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This article considers experiments in manufacturing where the response of interest is the geometric shape of a manufactured part and
the goal is to determine whether the process settings varied during the experiment affect the resulting shape of the part. An approach
in practice to determine factor effects is to estimate the form error of the part—if a standard definition of the form error of interest
exists—and conduct an analysis of variance (ANOVA) on the form errors. Instead, we study the performance of several statistical
shape analysis techniques to analyze this class of experiments. Simulated shape data were used to perform power comparisons for
two- and three-dimensional shapes. The ANOVA on the form errors was found to have a poor performance in detecting mean shape
differences in circular and cylindrical shapes. Procrustes-based tests such as an ANOVA test due to Goodall and a recently proposed
ANOVA permutation test provide the highest power to detect differences in the mean shape. These tests can also be applied to parts
produced in “free form” manufacturing, where no standard definition of form error exists, provided that correspondent points exist
on each part.
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1. Introduction

We consider manufacturing experiments where the end
purpose is to optimize the geometric shape of the parts
produced, and the first step toward this goal is to deter-
mine whether any of the process conditions varied in the
experiment affect the resulting shape of the parts. This is
a situation similar to that in the classic Design of Experi-
ments (DOE) approach, with the additional feature that the
response of the process is the complete part geometry. Our
interest, then, is not part inspection, which is typically per-
formed based on the tolerance form errors, provided that a
standard definition of the particular form error of interest
exists, but—just as in classic DOE—our aim is process
characterization and optimization of the shape of a part
as a function of the process parameters. This is an activity
typically performed at the R&D or engineering design
stage, prior to regular production. In this article, we review
and contrast statistical methods used to detect factor
effects in the mean shape of an object. As it will be shown,
statistical shape analysis methods, recently proposed for
use in manufacturing (Del Castillo and Colosimo, 2011),
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provide a powerful approach to this type of problem,
especially in cases where a standard definition of the form
error is non-existent (e.g., “free form” manufacturing).

For an instance of a designed experiment of the kind
we wish to analyze, Del Castillo and Colosimo (2011) re-
ported an experiment in lathe-turning of titanium alloy
parts in which the depth of cut and cutting speed were var-
ied according to a factorial design. Measurements of the
two-dimensional shapes were obtained using a Coordinate
Measuring Machine (CMM). The goal of the experiment
was to determine the effect of depth and cutting speed on
the circularity of the parts and to determine the best set-
tings of these factors to achieve the most circular parts.
A standard analysis of the effect of these factors on the
circularity (or cylindricity) of the parts can be conducted
through an analysis of variance (ANOVA) of the form error
for roundness (or cylindricity) of each part. This error is
frequently calculated in tolerancing practice as the smallest
difference between the radii of the two coaxial circles (or
cylinders) that enclose all of the measurements in a part
(Krulikowski, 1996; Henzold, 2006); please refer to Fig.
1(a)). Provided that a standard definition of form error ex-
ists, an ANOVA can then be conducted on the form errors
to analyze the impact the factors have on the mean shape
of the parts (for an interesting paper on this approach, see
Colosimo and Pacella (2011)).
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Fig. 1. (a) Circularity form error calculation and (b) circular and bilobed shapes with parameters σ = 0.05 and r = 5.

As an alternative to the use of the form errors and
a standard ANOVA test, or for parts with complex
geometry for which no standard form error definition
exists (i.e., free-form manufactured parts), we can use
Statistical Shape Analysis (SSA) techniques to perform
the analysis of the experiment. This was suggested by Del
Castillo and Colosimo (2011), who provided some limited
evidence that a specific SSA technique, a Procrustes-based
permutation ANOVA, has significantly more power to
detect differences in the (two-dimensional) roundness of
lathe-turned parts than the traditional ANOVA method
based on the roundness form errors. SSA techniques have
been widely used over the last 15 years in applications
other than manufacturing; for example, in the analysis
of shapes of objects of paleontological, biological, or
geological interest or for text recognition in computer
vision. For an introduction to SSA with emphasis on these
non-manufacturing applications, see the book by Dryden
and Mardia (1998). For more mathematical treatments,
see the books by Small (1996) and Kendall et al. (1999).

The general problem can be stated as follows. Suppose
we wish to compare the mean shapes of a groups of n parts
each. The groups of parts relate to different levels of a fac-
tor varied in a manufacturing experiment; e.g., depth of
cut. Let Xi j be a k × m matrix of coordinate measurements
(with dimension m = 2 or 3) representing each part j in
group i , which we will refer to as a configuration matrix. In
practice, the coordinates are usually gathered via a CMM
or laser scanners (see Barcenas and Griffin (2001)). A la-
beled coordinate that corresponds between parts is called
a landmark in the SSA literature. In this article, we assume
that all configurations have correspondent landmarks (a
review of matching algorithms for finding such correspon-
dence can be found in Davies et al. (2008)). Assume the
model:

Xi j = μi + Ei j i = 1, 2, . . . , a j = 1, 2, . . . , n, (1)

where μi = μ + τi , with dimension k × m, represent the
mean shape at the i th level and Ei j is a k × m matrix of

errors such that vec(Ei j ) ∼ N(0, �) where � is a km × km
covariance matrix and vec(·) is the operator that concate-
nates the columns of a matrix into one vector. This is just
a one-way ANOVA on a matrix response. In this case, it is
of interest to test the significance of the factor levels effect;
that is,

Ho : τ1 = τ2 = . . . = τa = 0

versus the alternative

H1 : at least a τi �= 0.

If Ho is true, all of the a groups have the same mean shape μ
(to be precise, this should be denoted by [μ], a set equal to an
equivalence relation modulo rotations, since rotations are
arbitrary; see Small (1996) and Section 2.1 in this article. To
simplify notation, we will simply use μ to refer to the mean
shape hereafter.) Analogous models and hypotheses can be
set for two-way experimental layouts for shape responses.
We point out that a multivariate ANOVA (MANOVA) test
cannot be applied, given that in manufacturing the number
of measurements k is typically very large compared to the
sample size (number of parts). The goal is to study the
performance of tests for Ho in the case where the shapes
are two- or three-dimensional.

The rest of this article is organized as follows. Model as-
sumptions are explained in Section 2. Section 3 reviews the
statistical tests for shape differences with which we will be
concerned. None of the limited existing studies about the
performance of these tests refers to shapes with a geometry
of interest in manufacturing (for a review of these existing
performance studies and further comparisons of the tests
studied in this article for mean shapes not frequently occur-
ring in manufacturing, see Alshraideh (2011)). In Section 4
we study the performance of the shape difference tests for
two shapes that frequently occur in manufactured parts,
namely, two-dimensional circular and three-dimensional
cylindrical shapes. The performance comparisons in Sec-
tion 4 deal with both the isotropic error structure case—
i.e., the case where the variances at each landmark and
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each dimension are the same—that is, � = σ 2Ikm—and the
anisotropic (or non-isotropic) error structure. The perfor-
mance of these tests under non-normal errors is also inves-
tigated. The article concludes with a summary and recom-
mendations in Section 5.

2. Model assumptions

2.1. Kendall’s shape space

The tests contrasted in this article originate from the work
by Kendall (1984) on the statistical analysis of similar-
ity shapes based on landmarks. Kendall’s representation
of shape is based on the aforementioned configurations
X ∈ �k×m from which the effects of similarity transforma-
tions (translations, rotations, and dilatations or changes
of scale) are filtered out. The shape of an object is thus
the geometric information that remains after we filter out
the effect of similarity transformations. In this theory the
so-called pre-shapes are unit-scaled and centered configu-
rations (denoted by Z ∈ �(k−1)×m) that can be understood
as lying on the surface of a hypersphere of unit radius, the
preshape space Sk

m. The shape space �k
m is obtained from

the quotient Sk
m/SO(m) where SO(m) is the special orthog-

onal group; i.e., the space of all rotation matrices excluding
reflections. All of the elements along an orbit on Sk

m have
the same shape; i.e., the shape of an object is an equivalence
class (a set) defined in the preshape space under rotations.

The mapping from preshape to shape space is a Rieman-
nian immersion, where orbits (or fibers) on Sk

m map into
points on �k

m. The shape space is in general a non-linear
Riemannian manifold (for a thorough mathematical ex-
ploration of these spaces, see Kendall et al. (1999)), and the
statistical analysis of shapes is hence related to statistical
analysis on manifolds, a field of increasing interest in statis-
tics and computer vision. In the case where the dimension
m is equal to 3, this manifold contains singularities since
there can exist rotations that leave the preshape unchanged.
This happens when the landmarks are all collinear in some
direction. Since this will not be the case in manufacturing
data, we safely assume non-degenerate configurations.

The case where the shapes greatly differ (or vary) requires
us to consider the curvature of Kendall’s shape space, since
this contradicts the Euclidean space assumed by Pythago-
ras’ theorem, which is the basis of ANOVA and principal
component analysis. Techniques for this case have recently
been proposed by Huckemann et al. (2010a, 2010b). We
make the assumption in what follows that the variability
of the shapes and the distance between the mean shapes
is small, a plausible assumption in discrete-part manufac-
turing. As emphasized by Dryden and Mardia (1998), a
local linear approximation to shape space, as implied in
the ANOVA techniques contrasted in this article, suffices if
shapes vary little; i.e., when data are concentrated.

2.2. Assumed model

The coordinates of the different observed configuration
matrices Xi j in Equation (1) may be oriented or located
in space differently or may have different scales. Some type
of alignment or registration pre-processing is necessary be-
fore conducting a test for mean shape difference. The most
widely used shape registration method in SSA is the Gener-
alized Procrustes Algorithm (GPA), a method well known
in multivariate statistics used to compare data matrices, de-
veloped by Gower (1975) and Ten Berge (1977). If β, �,
and γ are a scaling factor, an orthogonal rotation matrix,
and a translation vector, respectively, then the usual model
assumed to generate the data is the so-called perturbation
model (see, e.g., Dryden and Mardia (1998)):

X = β(μ + E)� + 1kγ
T (2)

where 1k is a k × 1 vector of ones and matrix E is as before.
The perturbation model indicates that the observed config-
urations are the result of similarity transformations applied
to the mean shape μ after it is perturbed with additive noise
E. GPA estimates the mean shape μ from a sample of n
objects that may have different scales, orientations, and lo-
cations in space and, as a by-product, registers (aligns) the
objects in the sample. GPA minimizes the sum of squares
of all pairwise full Procrustes distances, dF(Xi , X j ), where:

d2
F(Xi , X j ) = min

βi , �i , γi
||βi Xi�i+1kγ

′
i − (β j X j� j +1kγ

′
j )||2.

This registration method assumes isotropic variances for
all objects. A modified GPA algorithm called GPA(�)
(Goodall, 1991) has been suggested to find the mean shape
when the error structure is non-isotropic. The tests in Sec-
tion 3 all assume both a small variance σ 2 and a small
difference between mean effects; thus, a linear approxima-
tion to Kendall’s shape space is adequate.

Goodall (1991) suggested to decompose the variance–
covariance matrix of the errors � into two parts, the k × k
landmarks covariance matrix �K and the m × m dimen-
sion covariance matrix �D, which allows us to model dif-
ferent variability along each axis or dimension. Then � is
the Kronecker product of �K and �D: � = �K ⊗ �D. We
will adopt this separable covariance structure in some of
the simulated data tests in Section 4. In Section 4.3, an
anisotropic covariance model (Ecker and Gelfand, 1999)
will be considered as a variation of the covariance matrix
�K . The model uses an m × m positive definite matrix B to
account for the unequal correlations and can be written as

(�K)i j = σ 2exp(−φ(d′
i j Bdi j )1/2) + τ 2,

σ 2 > 0, φ > 0, τ 2 > 0, (3)

where (�K)i j is the ijth element of �K and di j is an m × 1
vector of Euclidean distances along each of the m dimen-
sions between landmarks i and j . This model provides ge-
ometric anisotropy since the correlation between any two
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landmarks depends on the separation vector di j rather than
merely on its length.

3. Tests for detecting a difference in mean shape

We now review the tests that will be evaluated in
Section 4.

3.1. ANOVA F test and ANOVA permutation test on mean
shape differences

Consider the one-way ANOVA model (1). The expectation
of Xi j can be written as

E[Xi j ] = μ + τi , i = 1, . . . , a j = 1, . . . , n, (4)

where τi is the factor effect at level i . Let Xi• be the sample
mean of the registered configurations of the i th group, and
let X•• be the grand sample mean of all registered configu-
rations. Goodall (1991) showed that the statistic

F0 = n(n − 1)a
∑a

i=1 d2
F(Xi•, X••)

(a − 1)
∑a

i=1

∑n
j=1 d2

F(Xi j , Xi•)
(5)

follows approximately an F distribution with (a − 1)Mand
a(n − 1)Mdegrees of freedom for small σ , where M = (k −
1)m − 1 − m(m − 1)/2.

A more robust alternative is to test Ho using a permuta-
tion test (see, for example, Edgington (1995)). Del Castillo
and Colosimo (2011) extended Goodall’s one-way ANOVA
to a two-way ANOVA test for shapes. They also proposed
a two-way ANOVA permutation test for shape responses
and presented methods to visualize the effects of the factors
and their interaction on the shape of the object.

3.2. Distance-based tests

Lele and Richtsmeier (1991) proposed a two-sample
test called EDMA-I (for Euclidean Distance Matrix
Analysis) for determining differences in mean shape. The
EDMA-I test statistic is defined as: T = max Di j (E(X),
E(Y))/ min Di j (E(X), E(Y)) where D is the average form
difference matrix of the two configurations X and Y and E(·)
is the expectation operator. See Lele and Richtsmeier (1991)
for more details. Lele and Cole (1996) proposed an alter-
native test, EDMA-II, for shape differences that does not
require equal variance–covariance matrices. The EDMA-II
test statistic is defined as: Z = min(S1 − S2) or max(S1 −
S2), whichever is most different from zero, where S1 and S2
are the mean shape matrices (Lele and Cole, 1996).

4. Performance analysis for shapes with a geometry of
interest in manufacturing

4.1. Detection of differences in mean shape for
two-dimensional circular parts

Given the pre-eminence of lathe and drilling processes in
discrete-part practice, parts with a circular shape are of ut-
most importance in manufacturing. Process settings such
as cutting speed, feed rate, or some type of machine con-
ditioning may have an effect on the circularity of these
parts. A simulation study was conducted to determine the
performance of the tests considered in the previous sec-
tion for determining differences in mean shape for circular
shapes. In this case, a standard ANOVA on the (circularity)
form errors is possible and was included in the compar-
isons as well. International standards exist for measuring
form errors in circular (or cylindrical) geometries. These are
frequently calculated in tolerancing practice as the small-
est difference between the radii of the two coaxial circles
(or cylinders) that enclose all the measurements in a part
(Krulikowski (1996), Henzold (2006); also see Fig. 1(a)).
A standard one-way ANOVA is then used to test for the
equality of mean form error.

Simulated circular shape data that are less circular as the
level of a single factor increases was generated for these
comparisons. As the value of the factor changes from low
to high, a second harmonic with amplitude δ was added
to the circular configurations to simulate bilobed shapes
(a common problem in lathe machining; see Fig. 1(b)).
Amplitude values were chosen such that δ = wσ/r , where
σ is the noise (error) standard deviation, r is the radius
of the true circle (set equal to five), and w is the “non-
circularity” parameter w = {0, 0.5, 1, 1.5, 2, 2.5, 3} we de-
sire the tests to detect. Figure 1(b) shows the mean shapes
for two values of δ.

In all tests shown in this and later sections, the basic sim-
ulation setup was as follows: 20 configurations per sample
were simulated and each circle consisted of k = 64 land-
marks. One hundred replications and 100 permutations
(for tests that require them) were conducted. In all cases,
the perfect circle with respect to which we wish to detect
deviations had a radius equal to r = 5. In all tests in this
and later sections, the test size α was fixed at 0.05.

The simulation results for the case of normally dis-
tributed errors (N(0, 0.052) and independent and identi-
cally distributed errors were added at each coordinate) are
shown in Fig. 2. For this case, the power curves for the
ANOVA F-test and ANOVA permutation test for shapes
and the standard ANOVA on the form error were found
previously by Del Castillo and Colosimo (2011). Compar-
ing the curves, it is seen that the ANOVA permutation test
for shape responses possesses power as good as the ANOVA
F-test, whereas the EDMA-I test has very low power for this
type of shapes. The standard ANOVA on the form errors
performed considerably worse than the ANOVA F-test and
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Fig. 2. Power curves using two-dimensional circular shapes. The graph shows the probability of detecting a non-circular shape using
the different tests in Section 3, parameterized as a function of the non-circularity parameter w, which makes the mean shape more
ellipsoidal (see text).

the ANOVA permutation test for shape responses, clearly
indicating the superiority of the latter over the former.

4.2. Detection of differences in mean for three-dimensional
cylindrical parts

The tests of the previous sections were also compared for
three-dimensional (3D) objects. A common instance of a
3D shape of interest in manufacturing is a cylinder (see,
for example, Traband et al. (2004)). For example, in lathe
machining, different problems in the process can result in
non-cylindrical shapes in the form of a barrel, a banana,
etc. (see Colosimo et al. (2007)).

We consider the barrel shape in our performance study
of tests for shape difference (see Fig. 3) as a deviation from
a cylindrical shape one wishes to detect. The study con-
sisted of two samples: the first sample contains parts with

a cylindrical mean shape of radius r and height h; the parts
in the second sample have a barrel mean shape with radius
r1 = r at both the top and the bottom and radius r2 > r1 at
the middle of the cylinder, which has height h. In analogy
to the circularity case, we refer to the difference δ = r2 − r1
as the amplitude. The change from r1 to r2 along the height
was considered to be a sinewave with amplitude δ and a pe-
riod of 2h. The amplitude δ can be calculated as δ = wσ/r1
where w is a “non-cylindricity” parameter, in analogy to
the non-circularity parameter described in Section 4.1.
Figure 3 shows the mean shape of the two samples when
δ = {0, 1}.

Twenty (n = 20) parts were simulated at each value of the
non-cylindricity parameter w = {0, 0.5, 1, 1.5, 2, 2.5, 3}.
A total of 320 landmarks per configuration were
simulated, with 64 landmark circles generated at
heights {0, h/4, h/2, 3h/4, h}. Independent and identically
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Fig. 3. Sketch of two different mean shapes of cylindrical parts with r = 5 and h = 10. Left: perfect cylinder (δ = 0), right: “barrel”
(δ = 1).
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Fig. 4. Statistical power for detecting a difference in mean shape for cylinders. The figure shows the probability of detecting a non-
cylindrical shape using the different tests in Section 3, parameterized as a function of the non-cylindricity parameter w, which makes
the mean shape more “barrel” shaped (see text).

distributed N(0, 0.052) errors were added to each coordi-
nate. The power performance results are shown in Fig. 4.
Comparing the power curves it can be said that the ANOVA
F-test and the ANOVA permutation test are the most pow-
erful and control Type-I error well, whereas the EDMA-
I, EDMA-II, and a standard ANOVA on the cylindricity
form error (computed analogously to the circularity error
by using two concentric cylinders; see Krulikowski (1996))
all have very low power.

4.3. Performance under non-isotropic variance

To assess behavior under non-isotropic errors, the co-
variance model described by Equation (3) was used with
σ = φ = τ = 0.05. Matrix B was chosen to include non-
isotropic correlations (see Ecker and Gelfand (1999)). For
the two-dimensional (2D) circular shapes and the 3D cylin-
drical shapes, B was set at

B =
(

1 0.5
0.5 1.5

)
,

B =

⎛
⎜⎝

1 0.5 0.5
0.5 1.5 0.5
0.5 0.5 2

⎞
⎟⎠ ,

respectively. Correlated N(0, �) errors with covariance ma-
trix � = �K ⊗ �D with �D = I were generated and added
to each landmark. Power results for all five tests of interest
are shown in Figs. 5 and 6.

Figure 6 shows that when unequal variances or correla-
tions are present in the error structure, the ANOVA F-test
and the ANOVA permutation test on shapes lose some of

their power. However, these tests still have a higher power
than the distance-based and the ANOVA on the form er-
rors. It is also noticeable that these two tests appear to
possess higher power for the 3D case than the 2D (circular)
case (5). The difference in power is actually due to a larger
number of landmarks (k = 320) in the cylindrical case than
in the circular case, where k = 64. This was confirmed
by Alshraideh (2011), who conducted power comparisons
with increasing number of landmarks under different non-
isotropic models. For correlation model (3), increasing the
number of landmarks decreases the correlations between
landmarks since these are a function of the inter-landmark
distances, and this benefits the ANOVA tests on shapes
since they assume independence.

4.4. Performance under non-normal errors

The results in previous sections show how the two ANOVA
tests for shapes provide higher power than all other tests
discussed in Section 3. However, the ANOVA tests that
use an F statistic are based on the assumption of normally
distributed errors, an assumption that may not hold in prac-
tice. Here we consider the robustness of all of the ANOVA
tests described in Section 3 (ANOVA F-test and ANOVA
permutation test for shapes and a standard ANOVA on
the form errors) under two cases of non-normal errors:
a uniform distribution, and a t-distribution with five de-
grees of freedom. A simulation study similar to the one
in Section 4.1 was run except that the added errors were
distributed as uniform (a, b) or t5(0, σ 2). The values of
a and b were chosen such that the mean is zero and
the variance is σ 2. This yields b = −a, a = −√

3σ , and



Performance of tests for factor effects on shapes 127

−0.5 0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

w, non−circularity parameter

P
ow

er

Anova F−test
Anova form error
Anova permutation test
EDMA−I
EDMA−II

Fig. 5. Statistical power for detecting changes in 2D circular shapes under exponential non-isotropic errors as described by
Equation (3).

b = √
3σ . The fitted kernel density functions for the dis-

tributions of form errors under the ideal case of normal
errors (vec(E) ∼ N(0, 0.052Ikm)), the case of uniform er-
rors (vec(E) ∼ uniform ((−0.05

√
3)1km, (0.05

√
3)1km)), and

the case of t-distributed errors (vec(E) ∼ t5(0, 0.052Ikm)) are
shown in Fig. 7. This figure shows how the variance of the
distribution of the form errors increases as the tails in the
distribution of the errors become thicker.

The estimated power curves for this case are shown
in Figs. 8 and 9 (here, results for k = 320 landmarks
are reported). It is seen that the ANOVA F-test and the

ANOVA permutation test for shape responses still show
the best relative performance. However, the ANOVA F-
test does not have the advertised Type-I error rate of
5%. The standard ANOVA on the circularity form er-
rors has a good power performance under uniform er-
rors but shows a poor performance under t-distributed
errors. This is not a surprising result since the circular-
ity form error is a range statistic and hence it will be
more sensitive to a distribution with tails that can gen-
erate large errors than to a bounded distribution of the
errors.
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Fig. 6. Statistical power for detecting changes in 3D cylindrical shapes under exponential non-isotropic errors as described by
Equation (3).
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Fig. 7. The fitted kernel density functions from 100 000 simulated
circularity form errors (k = 64, isotropic errors).

4.5. More reasons for using a shape test instead of the form
errors to analyze a shape response experiment

The previous simulation results clearly indicate that the
ANOVA tests for shape responses are the most powerful to
detect effects and, in particular, the ANOVA permutation
test for shapes is also the most robust under a variety of
circumstances for both circular and cylindrical shapes. An
additional reason why the SSA tests reviewed in Section 3
are preferable over using a standard ANOVA on the
circularity (or cylindricity) form errors is that by using
the latter, a change in shape can go undetected when in
fact the underlying shape changes considerably. This can
happen when the form error remains constant, yet a change
in shape has occurred that, if detected, provides process
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Fig. 8. Statistical power for detecting changes in 2D circular shapes under uniform errors (see text for simulation details).
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Fig. 9. Statistical power for detecting changes in 2D circular shapes t5(0, 0.052) errors (see text for simulation details).
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Fig. 10. Form error at two levels of a factor in an experimental study where the response of interest is the machined part cross section.

understanding. For illustration, assume a one-factor,
two-level lathe-turning experiment where the response of
interest is the shape of the cross section of the machined
part. Furthermore, assume that the mean shapes obtained
at the two different levels of the controllable factor are as
shown in Fig. 10. These two mean shapes are commonly
found in lathe-turning due to the irregular (excentric)
rotational movement of the machine chuck so they are
realistic; a process engineer would certainly like to detect
a shape change, and hence a process change, such as
that indicated in the figure. However, the circularity form
errors for these two mean shapes are exactly the same and
therefore the experimental factor has no significant effect
on average; a standard ANOVA on the circularity error
will fail to detect any change in mean shape. Applying
instead SSA tools such as Goodall’s F-test for shapes or
the ANOVA permutation test for shapes, the difference in
mean shapes will be easily detected. The reason for this
behavior is simple: a standard ANOVA on the circularity
form error is based on a single summary statistic of all
shape data that is similar to a range that neglects a consid-
erable amount of information and hence is very inefficient.
In contrast, the test statistics used by the SSA test use all
of the information available in the shapes and hence are
more powerful than a standard ANOVA on the form error.

Another important reason why the SSA tests for shape
responses and, in particular, the ANOVA permutation test
for shapes should be preferred in practice, is simply that for
some geometric features no standard definition of form er-
ror may exist, so performing a standard ANOVA on the
form error is not even possible. Alshraideh (2011) per-
formed power analyses for shapes of arbitrary geometry
(e.g., triangles) where no standard definitions of form error

exist and found similar conclusions regarding the power
and robustness of the tests studied in the present article.

5. Conclusions and summary of results

This article has reviewed and contrasted methods aimed at
experimental situations where the object is to optimize the
shape of a part or product. This is a task frequently done
at the R&D or engineering design stage; thus, our goal
has not been that of process inspection of the parts, where
form errors are used to determine conformance to toler-
ances. The performance analyses conducted in this article
consider two shapes that are common in manufacturing ap-
plications, namely, 2D circles and 3D cylinders. The anal-
ysis was conducted for three different error assumptions:
isotropic errors, non-isotropic errors, and non-normal er-
rors. A summary of the results found, related to the statis-
tical power and Type-I error rate of each test, is as follows:

1. Circles (2D) and cylinders (3D) under isotropic errors:
Both the ANOVA F-test and the ANOVA permutation
test for shapes showed the best power performance with
Type-I error rates close to nominal.

2. Circles (2D) and cylinders (3D) under non-isotropic er-
rors: The ANOVA permutation test for shapes gives the
best power performance among all the tests considered.
The ANOVA F-test is powerful but provides a higher
than advertised Type-I error rate.

3. Circles under non-normal errors: Again, the ANOVA
permutation test showed the best power performance
and Type-I error rate control. Similar to the case of
non-isotropic errors, the ANOVA F-test showed similar
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power to that for the ANOVA permutation test but with
a higher than nominal Type-I error rate. In contrast, the
ANOVA on the form errors provides good power perfor-
mance only in case distribution of the errors is bounded
since it is based on a range statistic.

The following conclusions and recommendations can be
made from these results.

1. Based on the simulation results it can be concluded that
the ANOVA permutation test for shapes in Del Castillo
and Colosimo (2011) has the best overall power and best
control of the Type-I error rate and hence it is the test
we recommend.

2. The EDMA-I and EDMA-II tests exhibited very low
power in three dimensions under both isotropic and
non-isotropic errors. We cannot generalize our results
to all 3D shapes since some other studies have shown
that these tests do have good power in detecting shape
differences for some geometrical shapes (however, this
seems to be true only for shapes with very few land-
marks; see Alshraideh (2011)).

3. Neither the ANOVA on the form errors nor the EDMA-
I test is recommended for analyzing shape response ex-
periments since they exhibited very low power in most
of the cases considered. Our results show that EDMA-I
has the true designed Type-I error under isotropic errors
but exhibits low power.

Additional power performance studies for the tests in
Section 3, for other error structures and mean shapes,
including the case of interaction effects, are available in
Alshraideh (2011). Further work should consider also the
recent results by Dryden et al. (2008), who show how shape
spaces are homeomorphic to the space of cross-products
of preshapes (Z′Z). This has the advantage of reducing
the dimensionality of the problem (we work with m × m
matrices), but it is an open question how much power
tests developed on this space have to detect changes in the
original configuration space.
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