshape space.
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3.2 Generalized Procrustes Algorithm

Two preshapes Z1 and Z2 lying on different fibres correspond to two objects with different

shapes. A measure of the similarity between two shapes is the shortest distance between the

fibres, the Procrustes distance ρ(X1,X2). This corresponds to the distance along the surface

of the preshape space and is therefore a distance along a geodesic. Alternatively, two measures

of distance over a linear space are the “partial procrustes distance”, given by

dp(X1,X2) = min
Γ∈SO(m)

||Z2 −Z1Γ|| (5)

and the “full procrustes distance”, where the minimization is also done over a scale parameter:

dF (X1,X2) = min
Γ∈SO(m),β∈R

||Z2 − βZ1Γ|| (6)

Geometrically, dp(X1,X2) is the secant between Z1 and Z2 in preshape space, and dF (X1, X2)

is the distance along the tangent at either one of the preshapes (see Figure 4). As it can be

seen, for objects with similar shapes, ρ ≈ dF ≈ dp.

Z1

Z2

d
p

dF

ρ

dF

Figure 4: Distances between two shapes in preshape space. ρ is the Procrustes distance (along a

geodesic), dF is the Full Procrustes distance (along a tangent), and dp is the Partial Procrustes

distance (along the secant). The preshapes have ||Zi|| = 1.

For a collection of n registered configurations or profiles, the Generalized Procrustes Algo-

rithm registers or superimposes all the n objects by finding scaling factors βi ∈ R, rotation
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matrices Γi ∈ SO(m) and m dimensional translation vectors γi, i = 1, ..., n, such that they

minimize the sum of squared Full Procrustes Distances between all objects:

G(X1, X2, .., Xn) = min
βi,Γi,γi

1

n

n∑
i=1

n∑
j=i+1

||βiX iΓi + 1kγ
′
i − (βjXjΓj + 1kγ

′
j)||2 (7)

=
1

n

n∑
i=1

n∑
j=i+1

d2
F (X i,Xj)

where 1k is a vector of k ones. The resulting registered configurations are called the Full

Procrustes Fits, defined as

Xp
i = β̂iX iΓ̂i + 1kγ̂

′
i, i = 1, ..., n. (8)

The mean shape of the n objects is simply the average of the n configurations, namely, µ̂ =
1
n

∑n
i=1 Xp

i .

The minimization (7) needs to be subjected to a constraint that limits the scaling done,

otherwise the optimal value of G will be zero. One such restriction is to use a constraint on

the size of the mean shape: S(µ̂) = 1 where the size of any configuration X is defined as

S(X) =
√∑k

i=1

∑m
j=1(Xij −Xj)2 = ||CX||, where C = Ik − k−11k1

′
k, Xj = 1

n

∑k
i=1 Xij and

Xij is the jth coordinate of the ith point in the configuration. Another common constraint,

used in what follows, is to make the average of the squared sizes of the registered configurations

Xp
i given by (8) equal to the average of the squared sizes of the original objects:

1

n

n∑
i=1

S2(Xp
i ) =

1

n

n∑
i=1

S2(X i). (9)

The Generalized Procrustes Algorithm, as developed by Gower [16] and Ten Berge [33] proceeds

as follows to solve (7) subject to (9):

1. Center (but do not scale) the configurations X1, ..., Xn by initially defining

Xp
i = HX i, i = 1, ..., n

(alternatively, we can define H ′HX i = CX i = Xp
i and the resulting matrices will be

k ×m; note that Xp
i as defined above is instead (k − 1)×m)

2. Let X(i) = 1
n−1

∑
j 6=i X

p
j , i = 1, ..., n. These are the “jacknifed” average shapes excluding

object i.

3. Do a Procrustes fit (rotation only) of the current Xp
i ’s on to X(i). This yields rotation

matrices Γ̂i from which we let

Xp
i ← Γ̂iX

p
i , i = 1, ...n.

We repeat steps 2 and 3 for all i.

12



4. Compute the n× n correlation matrix Φ = corr(Xv) where

Xv = [vec(Xp
1)vec(Xp

2)...vec(Xp
n)].

where vec(X) returns a vector in which we stack the columns of matrix X one of top of

each other. Note we stack all the m dimensions together.

5. Let φ = (φ1, ..., φn)′ be the eigenvector of Φ corresponding to its largest eigenvalue. Then

set

β̂i =

√∑n
j=1 ||Xp

j ||2
||Xp

i ||2
φi, i = 1, ..., n

and let Xp
i ← β̂iX

p
i . The algorithm repeats steps 2 to 5 until convergence.

The algorithm is guaranteed to converge (in the sense that the fitted Xp
i cease to vary as i

increases), usually in just a few iterations [33]. The exact solution to the Procrustes registration

problem between two objects X1 and X2 required in step 3, implies finding Γ ∈ SO(m) that

minimizes dp(X1, X2) (see 5) for X1 = Xp
i and X2 = X(i), i = 1, ..., n. The exact solution

to this problem is well-know in both the Statistics [19] and computer vision fields [18] and

is given by Γ̂ = UV ′ where U and V are obtained from the singular value decomposition

Z ′
2Z1 = V ΛU . An important implementation detail of singular value decomposition for shape

analysis is that to assure we have det(Γ̂) = +1 and hence a rotation matrix (as opposed to

-1 and a reflection matrix), we can make instead Γ̂ = URV ′ where R is the identity matrix

except for the last diagonal element for which we use det(UV ′).

The GPA algorithm as described assumes the statistical model

X i = βi(µ + Ei)Γi + 1kγ
′
i, i = 1, ..., n (10)

where µ is the mean shape of the objects and the k × m matrix of errors Ei is such that

vec(Ei) ∼ (0, σ2Ikm×km) where 0 is a vector of km zeroes and Ikm×km is the km×km identity.

The model then assumes isotropic variance, i.e., the variance is the same at each landmark and

in each of the m coordinates. Modification of GPA for the case of a general covariance matrix

of the errors Σ requires a straightforward modification of the definition of the dF distances

minimized in (7) that accounts for Σ. However, given that in general Σ is unknown and needs

to be estimated there is no known registration algorithm which guarantees convergence in the

non-isotropic case. Common practice is to initially set Σ = I, run GPA, then estimate Σ with

Σ̂ =
1

n

n∑
i=1

vec(Xp
i − µ̂)vec(Xp

i − µ̂)′

run again GPA with the squared full procrustes distances in (7) replaced by the Mahalanobis

squared distance vec(X i)
′Σ̂

−1
vec(Xj) and iterate this process (but convergence is not guaran-

teed).
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Model (10) implies that each object results from the rotation, scaling, and translation of

the mean shape in the presence of random noise, i.e., similarity transformations of the mean

shape observed with noise generate the observed profiles of the objects.

Example. Generalized Procrustes Registration. Suppose 10 cylindrical parts are manu-

factured. The parts have the same geometric specifications and were produced under homoge-

neous conditions. It is of interest to study the variability of the shapes (more on this below).

The part design has a “notch”, typical in parts that are used for assemblies. The 10 measured

2-dimensional shapes correspond to orthogonal contours obtained using a CMM at a fixed dis-

tance from the cylinder’s origin. Each shape has k = 200 landmark measurements. We assume

the matching landmark problem does not exist, so the labels between shapes correspond to

each other. The original orientation of the parts, however, differs, and registration is necessary.

Figure 5 shows ten such simulated contours before and after registration using the GPA algo-

rithm (evidently, the noise has been exaggerated with respect to what actual measurements of

real parts would look like). ¥.
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Figure 5: Example of GPA registration applied to the contours of 10 simulated “circular

notched” parts, each with k = 200 (labeled) landmarks. Left: original, unregistered shapes.

Right: registered shapes using GPA algorithm.

3.3 Tangent Space Coordinates

Once n configurations or profiles have been registered using GPA, the mainstream of the SSA

literature (see e.g., [13, 15, 1]) recommends that further statistical analysis of shape variability

and any desired inferences be made based on the resulting registered shapes Xp
i using the full

Procrustes distances from the mean shape (or pole), called the tangent space coordinates. This
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is suggested in contraposition to working with the procrustes distances which are not linear. A

Principal Component Analysis (PCA) is then recommended on the tangent space coordinates

to better understand the directions in which the shapes are varying the most.

For a preshape Xp
i and mean shape µ̂, the tangent coordinates vi are the distances along

the tangent at the mean shape corresponding to the projection of Xp
i on µ̂ and are given by

vi =

[
I(k−1)m − vec

(
µ̂

||µ̂||
)

vec

(
µ̂

||µ̂||
)′]

vec

(
Xp

i

||X̂p
i ||

)
, i = 1, ...n. (11)

The tangent coordinates are (k−1)m vectors. If the centered configurations are used, then vi is

a km dimensional vector. An alternative approach which is close to the tangent coordinates if

the preshapes are not too different from the mean shape (see Figure 6) is to use the Procrustes

residuals ri defined by

ri = vec(Xp
i − µ̂), i = 1, ..., n

that is, we work with the secants instead of the tangents. Again, for small differences about the

mean, the conclusions of the analysis would be very similar. Regardless how one computes the

µ

Xi
p

ri

^

υi

Figure 6: Tangent coordinates vi and approximate tangent coordinates (secants) ri =

vec(Xp
i − µ̂).

tangent coordinates, either using (11) or using the approximate tangent coordinates vi ≈ ri, the

mainstream approaches to SSA recommend using a Principal Components Analysis (PCA) on

the vi’s [15, 1]. The theoretical justification for this recommendation comes from work by Kent
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and Mardia [25] who have shown that an isotropic distribution of the landmarks results in a

isotropic distribution in the tangent space (given that small changes in a configuration matrix

X induce an approximately linear change in the tangent coordinates v), and hence, PCA in

tangent space is valid for shape analysis.

Let V = [v1,v2, ..., vn] be all the tangent coordinates of all the n objects under study. An

estimate of the covariance matrix Cov(V ′), giving the between-shape variances and covariances

at the landmarks is given by

Sv =
1

n

n∑
i=1

(vi − v)(vi − v)′

where v is the average of the vi’s. This is a (k − 1)m × (k − 1)m matrix if the preshapes are

only scaled and a km× km matrix if the centered preshapes are used instead. In the first case,

the rank of this matrix is p = M = (k− 1)m− 1−m(m− 1)/2 and in the latter case the rank

is p = M + 1, since the mean is not lost. Let {λj}p
j=1 and {ej}p

j=1 be the p eigenvalues and

eigenvectors of Sv. Dryden and Mardia [13] suggest to compute

v(c, j) = v + c
√

λjej, j = 1, ..., p

for several values of c, say for −6 < c < 6.

One of the greatest advantages of shape analysis methods is visualization, as it takes place

in a space that preserves the geometry of the objects. To visualize the principal components of

the tangent coordinates, Dryden and Mardia [13] suggest to plot

vec(XI) =

[
H ′ 0

0 H ′

]
[v(c, j) + vec(µ̂)] (12)

for all principal components j and for all multiplies c. These are the coordinates on the

original shapes where the (registered) objects exist, and indicate the directions in which the

principal components indicate movement –variability– around the mean shape (if the vi’s are km

dimensional vectors, there is no need to premultiply times the block matrix of Helmert matrices).

Just as in regular PCA, the percentage of variation explained by the jth principal component

is given by 100λj/
√∑p

j=1 λj. Once the tangent coordinates have been computed, multivariate

analysis techniques can be applied in the usual way until the point where visualization using

(12) is necessary.

Example. PCA of the circular notch shape data. Consider the 10 shapes shown in Figure

5. These shapes were simulated by superimposing sinusoidal variability along the circle at a

second harmonic (inducing a bilobed shape) and inducing variability in the depth of the notch.

Additional random normal bivariate variability was added at each landmark, which masks the

first two sources of variability in such a way that they are not obvious to the eye. These sources
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of variability where added to demonstrate the power of PCA in the tangent space. Figure 7

shows the first two Principal Components in this example, which together account for more

than 65% of the variability. Note how the first component is precisely the simulated bilobed

shape and the second component refers to the depth of the notch. Remaining PC’s do not show

any obvious pattern. ¥.
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Figure 7: Example of Principal Components Analysis applied to the data of the 10 circular

notched parts. Left: first principal component detects a sinusoidal variation, and accounts for

56.7% of the variability. Right: second principal component, which corresponds to variation in

the depth of the notch, accounts for 8.3% of the variability. In these plots, values of c ∈ (−3, 3)

where used. Dark line is the mean shape.

Performing a PCA on the tangent coordinates is of value when one is interested in analyzing

how the variability of the shapes behaves around the mean. For analyzing the effect of factors

(varied during an experiment) on the mean shape (as required when conducting manufacturing

experiments that may improve the shapes of parts produced by a process) one needs to per-

form an Analysis of Variance. This was first discussed by Goodall [15] (see also Dryden and

Mardia [13]) for the one-way case and studied in the two-way layout case, with application in

manufacturing, by Del Castillo and Colosimo [11].

4 Further work

The methods presented in this chapter assume all parts contain the same number of correspond-

ing landmarks, or locations of interest. If there is a different number of landmarks between 2

objects, the ICP (iterative closest point) algorithm [4, 35] has been proposed to obtain the same

number of corresponding landmarks between the parts. If the landmarks do not correspond, a
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matching algorithm such as the context-labeling algorithm of section 2 could be applied after

the ICP algorithm. An alternative to the use of the ICP algorithm [3] is to simply add dummy

landmarks to the smallest landmark matrix to get max(k1, k2) landmarks, and assign a large

cost between these points and all others (this is also a mechanism to handle outlier landmarks,

since they would be matched to the dummy points).

A matching algorithm notably different than the one presented in section 2 has been pro-

posed recently by Green and Mardia [17]. It also applies to the case of 2 objects. Other

possibility is to use the 2-dimensional context histograms, but use a statistic other than the

χ2 used here, to measure distances (costs) between two multivariate distributions, e.g., a 2-

dimensional Kolmogorov-Smirnov test or other recent alternatives (e.g., that in [32]). Such

approach would still use the weighted matching LP formulation presented here, but with a

different way to get the cost matrix C. Even in the Belongie et al. [3] approach, it is not clear

how to best scale the X matrices, how many bins to use in each dimension, or what is the

best way to measure angles for differently oriented objects in order to achieve effective rotation

invariance. An interesting embellishment to the landmark matching algorithm [3] is to iterate

the matching algorithm with an algorithm for the estimation of the registration transformation

between the objects. This may result in better matching (and hence, registration) because the

initial matching may be sensitive to the different orientations of the parts due to the ambigui-

ties mentioned earlier about defining the histogram resolution. These authors suggested to use

Thin Plate Spline transformations, popular also in the area of Morphometrics, as opposed to

the GPA algorithm considered here. A similar iterative procedure could be attempted with the

context labeling algorithm and the GPA algorithm applied iteratively. A recent description of

the matching problem from a Computer Vision perspective is the book by Davies et al. [10].

As mentioned earlier, a generalization of 2-object matching methods to the case of n objects

is desirable, since once labeled (corresponding) landmarks are available (assuming same number

of landmarks in each object), the SSA methods presented herein can be implemented. The

advantages and disadvantages of the “context labeling” method compared to the Green/Mardia

[17] approach need to be investigated.

In this paper we did not discuss tests for comparing the mean shapes between two or

more populations, which can be done using ANOVA methods applied to the shapes. For more

information on this topic, see [11].

Most of the work on SSA has focused on 2D shapes. Extensions to the 3-dimensional case

are evidently practical (but the landmark matching problem becomes more difficult). The

context labeling approach presented here has been extended recently by Frome et al. [12] to

the 3-D case using 3-D histograms. The implementation details mentioned above remain and

need to be studied). For 3-D objects, GPA and the PCA can be done without any change, but

visualization of the PCA’s is challenging if k (no. of landmarks) is large.
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Finally, some authors (e.g., Lele and co-workers [28]) have proposed using the inter-landmark

Euclidean distance matrix [dij] to make inferences on the shapes of objects, with application to

testing for the difference between shapes. Lele suggests using the GPA algorithm to estimate

the mean shape, but debate exists about how to estimate the covariance matrix of the land-

marks in the non-asitropic case. This series of methods do not have an easy way to visualize

the results, and require more information (

(
k

2

)
distances instead of km), although this in-

formation is implicit in the k × m matrix X. In addition, there seems to be no counterpart

to the PCA analysis of variability in distance-based methods. There is considerable debate

about which method is more powerful to detect differences in shapes, and it is of interest to

compare distance-based methods with those studied in [11] for a variety of shapes of relevance

in manufacturing, since the power of these methods appears to depend on the shape in question.

Dryden and Mardia [13] present a good overview of distance-based methods.
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Appendix. Computer implementation of the Landmark

Matching and GPA/PCA algorithms.

Matlab programs that perform the computations required for the context labeling algorithm of

section 2 and for the GPA algorithm, including visualization of PCA’s, were written for this

research and can be downloaded from

http://www2.ie.psu.edu/Castillo/research/EngineeringStatistics/software.htm.

The programs posted contain several programs for statistical shape analysis. Two of the pro-

grams are related to what is discussed in the present paper: ContextLabeling.m, which im-

plements the context labeling algorithm presented in section 2 for two 2-dimensional objects,

and GPA23.m, which implements the generalized Procrustes algorithm (assuming isotropic vari-

ance), and performs, if desired, the Principal Component Analysis in tangent space, including

the corresponding visualization.
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