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Abstract

We review key mathematical concepts used in the theory of Statistical Shape Analysis

(SSA). The treatment is elementary and aims at providing a brief guide to a large number

of results and ideas which are dispersed over an also very large literature on Non-Euclidean

Geometry, Differential Geometry, and Topology. The goal is to provide an introduction

to the ideas SSA touches in these areas to researchers wishing to apply SSA in practice.

0.1 Relations, equivalence relations and equivalence classes

Definition 1. A relation on a set A is a subset, R, of A2 = A×A. Usually, relations are defined

by providing a statement that singles out a collection of elements of A × A for membership in

the relation. A relation R on a set A is:

• reflexive if for all x ∈ A, xRx.

• symmetric if, for all x, y ∈ A, xRy implies yRx.

• transitive if, for all x, y, z ∈ A, xRy and yRz imply xRz.

• an equivalence relation if R is reflexive, symmetric and transitive.

Example 1. Let F be the set of fractions of integers. Define a/b ≡ c/d if ad = bc. Then ≡

(equality of fractions) is a relation on F . Thus, e.g., the pair (1/2, 2/4) is in the subset of F

defined by ≡. Furthermore, ≡ is an equivalence relation since:

1. it is reflexive: for each a/b ∈ F , a/b ≡ a/b;

2. it is symmetric: for each a/b, c/d ∈ F , if a/b ≡ c/d, then c/d ≡ a/b;
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3. it is transitive: for each a/b, c/d, e/f ∈ F , if a/b ≡ c/d and c/d ≡ e/f , then a/b ≡ e/f .

Equivalence relations are sometimes written with the symbol ∼; thus, x ∼ y is read “x is

equivalent to y”. Two elements of a set do not need to be equal to be equivalent, they need

only to share a specified property.

Definition 2. Let A be a set and let ∼ be an equivalence relation defined on this set. For each

a ∈ A, the equivalence class of a is a subset, denoted [a]∼, consisting of all elements of A that

are equivalent to a, i.e.,

[a]∼ = {x ∈ A : x ∼ a}

If there is no ambiguity about the equivalence relation one is talking about, the corresponding

equivalence class is written [a]. Here the word “class” has been used historically to simply

mean a set. Other names for equivalence class is an orbit, and, in case the underlying set is a

manifold (see 0.3 below) they are also called a fibre.

Example 2. In example 1, with ≡ being the equivalence relation, [1/2] = {x ∈ F : x ≡ 1/2} =

{a/b ∈ F : 2a = b} is the set of all integer fractions equal to 1/2, which clearly is a subset of

F .

Theorem 1. Let ∼ be an equivalence relation on A and let x, y ∈ A. Then 1) if x ∼ y, then

[x] ∼ [y]; 2) if x ≁ y, then [x] ∩ [y] = ∅; 3) A =
⋃

x∈A[x].

Proof of 3): each equivalence class is a subset of A by definition. Each x ∈ A is in the

equivalence class [x]. Therefore, A is contained in the union of the equivalence classes of all

the elements of A. Since from part 2) distinct equivalence classes do not intersect, this union

is actually equal to set A.

Part 3) of the result above means that the set of all equivalence classes implied by an equiv-

alence relation ∼ forms a partition of A. Parts 1) and 2) say that if two equivalence classes have

an element in common, then they are identical, or, in other words, that two distinct equivalence

classes are always disjoint.

Definition 3. Let ∼ be an equivalence relation in A. The set of all equivalence classes is

called A modulo ∼ or the quotient of A by the equivalence relation ∼, and is denoted A/ ∼.

The projection map π : A → A/ ∼ sends x ∈ A to its equivalence class [x]. If the set A/ ∼ is

closed under arbitrary unions and finite intersections (properties that define a topology), this

set is called the quotient space of A by the equivalence relation ∼.
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Example 3. Quotient spaces A/ ∼ (and equivalence classes) are usually created by identifying

a subset of A to a point. For instance, let A = [0, 1] (unit interval on R) and define the

quotient space obtained from A by identifying the two endpoints {0, 1} to be equivalent to the

same point. Let S1 be the unit circle on the complex plane C. The function f : A → S1,

f = exp(2πix) equals the same value (1) at 0 and at 1, and hence it induces a function

g : A/ ∼→ S1.

Geometrically, points on the unit interval A are being mapped into the points of the unit cir-

cle on C, with the two endpoints in A mapping into the same point on C, namely the point (1,0).

When one defines an equivalence relation on a set, one is usually interested in the set A/ ∼.

But to be specific, a given equivalence class has to be described by one of its elements. Thus,

if [x] ∈ A/ ∼, we need to choose an element a ∈ [x] to be a representative (sometimes called an

icon) of [x]. Representatives are not unique, of course.

Definition 4. A homeomorphism is a mapping in Euclidean space from one object onto an-

other that is continuous and one to one, i.e., it establishes a one to one correspondence between

points in each figure. The inverse mapping has the same properties. For example, a sphere in

R3 and a cube are homeomorphic.

The concept of homeomorphism is used to define the properties of objects (figures) that re-

main unchanged under continuous deformation (“rubber band deformations”). These properties

are called the topological properties of the objects. Topological properties stand in contradis-

tinction with metrical properties, which are associated with distances between points, angles

between lines, and edges of a figure, properties that are preserved under rigid body transfor-

mations only.

Definition 5. An n-sphere Sn is a set of points in (n + 1)-Euclidean space such that Sn =

{x ∈ Rn+1 : ||x|| = r} where the radius r is usually set to one (giving the unit n-sphere). A

similar definition exists in case the base space is complex: a complex n-sphere is defined as

Sn = {z ∈ Cn+1 : ||z|| = r}. The notation Sn refers to the dimension of the surface of the

sphere. The n-sphere can be described as Sn = Rn ∪ {∞}, which is n-dimensional Euclidean

space plus a single point representing infinity in all directions (this representation gives origin

to the real projective space, see Definition 7). Alternatively, if a single point is removed from

an n-sphere, it becomes homeomorphic to R
n.
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0.2 Groups and transformations

Definition 6. A group is a set G with a binary operation ∗ (sometimes called “multiplication”)

such that the operation: a) is associative, b) has an identity, and c) has an inverse operation. If

in addition, d) ∗ is commutative, then the group is said to be Abelian, otherwise it is non-Abelian.

Example 4. An instance of an Abelian group is the integers with addition as the ∗ operation.

In Geometry, a transformation is a one-to-one correspondence P → P ′ among all the points

in the plane (or space), i.e., a rule for associating pairs of points, where each pair has a first

point belonging to P and a second point belonging to P ′. The most trivial transformation is

the identity transformation, which leaves each point unchanged. A set of transformations is

said to form a group if it contains the inverse of each and the product of any two. For instance,

the symmetry operations, which leave a figure unchanged while permuting its parts, forms a

group, the so-called symmetry group (or group of symmetries) of the figure.

Example 5. An instance of a non-Abelian group of transformations is SO(n), the special

orthogonal group (also called rotation group), which consists of all n-dimensional rotation ma-

trices (orthogonal matrices with determinant equal to one) under the “composition of rotations”

operation. Performing a rotation defined by matrix R1 in a given direction followed by a second

one R2 and a third one R3 satisfies the associative condition since (R1∗R2)∗R3 = (R1∗R2)∗R3,

we clearly have an inverse rotation for every rotation: R−1
1 ∗ R1(= I) leaves an object in its

original position, and we have an identity matrix I which is the zero rotation R0 = I, with

R0 ∗ R1 = R1. However, rotations do not commute: R1 ∗ R2 6= R2 ∗ R1 as a 3-dimensional

example can demonstrate.

SO(n) can be understood as the group of symmetries of a n-sphere Sn excluding reflections.

Note this is a continuous group, in contrast to Example 4, where the group is clearly discrete.

Continuous groups are called Lie groups, after Sofus Lie (1842-1899). Thus, for instance, if

n = 3, SO(3) is the set of all possible rotations of a 3-dimensional sphere. SO(n) is a subgroup

of O(n), the orthogonal group. The elements of this set are all n × n orthogonal matrices, not

only those that have determinant one. Hence, SO(n) is a subgroup of O(n). The orthogonal

group contains not only the non-reflective symmetries SO(n) but also the reflective ones. Both

SO(n) and O(n) are in turn subgroups of GL(n), the general linear space of all non-singular

n × n matrices.

Quotient spaces (see Def. 3) can be defined by the action of a group on the elements of

some manifold M (see 0.4 below for a definition of manifold). If G is a group, then we define
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two points x, y in M to be equivalent if there is a g ∈ G such that y = gx and this defines the

quotient space M/G. In this case, the left action of G on elements of M define the equivalence

relation and hence, the quotient space.

Euclidean geometry is only one of many possible geometries. Felix Klein, in his inaugural

address a Erlangen in 1872 proposed the classification of geometries according to the groups

of transformations in which the primitive concepts of each geometry remain invariant. In

particular, Euclidean geometry is characterized by the group of similarity transformations;

these are transformations that preserve the angles of a figure. Similarity transformations include

isometries, that is, transformations that preserve the lengths of an object, such as translations

and rotations (these are the so-called rigid-body transformations, which stand in contrast to the

type of continuous or “rubber band” transformations studied in Topology, referred above), and

reflections. Two objects are congruent if and only if they can be transformed into each other by

an isometry. Similarity transformations include the isometries but also include dilatations (or

dilations) which transform the scale of the objects. Two objects are similar if and only if one

can be transformed into the other by similarity transformations. Similarity transformations not

only preserve angles, they also preserve ratios of distances (for this reason some authors say

they preserve the “shape” of an object).

It was Möbius who early in the XIX century showed that sequences of motions on the plane

could be understood as “products” that transform the space, and who began the systematic

study of congruential (length preserving), similarity (shape preserving) and affine (parallelism

preserving) transformations. He showed that the most general continuous transformation that

preserves “straightness” are the projective transformations, discussed next. The restatement of

Möbius ideas in terms of groups only occurred until 1872 by Klein, once the concept of group

was recognized.

0.3 Projective geometry and Complex projective space

Contrary to the transformations in Euclidean space, Projective geometry deals with transfor-

mations that do not preserve angles and lengths, namely, projections. In addition, and as it

was first known during the Renaissance with perspective painting, there exist points at infinity

(“vanishing points”) where parallels met. Thus, projective geometry allows infinity to be put on

the same footing as the finite points of the plane [7]. A natural question, first raised by Alberti

during the Renaissance in his study on perspective, is this: if projections do not preserve angles

and lengths, what is preserved? What is preserved under projections is the cross ratio of four

points A,B,C,D on a line, defined by
CA

CB

DA

DB

.

5



Homogeneous coordinates (invented by Möbius) give a natural extension of the Cartesian

plane R2 by assigning new coordinates to the points already present and creating new points

including points at infinity. They are the coordinates used in projective geometry.

Definition 7. The homogeneous coordinates of a point (X, Y ) ∈ R2 are all the real triplets

(Xz, Y z, z) with z 6= 0, i.e., all real triplets (x, y, z) with x/z = X, and y/z = Y . ([7], p. 134).

If we take X, Y to be the x, y coordinates in the plane z = 1, then the coordinates (Xz, Y z, z)

are just the coordinates of points on the line in R3 from the origin to (X, Y ). Thus, homoge-

neous coordinates give a one-to-one correspondence between points (X, Y ) ∈ R2 and nonhor-

izontal lines through the origin in R3. The horizontal lines, those with coordinates (x, y, 0),

correspond to the points at infinity. In geometrical terms, we have enlarged the R2 Euclidean

space to the Real Projective Space RP
2 by “adding a point” to R2 to represent infinity. From

the construction of homogeneous coordinates above, RP
2 is the set of straight lines of R3

which pass through the origin (0, 0, 0) ∈ R3, that is, RP
2 is the space of all possible “di-

rections” of R3 (a sphere). It is the quotient space of R3 − {0} by the equivalence relation

(x1, x2, x3) ≡ (λx1, λx2, λx3), λ ∈ R, λ 6= 0.

One can consider either real projective spaces Pn = RP
n or complex ones (Pn = CP

n.).

Example 6. One example of a complex projective space is the so-called Riemann sphere (also

called sometimes the Gauss sphere), which is CP
1. The Riemann sphere arises as the space of

ratios of complex numbers (w, z), not both zero, which is the space of complex lines through the

origin in C2. The Riemann sphere can be thought as a one-to-one correspondence established

between the points on a sphere sitting on C and the points in C, obtained by stereographic

projection of the plane into the sphere. This is achieved by drawing lines from the “north pole”

N of the sphere into the plane C below. Any such nonhorizontal line pierces the sphere and

touches it in one point, which is then projected into the complex plane into a single point. As

the line becomes more horizontal, the point on the sphere is closer to N and the point on the

plane is farther away in C, with a horizontal line at N not touching C and corresponding to

infinity on the plane. We thus have enlarged C to CP
1 = C ∪ {∞}. The projective completion

of C, CP1, is therefore topologically (i.e., quantitatively) equivalent to a sphere.

More generally, any projective space can be assigned homogeneous coordinates like those

illustrated in Definition 7 for the case Pn. These are the n independent ratios of the coordinates

z0, z1, ..., zn for the n + 1-dimensional space from which Pn arises:

z0 : z1 : z2 : ... : zn
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(where the z’s are not all zero) rather than the values of the individual z’s themselves. If the

z’s are all real, then these coordinates describe RP
n; if they are all complex then they describe

CP
n.

0.4 Manifolds, tangent space, submersions and immersions, parallel

transport

Informally, a manifold is a space that can be thought as “curved” in various ways, but where,

locally, (i.e., in the vicinity of each of its points) it can be approximated by ordinary Eu-

clidean space. Manifolds can be thought of as a set of “points” tied together continuously and

differentially, so that the points in any sufficient small region can be put into a one-to-one cor-

respondence with an open set of Rn. This correspondence furnishes a coordinate system for the

neighborhood. The ideas of manifolds, their charts and atlases, were developed by Gauss when

working in geodesy and cartography. In the same way that the curvilinear surface of the Earth

is approximately represented by planar maps that describe small regions of the globe, which

are then “glued” together to form a consistent Atlas, similar concepts explain the structure of

a general manifold. A formal definition refers to the standard type of manifold, the Hausdorff

space. A Hausdorff space has the defining property that, for two distinct points on the space,

there are open sets containing each which do not intersect.

Example 7. The simplest example of a manifold is an open region in Euclidean space, for

instance, that described by sets of solutions of systems of equations in Rn. A more interesting

example is the space of all n × n real matrices, GL(n), defined as

GL(n) = {X ∈ R
n×n : det(X) 6= 0} = det−1(R − {0}).

Since the determinant function,

det : R
n×n → R

is continuous, GL(n) is an open subset of Rn×n, and is therefore an n-dimensional manifold.

Likewise, a subgroup of GL(n) such as the rotation group SO(n), whose “points” (elements)

are the n×n matrices {X : X
′
X = I, det(X) = 1} also constitutes an n-dimensional manifold.

Definition 8. (formal definition of a manifold) A Hausdorff space M is called a n-

dimensional manifold if it is represented by the union of its open subsets Ui and if at each of

these subsets there is a homeomorphism φi : Ui → Dn which maps Ui onto an open disc in

Euclidean space Rn. The homeomorphism φi is called the coordinate map, the sets Ui are called

a coordinate neighborhood, the pair (Ui, φi) is called a chart, and the union of charts
⋃
{(Ui, φi)}

is called the atlas on M. The number n is the dimension of the manifold. Each coordinate
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map determines coordinates on the set Ui since the map determines on the chart the family of

continuos functions x1(P ), ..., xn(P ) at point P ∈ M which can be regarded as coordinates of

a variable point P .

With each atlas on a manifold there is associated the concept of transition functions. Con-

sider two charts Ui and Uj and their intersection Ui∩Uj . On this intersection the two coordinate

maps φi(Ui ∩ Uj) ∈ Dn and φj(Ui ∩ Uj) ∈ Dn are defined (recall Dn is a n-dimensional open

disk in Rn). The composition of functions φij = φjφ
−1
i , mapping the set φi(Ui∩Uj) onto the set

φj(Ui ∩ Uj) is also defined in Dn. The composite functions φij are called the glueing functions

or the transition functions of the atlas. If φij is a smooth function(i.e., it is differentiable any

number of times), the charts Ui and Uj are said to be compatible. Determination of the glueing

functions allows to restore the whole manifold if individual charts and coordinate maps are only

available.

With each point x on a smooth manifold M there is associated a linear n-dimensional space

call the tangent space.

Definition 9. If in the neighborhood of a given point a coordinate system x1, ..., xn is fixed

(note the convention of indexing coordinates with superscripts), then at this point there natu-

rally arise n linearly independent tangent vectors ei = ∂/∂xi that correspond to differentiations

along the coordinate lines passing through the point x. The set of all tangent vectors to a point

x in an n-dimensional manifold M forms a linear space of dimension n. This space is called

the tangent space to the manifold at x, and is denoted TxM . A tangent bundle T∗M is the set

of all pairs (x, a) where x ∈ M and a is a vector tangent at x.

Definition 10. Let f be a function whose domain is a set A. The function f is injective if for

all a and b in A, if f(a) = f(b), then a = b; that is, f(a) = f(b) implies a = b. Equivalently,

if a 6= b, then f(a) 6= f(b). Thus, an injective function preserves distinctness; it never maps

distinct elements of its domain to the same element of its codomain. A canonical injective

function is the inclusion function i : A → B defined, for every x ∈ A ⊂ B, as i(x) = x ∈ B.

That is, A is a subset of B and all elements of A are treated as elements of B as well.

Definition 11. A surjective function (or onto function) is a function whose image is equal to

its codomain. Equivalently, a function f with domain X and codomain Y is surjective if for

every y ∈ Y there exists at least one x ∈ X with f(x) = y. A surjective function is called a

surjection. In a surjective function every point in the codomain is the value of f(x) for at least

one point x in the domain.
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Figure 1: A smooth differential map φ between two manifolds. (Source:

http://en.wikipedia.org/wiki/File:Pushforward.svg)

Recall that in vector calculus the Jacobian matrix is a matrix representation of the differ-

ential (or total derivative) of a smooth map φ at a point x ∈ U ⊂ Rm between subsets U ⊂ Rm

and V ⊂ Rn, i.e.,

dφx : R
m → R

n.

This idea can be generalized to the case φ is a smooth function between two manifolds M and N .

Definition 12. Let φ : M → N . For some x ∈ M, the differential of φ at x is the map

φ : TxM → Tφ(x)N

from the tangent space of M at x to the tangent space of N at φ(x). See Figure 1.

Definition 13. A smooth map between manifolds f : M → N is called an immersion if the

differential df : TxM → Tf(p)N is injective for every p ∈ M. If an immersion is homeomorphic

to its image it is said to be an embedding. The map f is called a submersion if df is surjective for

every p ∈ M. Authors speak of the smooth map f as being an immersion or a submersion at a

point x ∈ M, but this means that their differential df at x is injective or surjective, respectively.
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Example 8. The prototype of an immersion is the inclusion of Rm in a higher dimensional Rn:

i(x1, ..., xm) = (x1, ..., xm, 0, 0, ...., 0).

The prototype of a submersion is the projection of Rm onto a lower dimensional Rn:

π(x1, ..., xn, xn+1, ...., xm) → (x1, ..., xn).

There exist a series of theorems in Topology that indicate how finite-dimensional manifolds

can always be embedded in Rm for sufficiently large m (e.g., the Whitney theorem).

Example 9. An important submersion in shape analysis is the Hopf submersion S3 → S2

where each distinct point of a 2-sphere comes from a distinct circle (a fibre) on the 3-sphere.

This can be explained in two different ways:

• Identify R4 with C2 and R3 with C × R by writing

(x1, x2, x3, x4) as z0 = x1 + ix2, and z1 = x3 + ix4

and

(x1, x2, x3) as z = x1 + ix2 and x = x3.

Thus,

S3 is identified with the subset (z0, z1) ∈ C2 such that |z1|2 + |z2|2 = 1 and

S2 is identified with the subset (z, x) ∈ C × R such that |z|2 + x2 = 1 (note:

|z|2 = zz∗). The Hopf submersion p : S3 → S2 is then defined as

p(z0, z1) = (2z0z
∗

1 , |z0|
2 − |z1|

2)

where the first entry on the right hand side is a complex number and the second one

is real. Thus, p(z0, z1) ∈ C × R, and since p(z0, z1) = 11, it actually lies on S2(1).

Furthermore, since

p(z0, z1) = p(λz0, λz1)

for some λ ∈ C such that |λ|2 = 1, then different points in S3 map to the same point

on the 2-sphere. Since |λ|2 = 1 forms a circle on C, it follows that for each point

w ∈ S2, p−1(w) = S1 ( a circle) on S3. Thus, the 3-sphere is a disjoint union of

circular fibres (for this reason this is also called the Hopf fibration).

1Proof: 2z0z
∗

1 · 2z0z
∗

1 + (|z0|
2 − |z1|

2)2 = 4|z0|
2|z1|

2 + |z0|
4 − 2|z0|

2|z1|
2 + |z1|

4 = 2|z0|
2|z1|

2 + |z0|
4 + |z1|

4 =

(|z0|2 + |z1|2)2 = (1)2 = 1.
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• We can consider the complex projective space CP1 as equal to the quotient space of

C/{0} by the equivalence relation that identifies (z0, z1) with (λz0, λz1) for z0, z1 and λ( 6=

0) ∈ C (set of equivalence classes under multiplication by a non-zero complex number).

Then, on any complex line in C
2 (a one dimensional complex subspace that replicates

the entire complex space C) there is a unit circle, so the quotient maps circles to points.

Alternatively, (z0, z1) can be mapped to the point z0/z1 (using homogeneous coordinates)

on the Riemann sphere C ∪ {∞} (see example 6).

0.5 Intrinsic and extrinsic geometry and geodesics

The concept of intrinsic geometrical properties of an object originated from the work by Gauss,

who, in 1827, conceived the idea of defining the curvature of a surface by measurements that

take place entirely on the surface and not based on measurements on the ambient space where

the surface is embedded, that is, he found a way to detect the curvature of a surface intrinsically.

For instance, in the time of Gauss, the curvature of the earth was known on the basis of surveyors

and explorers, not by viewing it from space [7].

In the case of a curved line on the plane, there is no way to define the curvature of a line by

measurements confined to (intrinsic to) the line itself. One needs, for instance, an angle θ of

the tangent vector with respect to some fixed direction as a function of the distance s measured

along the curve, thus θ = θ(s). Then the curvature κ, and its reciprocal, the radius of curvature

ρ, are defined as κ = 1/ρ = dθ(s)/ds ([5], p. 335), which is an extrinsic measure of curvature.

Before Gauss, Euler showed in 1760 how to extend the extrinsic idea of curvature to the case

of a surface in three dimensional space by expressing the curvature at a point P on the surface

S in terms of “plane” curves by considering sections of S by planes through the normal at P .

Among the many possible such curves, there is one of maximum curvature and one of minimum

curvature. Euler showed how these two curvatures, κ1 and κ2, called the principal curvatures,

occur in perpendicular sections and that together define the curvature κ along a section at any

angle α to one of the principal sections by the expression:

κ = κ1 cos2 α + κ2 sin2 α.

The sum κ1 + κ2 is called the mean curvature, and it is an extrinsic measure of curvature of

a surface. This is as far as one can go in terms of extrinsic measures of curvature of surfaces

in R3 [7]. Gauss then showed how the product κ1κ2 (called the Gaussian curvature) can be

defined intrinsically, and serve as an intrinsic measure of curvature. For the plane, κ1 = κ2 = 0,

whereas for the 2-sphere κ1 = κ2 = 1/ρ = 1/r, so κ = 1/r2 (note this is a positive constant on

all points on the 2-sphere).

The Gaussian curvature has the property, proved by Gauss in his “remarkable theorem”
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(Theorema Egregium), that it is unaffected by bending2). Since a cylinder can be obtained

from a (rectangular portion of a) plane by bending, we have that a cylinder has also Gaussian

curvature equal to zero (since either κ1 or κ2 equal to zero). Gauss’ theorem then says that

if S1 and S2 are locally isometric, then S1 and S2 have the same Gaussian curvature at cor-

responding points. This actually provides the following definition of an intrinsic property in R3.

Definition 14. A property of surfaces in R3 is called intrinsic if it is preserved by local isome-

tries. Two surfaces S1 and S2 are locally isometric if any sufficiently small portion of S1 can

be mapped isometrically (i.e., preserving arc lengths) into any part of S2 (thus the map takes

any curve on S1 into a curve in S2 of equal length). Local isometries between S1 and S2 are

obtained by a bending transformation that does not include stretching, compressing, or tearing.

Example 10. A plane can be bent into a cylinder, hence they are locally isometric, and hence

they have the same Gaussian curvature (zero). A sphere and a plane are not locally isometric

(and therefore have different Gaussian curvatures), a fact of great importance in cartography:

any planar map of the Earth induces necessarily some distortion: there is no sphere to plane

transformation that preserves both angles and areas.

Note that local isometry is not the same as isometry (or global isometry): the plane and

the cylinder are clearly not isometric (since they are not congruent, see 0.2 above), but they

are locally isometric according to Definition 14.

We thus have that Gaussian curvature κ1κ2 is an intrinsic property of a surface embedded

in R3. Separately, the principal curvatures κ1 and κ2 are extrinsic properties, in contrast, since

they do not remain constant after an isometric transformation.

The geodesic lines, or geodesics, of a surface are a generalization of the straight lines of

the plane and are fundamental in determining the intrinsic properties of a surface. There are

several definitions of geodesics.

Definition 15. A geodesic is a curve on a surface such that every sufficiently small portion

of it is the shortest path on the surface connecting the end-points of the portion. It follows

that the geodesic lines of a surface continue to be geodesic if the surface is subject to bending.

2Bending (without stretching, compressing or tearing) is a type of isometric transformation, i.e., it preserves

arc lengths, but it is not a “rigid” transformation, which is also an isometric transformation. Two surfaces that

can be transformed into each other by bending are said to be “applicable” or that they can be “applied” to

each other. Two applicable surfaces, such as a plane and a cylinder, have the same Gaussian curvature (zero in

this case) [4]
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Hence geodesics are fundamental in the intrinsic properties of a surface. In fact, all intrinsic

properties of a surface (e.g., its Gaussian curvature) can be determined by drawing geodesics

and measuring its arc lengths.

The geodesics of the sphere are its great circles. A geodesic is a curve such that its principal

normal lying on the surface coincides with the normal to the surface.

0.6 Kendall’s Preshape and Shape Spaces

Let X be a k ×m matrix containing the k landmarks (coordinate pairs or triples) of an object

in m (2 or 3) dimensions. X is sometimes called a configuration matrix (since it is an element of

the configuration space, the space of all possible arrangements of k landmarks in m dimensions).

With this notation, the shape of a configuration X is obtained, first, by removing location and

scale effects by computing the so-called pre-shape Z:

Z =
HX

||HX||
(1)

where H is a (k − 1)× k Helmert submatrix (Dryden and Mardia, 1998) and || · || denotes the

Frobenius norm of a matrix. If we define hj = −[j(j + 1)]−1/2, then H is a matrix whose jth

row is: (hj , hj, ..., hj
︸ ︷︷ ︸

j times

,−jhj , 0, ..., 0
︸ ︷︷ ︸

k−j−1 times

) for j = 1, ...k − 1. Note that HH
′ = Ik−1 and that the

rows of H are contrasts. Alternatively, one could start with the centered preshapes, defined by

Zc = H
′
Z (these are k × m matrices), although the development below assumes Helmertized

preshapes where one of the k coordinates is eliminated.

Transformation (1) removes location effects via the numerator, and re-scales the configura-

tions to unit length via the denominator. Since we have not removed rotations from Z it is

not yet the shape of X, hence the name preshape. The centered preshapes are equivalent to

centering each coordinate of each configuration by its centroid and dividing each by its norm.

The shape of configuration X, denoted [X], is defined as the geometrical information that

is invariant to similarity transformations except reflections. In the work by Kendall (1984),

reflections are not considered, thus, two objects, one the mirror image of the other are considered

to have different shapes. Therefore, once location and scale effects are filtered as above, the

shape is then defined as:

[X] = {ZΓ : Γ ∈ SO(m)} (2)

where Z is the preshape of X, Γ is a rotation matrix (i.e., a matrix such that Γ′Γ = ΓΓ′ = Im

with det(Γ) = +1) and SO(m) is the space of all m × m rotation matrices that exclude

reflections, the special (or non-reflective) orthogonal group. Multiplication by a suitable matrix

Γ reorients (rotates) the object. Note that a shape is therefore defined as a set.
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The following geometrical interpretation of these transformations is due to Kendall (1984

and 1989). Given that preshapes are scaled and centered objects, they can be represented by

vectors from the center to the surface of a unit sphere of dimension (k − 1)m, because the

numerator in (1) removes m degrees of freedom for location parameters and the denominator

removes one additional degree of freedom for the change of scale. The preshapes, having unit

length, form a space (denoted Sk
m), which has (k − 1)m − 1 dimensions by virtue of being on

the surface. As one rotates a pre-shape Z via (2), the vectors ZΓ describe an orbit on Sk
m. All

the vectors on an orbit correspond to the same shape, since by definition the shape of an object

is invariant to rotations. Thus, the orbits (also called fibers) of the preshape space are mapped

one to one into single points in the shape space (denoted Σk
m), the space of all possible shapes

of k landmarks in m dimensions. This space in general will be a non-Euclidean M-dimensional

manifold. Two objects have the same shape if and only if their preshapes lie on the same fiber.

The shape space has dimension M = (k − 1)m − 1 − m(m − 1)/2 since in addition to losing

location and dilation degrees of freedom we also lose m(m − 1)/2 degrees of freedom in the

specification of the (symmetric) m × m rotation matrix Γ.

Example 11. Preshape space and shape space for lines. In order to explain these ideas,

consider one of the simplest possible cases, where we have 2 lines in R2 (see Figure 2). Thus,

we have that m = 2 and k = 2, where the obvious landmarks are the endpoints of the lines.

After centering and scaling the two lines using (1), one obtains the preshapes with matrices Z1

and Z2. Since the original objects evidently have the same shape (that of a line in Euclidean

space) these two preshapes lie on the same fiber or orbit, generated as the preshapes are rotated

using (2). The preshape space S2
2 is of dimension (k − 1)m− 1 = 1, namely, the circumference

of a unit circle. As the preshapes rotate (they can rotate clockwise or counterclockwise) they

will eventually coincide, which corresponds to the centered and scaled lines coinciding. Finally,

since there is a single shape, the shape space Σ2
2 is the simplest possible, namely, a single point

(dimension is M = (k − 1)m − 1 − m(m − 1)/2 = 0, i.e., a 0-manifold).

In general, the shape space Σk
m will be a nonlinear space, the Riemannian M-manifold

formed by the landmarks modulo similarity transformations, of reduced dimension than the

always spherical preshape space. That is, the shape space is defined as a quotient space, i.e.,

Σk
m = Rkm/G =Sk

m/SO(m), where G is the group of similarity transformations that exclude

reflections. While the step of going from configuration space (the km-manifold of all possible

arrangements of the landmarks) to preshape space is easy to understand, going from preshape

space to shape space is a non-trivial step. For instance, for planar shapes Kendall (1984) showed

that Σk
2 = CP k−2(4), the complex projective space of sectional curvature 4 (thus in the previous

example, Σ2
2 = CP 0(4), a one-point space). See Kendall et al. [1] for a detailed discussion of the
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Figure 2: One of the simplest illustrations of preshape and shape space. A) two lines in the

original 2-dimensional space; B), preshapes on 2-dimensional Euclidean space, after centering

and scaling; C) the corresponding pre-shape space is the (one-dimensional) circumference of

a unit circle. The two pre-shapes lie on the single fiber or orbit generated as the preshapes

are rotated, hence there is a single shape; D) the shape space for the two lines (Σ2
2) is zero

dimensional (a single point) and corresponds to the only shape that exists in this example.
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geometry of shape spaces. For most applications in manufacturing, the shapes will typically be

very close in shape space, and therefore the nonlinearity of the space can be neglected. There

might be, however, applications of SSA in micro-manufacturing where the assumption of low

between shape variability is false.

Example 12. Preshape and shape space for planar triangles. The map S3
2 → Σ3

2 is the

Hopf submersion of Example 9, which is a map from each non-overlapping circular fibre (the

preshapes) to the points in shape space. Each fibre [x] in S3
2 (point in Σ3

2) corresponds to a

particular triangular shape, the equivalence class generated by the quotient space S3
2/SO(2).

0.7 Other representations of shape

The Kendall shape space is appropriate when the landmarks of a configuration are only weakly

related. D.G. Kendall originally developed the ideas behind SSA theory for the case of triangles,

with application in Archeology. In other applications, specifically, manufacturing applications,

landmarks that delineate outlines which do not self-intersect have a stronger relationship and

this hints at the need of a different approach at representing the shapes [2].
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