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Abstract
Traditional approaches to closed-loop identification of transfer function models re-

quire a sufficiently large data set and model forms that are general enough while at
the same time requiring some form of an external excitation (a “dither signal”) be
applied to the process. In the limit, as the dither signal dominates the control actions,
identification is easier, but the operation of the process becomes closer to that of an un-
controlled (i.e. open-loop) process, which could be unacceptable. This paper proposes
a closed-loop system identification procedure that aims to improve model parameter
estimates by incorporating prior knowledge about the process in the form of constraints
without the use of a dither signal. A Monte Carlo simulation study is presented to
illustrate the small sample benefits of adding various forms of constraints. It is shown
how constraints based on process knowledge which is relatively easy to know from prior
experience result in best identified models among the class of constraints considered.
In particular, the knowledge of the input-output delay of the process is shown to be
the most important in identifying a process in closed-loop. An example based on a
real process illustrates the advantages of the proposed method over the dither signal
approach.

Keywords: Box-Jenkins transfer function models, constrained non-linear least squares,

prior process knowledge, feedback control.

1 Introduction

Consider a process that is adjusted, in discrete time, with a feedback controller. In many

industrial settings, it is of interest that the unknown model of the process be identified while
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the process is being controlled. Following the control systems literature, we refer to the

identification problem as finding both the true model form and the true parameter values of

the model of the process, thus it includes estimation.

Open-loop system identification experiments (i.e. observing the process when no feed-

back control is exercised and when the input is persistently exciting the process), often the

preferred way of identifying the model of a process, would not be feasible or cost effective in

an industrial process because the process could be unstable and drift off-target dangerously

or could produce expensive scrap when uncontrolled. The main difficulty with closed-loop

identification is that the data collected during closed-loop (controlled) operation is less in-

formative than open-loop data because the control input level is frequently a linear function

of the output (and hence the input is not persistently exciting the process). Our purpose in

this paper is to identify and estimate the model of a process in closed-loop when a feedback

controller is in operation so that, according to the identified model, the controller could be

re-designed in such a way that the quality characteristic under control better achieves the

objective.

Another common approach for process identification is to introduce an additional random

signal in the input (the controllable factor), a so-called dither signal, in a closed-loop process

(Box and MacGregor, 1974 and 1976). This, unfortunately, can be too expensive if the cost

of changing the controllable factor or the cost of running the process off-target is high. These

are very common conditions that justify the action of a controller (Box and Luceño, 1997).

In this paper, a new method for identification of transfer function models is presented that

works under closed-loop operating conditions and does not require a dither signal.

The identifiability conditions developed in the control theory literature (Ljung et. al.,

1974, Söderström et. al., 1975, Söderström et. al., 1976) are useful for ensuring that the

input is sufficiently exciting the process so that the model parameters can be estimated from

closed-loop data. The use of the identifiability conditions in practical settings, however, is

limited due to two main reasons. First, they are asymptotic conditions, thus, they only

guarantee convergence to the true model as the sample size tends to infinity. The main

consequence of this is that, even when the identifiability conditions are satisfied, the quality

of the closed-loop parameter estimates obtained with finite samples is usually poor. It has

been shown that a dither signal added to the control input can result in improved parameter

estimates from small closed-loop data sets (see e.g., MacGregor and Fogal, 1995). However,

the limitations of the open-loop experiments apply also to the use of a dither signal: frequent

changes in the input, when excessive, makes the system to practically operate in open-loop

and this can be undesirable during production.

The second limitation of the identifiability conditions is that the assumed model structure

must be general enough to contain the true process model as a particular case. It is worth
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pointing out the severity of this second condition. If the assumed model does not contain

the true model, the true model cannot be identified. More precisely, model mis-specification

due to not including the true model (under-specification) results in biased or non-unique

estimates of the true model. Therefore, in this paper we concentrate only on the case where

the true model is included in the assumed model. Since the true model form is unknown,

the only way to guarantee that this condition is satisfied is to use increasingly larger models.

Model mis-specification due to selecting a larger model than necessary (over-specification),

however, is contrary to the parsimony principle which favors models with fewer parameters

because it causes inflation in the variance of the predictions.

In this study, we propose a model identification and estimation approach that utilizes

prior knowledge about the process to improve the parameter estimates obtained from closed-

loop data without introducing any external excitation into the system. The proposed ap-

proach, which we will call the constrained least squares (or CLS) approach, incorporates the

prior knowledge about the process as constraints on the parameters. We study the bias and

variance of the parameter estimates in a simulation example. In all illustrations, we consider

only processes for which the identifiability conditions hold.

The rest of the paper is organized as follows. Closed-loop identification and parameter

estimation of Box-Jenkins transfer function models using the proposed approach is discussed

in Section 2. We adopt a Box-Jenkins model form as it is the most natural and most common

in the quality control literature. Section 3 reviews possible forms of process information that

can be specified as different types of constraints. Section 4 shows how adding constraints

improves process identifiability. Section 5 and 6 present the main results of the paper. In

Section 5 the small sample benefits of adding constraints on the properties of the parameter

estimates are studied by Monte Carlo simulation and by considering different model and

sample sizes. Section 6 illustrates the application of the approach on real process data and

compares it against the identification method based on a dither signal.

2 Closed-Loop identification of Box-Jenkins transfer

function models

In this paper we will use Box-Jenkins (BJ) transfer function models to identify and estimate

controlled processes. The BJ model form is the most natural way of modelling dynamic-

stochastic processes because of its independent parametrization of the transfer function and

disturbance models giving a signal-plus-noise interpretation.

Denoting the level of the input (the controllable factor) by Ut and the output (the response

variable) deviation from target by Yt, a BJ transfer function model that relates the output
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to the input is given as:

Yt =
b(B)

a(B)
BkUt +

θ(B)

φ(B)(1− B)d
εt (1)

where B is the back shift operator (i.e. BYt = Yt−1) and the first term on the right is the

process dynamics model and the second term on the right is the disturbance, or noise, model

that represents the effect of all sources of variation at the output. k ≥ 0 is the input-output

delay, d ≥ 0 is the degree of integration of the disturbance and {εt} is a white noise process,

independently and identically distributed (i.i.d) with mean 0 and variance σ2
ε . We will refer

to (1) as the assumed process model, denoted M(β). The model polynomials are defined

as:

b(B) = b1B + b2B2 + . . . + bnb
Bnb

a(B) = 1− a1B − . . .− anaB
na

φ(B) = 1− φ1B − . . .− φnφ
Bnφ

θ(B) = 1− θ1B − . . .− θnθ
Bnθ . (2)

The degrees or orders na, nb, nφ and nθ and k and d are selected by the user. The model

parameters can therefore be given in a (p× 1) parameter vector as:

β′ = (a1, ..., ana , b1, ..., bnb
, φ1, ..., φnφ

, θ1, ..., θnθ
) (3)

where p = na + nb + nφ + nθ.

In model (1) additional disturbance characteristics, such as a process offset or a drift can

also be included:

Yt = α +
δ

(1− B)d
+
Bkb(B)

a(B)
Ut +

θ(B)

φ(B)(1− B)d
εt (4)

where δ is a drift constant useful in modelling possible trends in the process mean, such as tool

wear which frequently occurs in machining operations. The value of α represents a process

offset that determines the mean deviation from target when the process is uncontrolled and

δ = 0.

Closed-loop identification with Box-Jenkins models has been studied by various authors.

Box and MacGregor (1976) applied the results by Söderström et. al. (1976) to processes

under minimum mean squared error (MMSE) control. It was assumed that the true input-

output delay and model orders were known. By the addition of a dither signal, they showed

that the precision of the parameter estimates can be improved. Luceño (1997) investigated

the case of switching between multiple PI controllers during the operation of the process and

the effects this has on the quality of parameter estimates. Similarly, it was assumed that
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the correct model orders and the delay were known. More recent approaches to closed-loop

identification, the projection method (Forssell and Ljung, 2000) and the two-stage method

(Van Den Hof and Schrama, 1993) break down the problem into two open-loop identification

problems.

The idea of applying prior process knowledge in closed-loop identification to improve

parameter estimates has been discussed by Box and MacGregor (1974) for the cases of prior

knowledge on the dynamics transfer function and on the disturbance model. MacGregor and

Fogal (1995) investigated the benefits of knowing the disturbance model by applying noise

model pre-filters in identification. Ljung and Forssell (1998) have shown that the complete

knowledge of the true disturbance model is sufficient for parameter identifiability. Pan and

Del Castillo (2001) considered the stationarity and invertibility conditions as a form of prior

knowledge and showed by example that closed-loop identification is possible by utilizing

these conditions. While there have been several studies on utilizing prior process knowledge

in process identification, no systematic study that addresses the relative effectiveness of

different forms of prior knowledge was provided.

2.1 Identification and Parameter Estimation of the Process Model

The objective of closed-loop identification is to obtain the representation of a process from a

finite set of input-output data Z = {Y1, U1, . . . , YN , UN} collected during controlled operation

of the process. The unknown true process model, that will be referred to as S, can also be

represented in the BJ model form (4). In this model the polynomials ã(B), b̃(B), φ̃(B) and

θ̃(B), the delay k̃ and the degree of integration d̃ for the true process are used. Throughout

the paper we reserve the tilde notation for the true process description.

In the proposed approach the parameters of the process model are estimated from mea-

sured closed-loop output data and the knowledge of the controller by conducting two es-

timation steps. This approach is sometimes called the “indirect” approach to closed-loop

identification ( the “direct” approach, by contrast, requires only one estimation step, see e.g.

Ljung, 1974).

In the first estimation step, the closed-loop equation of the true process is estimated

by fitting an ARMA (autoregressive-moving average) time series model to the output data.

The closed-loop equation of the true process that obeys the transfer function model (4) is

obtained by eliminating the input and representing the output as a time series. To do this,

we consider the ARMAX (autoregressive-moving average-exogenous) representation of this

model, which is given as:

Ã(B)Yt = γ̃ + Bk̃B̃(B)Ut + C̃(B)εt (5)
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where

Ã(B) = (1− B)d̃φ̃(B)ã(B), B̃(B) = (1− B)d̃φ̃(B)b̃(B), C̃(B) = θ̃(B)ã(B) (6)

are the polynomials and γ̃ =
[
α̃(1− B)d̃ + δ̃

]
ã(B)φ̃(B) is the intercept. Suppose that a

linear feedback controller of the form

Ut =
D(B)

F (B)
Yt (7)

is acting on the process. By inserting this in (5) we can obtain the ARMA closed-loop

equation of the true process as:

(
Ã(B)F (B)− Bk̃B̃(B)D(B)

)
Yt = F (B)γ̃ + F (B)C̃(B)εt

or

Φ̃(B)Yt = ξ̃ + Θ̃(B)εt (8)

which can be estimated by fitting an ARMA time series model to the measured output data

{Yt}N
t=1. Note that the AR and the MA polynomials of this model are Φ̃(B) = 1 + Φ̃1B +

. . . + Φ̃ñΦ
BñΦ and Θ̃(B) = 1 + Θ̃1B + . . . + Θ̃ñΘ

BñΘ , respectively.

In the second estimation step, the parameters of the assumed model (4) are estimated

by minimizing the difference between the (estimated) closed-loop equation (8) of the true

process and the closed-loop equation of the assumed model. The closed-loop equation of

the assumed model is (AF − BkBD)Yt = Fγ + FCεt (here, as in later sections we omit

back shift operator for clarity) where the polynomials A(B), B(B) and C(B) are obtained by

inserting in the expressions (6) the polynomials a(B), b(B), φ(B) and θ(B) and the degree of

integration d of the assumed model. Therefore, this equation can be written in terms of the

BJ model polynomials as follows:

(1− B)dφ
(
Fa− BkbD

)
Yt = Fφa

[
(1− B)dα + δ

]
+ Fθaεt

or

Φ(B)Yt = ξ + Θ(B)εt (9)

where Φ(B) = 1 + Φ1B + . . . + ΦnΦ
BnΦ and Θ(B) = 1 + Θ1B + . . . + ΘnΘ

BnΘ . Note that for

process identifiability the model must have nΦ ≥ ñΦ and nΘ ≥ ñΘ. The second estimation

step, therefore, consists of computing the estimates β̂ by minimizing the sum of m = nΦ+nΘ

squared errors obtained by comparing the coefficients of like powers of B in (9) and in (8):

Q(β) =
1

2

m∑
i=1

e2
i (β) =

1

2

nΦ∑
i=1

(Φi − Φ̃i)
2 +

1

2

nΘ∑
i=1

(Θi − Θ̃i)
2. (10)
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Deg of Controller AR part, Φ(B) Intercept, MA part,

integ, d ξ Θ(B)

0 P φ(a− BkbKp) φaα θa

1 PI φ
[
(1− B)a− Bkb(c1 + c2B)

]
φaδ θa

0 PI φ
[
(1− B)a− Bkb(c1 + c2B)

]
0 (1− B)θa

Table 1: Closed-loop equations with PI controllers

In this study we limit our attention to processes controlled by proportional-integral (PI)

controllers. In controller (7), P control is obtained with F (B) = 1 and D(B) = c1, and

PI control is obtained with F (B) = 1 − B and D(B) = c1 + c2B, where c1 and c2 are the

controller constants. It will be assumed that under the actions of the feedback controller, the

process output is stabilized. Therefore, for the disturbance in (1), we consider models with

d = 0 for a P controlled process and d ∈ {0, 1} for a PI controlled process (higher values of

d would yield a non-stationary behavior for these controllers).

Considering the possible cases we can have with PI controllers, the closed-loop model (9)

can be further simplified as shown in Table 1. Notice that with d = 0 and a PI controller,

there is a unit root in the MA part of the closed-loop equation. This fact can be exploited to

determine the correct value of d̃ by looking at the MA part Θ̃(B) of the estimated closed-loop

equation of the process. Statistical tests that have been developed to detect over-differencing

in ARIMA model building can be used to determine if Θ̃(B) contains a unit root (Saikkonen

and Luukkonen, 1993).

After the value of d̃ is determined and by knowing the controller, the appropriate model

closed-loop equation in Table 1 is equated to the true process closed-loop equation (8) to

compute the sum of squared errors (10) and the minimization of Q(β) yields the parameter

estimates β̂. The least squares parameter estimation procedure is presented next.

2.2 Least squares estimation of the process model

The parameters in β, as defined in (3), are estimated by minimizing the sum of squared errors

function (10). After solving for β, the remaining parameters δ and α can be estimated from

the intercept terms of the equations (9) and (8), as they do not appear in any of the other

coefficients.

Unconstrained non-linear least squares

We refer to estimation without any prior knowledge on the process parameters as the uncon-

strained case. It can be noticed that the error terms ei(β) in a BJ model are nonlinear in β
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due to the presence of the product terms φa, φb, and θa in (9). The solution β̂ that minimizes

(10) can be obtained by solving for the (m× 1) vector of errors e(β) using non-linear least

squares techniques. A numerical approach to this is Newton’s method, used to iteratively

solve for the linearized form of the error vector (Myers, 1990, pp. 426-428). Let β(j) denote

the solution that was obtained in the jth iteration. In Newton’s method we represent e(β)

using a first order Taylor series around this solution, namely,

e(β)
.
= e(β(j)) +∇e(β(j))′(β − β(j)) (11)

where ∇e(β) =
[
∇e1(β) . . . ∇em(β)

]
is the Jacobian matrix of e(β). The solution

β(j+1) at the next iteration is obtained by setting e(β) in (11) equal to 0 and solving the

resulting linear system for β. Note that by defining y = e(β(j)),X = −∇e(β(j))′ and

β̃
(j)

= β − β(j), this linear system can be represented as a multiple linear regression model:

y = Xβ̃
(j)

+ ε(j) (12)

where ε(j) is the model error. Thus, β(j+1) that minimizes the squared norm of ε(j) is

obtained from the ordinary least squares solution β̃
(j)

= (X ′X)−1X ′y = β−β(j), or solving

for β and making it equal to β(j+1)

β(j+1) = β(j) + (X ′X)−1X ′y. (13)

Starting with an arbitrary vector of estimates, β(0), the iterative procedure is continued

using (13) until convergence is achieved. The solution is repeated multiple times, each time

with a different starting point randomly selected from the parameter space, in an attempt

to obtain the global minimum.

Constrained non-linear least squares (CLS) approach

Prior information on the process parameters is incorporated in the parameter estimation

procedure as constraints. Prior information that can be specified as identities for functions

of the parameters can be represented as equality constraints on β:

νi(β) = 0 i = 1, 2, . . . , r. (14)

Prior information that can be specified as ranges on functions of the parameters can be

represented as inequality constraints on β:

gi(β) ≤ 0 i = 1, 2, . . . , s. (15)

8



Point estimates of the functions of the parameters that are obtained from historical data

can be incorporated as equality constraints. However, precise estimation of the parameters

is not always available in practice. Estimation error can be taken into account through the

use of linear inequality constraints that represent confidence intervals on the true values of

the parameters.

In the case of equality constraints only, the parameter estimates can be obtained by

minimizing a “constrained” sum of squares function :

Qc(β) = Q(β) +
1

2

r∑
i=1

ν2
i (β) (16)

by using Newton’s method. We remark that this solution works regardless of whether the

equality constraints (14) are linear or nonlinear functions of the parameters.

In the case of inequality constraints only, the parameter estimates can be obtained by

minimizing the squared norm of the model error of the linear system (12) subject to the

constraints (15). This is done by defining an objective function Q
(j)
L = ||ε(j)||2 = ||y −

Xβ̃
(j)||2 and solving the minimization:

min
˜β

(j)
Q

(j)
L (17)

s.t. gi(β̃
(j)

) ≤ 0 i = 1, 2, . . . , s

for each iteration j until convergence is achieved. Since the objective function is quadratic

in β̃
(j)

this can be solved using quadratic programming techniques when the inequality

constraints are linear in β̃
(j)

(Bazaraa et. al., 1993). Similarly to Newton’s method, this

procedure is also repeated from several starting points. In the case we have a mix of equality

and inequality constraints we minimize (16) subject to (15). Henceforth, we will refer to this

approach as the constrained least squares (CLS) approach.

Bayesian methods are also commonly employed for incorporating prior information in

parameter estimation by modeling the prior information in the form of probability density

functions. A Bayesian analysis of the ARMA model (9) requires sampling from non-standard

posterior distributions (see e.g. Marriott et. al., 1996). In addition, in order to incorporate

prior information about functions of parameters the covariance of these parameters must

also be properly modeled. In contrast, a constrained least squares approach can incorporate

a relatively wide class of prior knowledge while requiring a considerably less computational

effort.

2.3 Identifiability conditions

A process S is said to be parameter identifiable if β̂ estimated by minimizing Q(β) is unique

and M(β̂) corresponds to S (Ljung et. al. 1974). It has been shown that parameter
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identifiability in closed-loop can be achieved in several ways: i) applying an independent

signal in the controller (e.g. a time varying set-point or a dither signal) that is persistently

exciting of sufficient order (Söderström et. al., 1976); ii) switching between different linear

controllers (Ljung et. al., 1974); and iii) having a complex enough controller in the feedback

loop (Söderström et. al., 1975).

Söderström et. al. (1975) derived the following necessary and sufficient parameter iden-

tifiability condition for a true process S that obeys an ARMAX model form (5) and that is

controlled by the controller (7):

max{nF − ñB, nD + k̃ − ñA} − ñP ≥ 0 (18)

where ñP is the degree of the polynomial P̃ , which is defined as the common factor between

ÃF − Bk̃B̃D and C̃. It is evident that this is a condition on both the process and the

controller. If (18) is not satisfied, it is not possible to uniquely identify the true process

parameters regardless of the model structure assumed. Condition (18) can be rewritten as:

max{nF + ñA, nD + k̃ + ñB} − ñP ≥ ñA + ñB

which more clearly states that in the closed-loop model (8) the number of linearly indepen-

dent equations from the AR part ÃF − Bk̃B̃D, after cancelling the common factors, must

be at least equal to the number of unknowns. Note that the MA part FC̃ does not enter

the identifiability condition unless it has a common factor with the AR part.

It has been proved that if the process satisfies the identifiability conditions and the model

structure is general enough to contain the true process representation, i.e. S ∈ M(β), then

the true open-loop representation S can be obtained in the limit as the sample size N tends

to infinity (Ljung et. al. 1974, Ljung 1978).

The parameter identifiability condition for a process that obeys a BJ model form can

be derived as follows. From the polynomials (6) written for the true process we have that

ñA = d̃ + ñφ + ña, ñB = d̃ + ñφ + ñb, and ñC = ñθ + ña. Furthermore, for the controller (7),

we have nD = nF = 0 for a P controller and nD = nF = 1 for a PI controller. Therefore,

for the different controller and disturbance cases, we can write the condition (18) for a BJ

model form as:

d̃ = 0 and P controller: max{ña, k̃ + ñb} − ñp ≥ ñs

d̃ = 1 and PI controller: max{ña, IPI + k̃ + ñb − 1} − ñp ≥ ñs

d̃ = 0 and PI controller: max{1 + ña, IPI + k̃ + ñb} − ñp ≥ ñs

(19)

where ñs = ñφ + ña + ñb and IPI = 1 with PI control and IPI = 0 with I control. P̃ is defined

in the same manner as in (18), that is, as the polynomial common to ÃF − Bk̃B̃D and C̃.
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3 Some constraint types and their specification

In this section we review some possible forms of process information that are commonly avail-

able in practice and show how they can be represented as equality and inequality constraints

as discussed in section 2.2.

One type of prior knowledge that can be expressed as an equality constraint of the form

(14) is the asymptotic gain of the transfer function model (1). The asymptotic gain, denoted

by g̃, is equal to Y∞ when Ut = 1 for all t. For this model, the asymptotic gain can be written

by using the final value theorem of Z transforms and the algebraic equivalence between the

back shift operator and the Z transform (i.e. B ≡ z−1) as follows:

g̃ = Y∞ = lim
t→∞

Yt = lim
B→1

Bk̃b̃(B)

ã(B)
. (20)

In practice, this limit operation implies that one must wait long enough for the process to

settle in order to observe the steady-state response Y∞. This is common practice in analysis

methods that study steady-state effects, such as design of experiment (DOE) techniques.

The asymptotic gain of a dynamic system can therefore be estimated by fitting a regression

model to the steady-state input and output data of the process; the estimated regressor

coefficient corresponds to the gain of the process.

As a numerical example, consider the transfer function Yt = 5B
1+0.5BUt. By letting B → 1,

the asymptotic gain is calculated as:

g̃ =
5(1)

1 + 0.5(1)
= 3.33.

Another characteristic of a process that is often known from prior experience with the

process is the input-output delay. The process delay k̃ is defined as the number of whole

time periods during which no change in the output is observed in response to a change in the

input. The delay can be measured by off-line step-response experiments (see, e.g., Björklund

and Ljung, 2003). The knowledge of the delay can be easily incorporated in identification

by simply writing the assumed model with the correct delay.

Knowledge of the disturbance model can also be available from observing the process

in open-loop provided that this is feasible and not too expensive over the period of time

where open-loop observations are needed (usually 75 to 100 observations are needed for

fitting time series models, see Box et. al., 1994). In a BJ model, the response measured in

open-loop, that is, when the input is a constant or zero, is completely due to the disturbance

process. For instance, in the case when Ut = 0, from model (1) we have the response as

Yt = θ(B)
φ(B)(1−B)d εt which is identical to the disturbance process. The knowledge on the true

values of the coefficients of φ(B) and θ(B) can be incorporated in the identification procedure

by writing an equality constraint for each coefficient in these polynomials.
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The usual stationarity and invertibility conditions of the disturbance model, i.e. that the

roots of φ(B) and θ(B) must lie outside the unit circle, and the stability condition of the

dynamics transfer function, i.e. that the roots of a(B) must lie outside the unit circle, can be

formulated as inequality constraints. These are standard assumptions of ARMA and transfer

function models that usually hold in practice. Assuming an ARMA(2,2) disturbance model

in (1), the stationarity conditions are −1 ≤ φ2 ≤ 1, φ1 + φ2 ≤ 1 and −φ1 + φ2 ≤ 1; and the

invertibility conditions are −1 ≤ θ2 ≤ 1, θ1 + θ2 ≤ 1 and −θ1 + θ2 ≤ 1. Assuming a second

order transfer function denominator polynomial, the stability conditions are −1 ≤ a2 ≤ 1,

a1 + a2 ≤ 1 and −a1 + a2 ≤ 1.

4 Effects of adding constraints on identifiability

As defined in Section 2.3, a process S is parameter identifiable if β̂ estimated by minimizing

Q(β) is unique and M(β̂) corresponds to S (Ljung et. al. 1974). In this section we

investigate the effects of introducing equality constraints on the identifiability of the process

by looking at the relation between the convexity properties of the sum of squares function

Q(β) and the parameter identifiability.

Consider the true process

(1 + 0.5B)Yt = 5BUt + εt (21)

which is controlled by a P controller Ut = KpYt where Kp = 0.5. The true process closed-loop

equation (8) is obtained by inserting the controller equation in (21); it is equal to:

(1 + 0.25B)Yt = εt. (22)

To identify the process we assume a model in the same form as (21), therefore the

parameter vector is β = (a1, b1) and the delay is k = 0. The assumed model closed-loop

equation is obtained by inserting the controller equation in the assumed model; it is equal

to:

(1 + Φ1B)Yt = εt (23)

where Φ1 = a1 −Kpb1.

It can be seen that (21) is an ARMAX model form because it corresponds to (1) with

same denominator polynomials in the transfer function and the disturbance; that is a(B) =

φ(B)(1−B)d = (1+0.5B). For a process that obeys an ARMAX model we have that, in the

closed-loop equation (9), the φ(B)(1− B)d and a(B) terms of the AR and MA polynomials

cancel and we have

Φ(B) = F (B)a(B)−Bkb(B)D(B) and Θ(B) = F (B)θ(B)
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which have all coefficients linear in the parameters. Therefore, the sum of squared errors

function (10) is a quadratic (convex) function of β.

For this process ñA = 1, ñB = 1, ñC = 0, nF = 0, nD = 0 and k̃ = 0, and by applying

(18) we see that max{1, 1} = 1 6≥ 2, thus, the process is not parameter identifiable. An

alternative way to check this is as follows. Since parameter identifiability is equivalent to

the existence of a unique minimizing solution to Q(β), a sufficient condition for parameter

identifiability of an ARMAX process is that Q(β) is strictly convex. This can be checked by

an eigenvalue test for positive definiteness of the Hessian matrix H =
(

∂2Q
∂βi∂βj

)
i, j = 1, ..., p.

For positive definiteness the eigenvalues λi of H must be λi > 0 for i = 1, ..., p.

The sum of squared errors function that is computed by comparing (22) and (23) is

Q(β) = 1
2
e2
1 = 1

2
(a1 −Kpb1 − 0.25)2 which has the Hessian matrix:

H =

[
1 −Kp

−Kp K2
p

]
.

The eigenvalues of H are λ1 = 0, λ2 = 1 + Kp. Thus, Q(β) is not strictly convex, which

implies that there are infinitely many minimizing solutions, and the process is not parameter

identifiable.

To study the effect of adding a constraint, suppose that we know the gain g̃ = 5
1+0.5

= 3.33

of the true process. This can be written as a constraint on a1 and b1 as b1
1+a1

= 3.33 or in

the form of an equality constraint (14) as ν = 3.33 + 3.33a1− b1. The Hessian matrix of the

constrained sum of squared errors function (16) is:

Hc =

[
1 + 3.332 −Kp − 3.33

−Kp − 3.33 K2
p + 1

]
(24)

which has the characteristic equation λ2− λ(K2
p + 13.089) + (1− 3.33Kp)

2 = 0. The process

is parameter identifiable as long as the eigenvalues are λ1, λ2 > 0, which is satisfied when

the constant term (1− 3.33Kp)
2 is non-zero, or when Kp 6= 1

3.33
= 0.3.

Q(β) and Qc(β) are plotted as a function of a1 and b1 in Figure 1 (logarithmic scale

is shown). As it can be seen, Q(β) has a locus of minimizing solutions along a straight

line which give equivalent objective function values. The line includes the true solution

a1 = 0.5, b1 = 5, however, the solution is not unique. This illustrates an instance of a non-

parameter identifiable process. As the result of adding the constraint, the sum of squared

errors function becomes strictly convex which results in a unique minimizing solution that

corresponds to the true process (plot on the right, Figure 1). Therefore, the process after

adding the constraint is parameter identifiable.
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Figure 1: Effect of adding a constraint on the identifiability of the process model given in equation
(21). Graphs show the logarithm of the sum of squared error surfaces: unconstrained case (left);
constrained with gain information (right). Without any constraint, the surface has infinitely many
alternative minima. Knowing the gain, the surface has a unique minimum which corresponds to
the true process.

5 Simulation Example: Small sample benefits of adding

constraints

In this section we apply the CLS approach on simulated process data to study the small

sample properties of the parameter estimates obtained by using constraints. We consider

the process (this is the “true” process we simulate):

Yt =
0.1

1− B +
10B

1− 0.8BBUt +
1− 0.3B
1− B εt (25)

which is controlled with a PI controller Ut = c1+c2B
1−B Yt where c1 = 0.005, c2 = −0.01. The

white noise process is εt
iid∼ N(0, 1).

This process obeys the BJ model form (4) with delay k̃ = 1, degree of integration d̃ = 1,

the drift constant δ̃ = 0.1, the model polynomial orders (ña, ñb, ñθ, ñφ, ñP ) = (1, 1, 1, 0, 0)

and the PI controller polynomial orders (nD, nF ) = (1, 1). Therefore, in the parameter

identifiability condition (19) we have that max{1, 2} ≥ 2, hence the parameter identifiability

condition is satisfied by the process. The closed-loop equation (8) of the true process that

corresponds to the given PI controller is:

(1− 1.8B + 0.75B2 + 0.1B3)Yt = 0.02 + (1− 1.1B + 0.24B2)εt (26)

which is an ARMA(3,2) model.
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The process is identified by assuming the Box-Jenkins model form (4). We first identify

the degree of integration in the disturbance model. Since the closed-loop equation (26) does

not have a unit root in the MA polynomial and a PI controller was used, we determine

(correctly) the degree of integration as d = 1 (see Table 1).

The form of the true process model is unknown, however, in selecting the assumed model

we suppose that some prior knowledge on the true model is available in order to guarantee

that the true process is contained in the assumed model. In particular we consider:

- a small model: Yt = δ
1−B + b1B+b2B2

1−a1B BkUt + 1−θ1B
(1−B)(1−φ1B)

εt and k = 0, and

- a large model: Yt = δ
1−B + b1B+b2B2+b3B3+b4B4

1−a1B−a2B2 BkUt + 1−θ1B−θ2B2

(1−B)(1−φ1B−φ2B2)
εt and k = 0

which reflect, respectively, the cases of a more certain and a less certain prior knowledge of

the true model. We can see that both models have larger orders in each polynomial and a

smaller delay than the true process (i.e. the true process is contained in both models), thus,

the identifiability condition is satisfied by both models.

We considered the constraint types that were discussed in section 3. The symbols given

in Table 2 will be used to refer to the constraints used in a particular simulation/estimation

test. We incorporate these constraints, for example in the small model, as follows. For the

delay, we set k = 1; for the gain we set b1+b2
1−a1

= g̃ where g̃ = 10
1−0.8

= 50 is the true gain; and

for the noise model we set θ1 = 0.3 and φ1 = 0. The constraint scenarios considered in the

simulations are the single-constraint cases that are shown in Table 2 and the two-constraint

cases (g, n), (k, g) and (k, n).

Constraint Symbol
Unconstrained u

Stationarity, invertibility, stability st

Known asymptotic gain g

Known input-output delay k

Known noise model n

Table 2: Constraints used in simulations

5.1 Estimation of the process model from the simulated realiza-

tions

The controlled operation of the process (25) was simulated under the given PI controller. In

order to evaluate the effect of using different sample sizes, we generated N = 50, 200 and

400 observations in the simulation. The simulation was repeated 1000 times to obtain a

distribution of the parameter estimates.
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For each simulated realization, the closed-loop equation (26) was estimated by fitting an

ARMA(3,2) model to the simulated output {Yt}N
t=1 which yielded the estimates of Φ̃(B), Θ̃(B)

and ξ̃ (MATLAB’s armax function was used for ARMA model fitting, see Ljung, 2002).

These estimates were then used in the minimization of the sum of squares function (10) to

obtain β̂. (Note that the closed-loop equation (9) that corresponds to the assumed models

and a PI controller is an ARMA(5,3) for the small model and an ARMA(8,5) for the large

model, thus m = 8 for the small model and m = 13 for the large model.)

In the scenarios with only equality constraints, the iterative Newton’s method was applied

to solve the nonlinear least squares problem; in the scenarios that include inequality con-

straints MATLAB’s quadprog function was used to solve the iterative quadratic programming

problem. An estimate β̂ is obtained by solving the problem several times with a different

starting point, and by retaining the solution giving the smallest objective function value as

the global minimum. In each run the solution is repeated from 100p different starting points.

5.2 Assessment of the benefits of using constraints

In this section we discuss the benefit of adding constraints by considering i) the bias and vari-

ance properties of the parameter estimates and ii) the control performance of the parameter

estimates.

Bias and Variance of the Parameter Estimates

We define the squared bias of the random vector estimator β̂ as

(Bias β̂)2 =

p∑
i=1

(Eβ̂i − βi)
2

that is, as the sum of the squared biases of its individual components. Similarly, we define

the variance as the sum of the variances of its individual components:

V arβ̂ =

p∑
i=1

V arβ̂i.

Note that this does not consider the covariance of the estimates. The magnitudes of the

covariances were observed to be relatively small, however, and including them in the sum did

not change the values significantly. Thus, to have a simpler and easier to interpret variance

definition we did not consider the covariances.

The sample squared bias and variance of the simulated realizations of β̂ obtained with

different constraints are plotted in Figure 2. A log scale was used to more clearly see the

small values. It can be seen that if we use a smaller (more parsimonious) assumed model

16



or a larger sample size then the estimators under all constraints have smaller variance and

bias.

The improvement attained in the variance and the bias of the unconstrained estimates

by adding constraints can be summarized as follows. The knowledge of the delay is crucial

regardless of the model size; it gives the greatest improvement in both the variance and the

bias. The knowledge of the gain when the delay is also known (i.e. the constraints k, g) is

better for reducing the variance and the bias when a small model is used; it gives moderate

improvement with a large model. By contrast, the knowledge of the noise model is better

for reducing the variance and the bias with a large model; with a small model it improves

the bias, however, it inflates the variance. Utilizing the stationarity, invertibility and the

stability constraints did not provide significant reduction in the bias or the variance for either

of the models. Among all constraint scenarios, the knowledge of the delay and the gain (i.e.

the constraints k, g) with a small model, and the knowledge of the delay and the noise model

(i.e. the constraints k, n) with a large model give the best identified models that have the

smallest variance and bias values.

The bias and variance results also suggest that one must exercise caution when adding

constraints so that one does not overconstrain the system. When we have a more certain

prior knowledge about the true model and use a small model, the unconstrained case already

gives relatively good estimates and adding constraints can only inflate the variance as it was

evidenced with the noise model constraint; a large model on the other hand benefits more

from adding constraints and has less risk of being overconstrained.

Control Performance of the Parameter Estimates

The performance of an estimated process model from a control point of view can be measured

by re-designing the controller according to this model in such a way that the process output

achieves some optimality criterion. Here, we consider minimum mean squared error (MMSE)

controllers as the optimal controller, although any other controller objective can be used, as

desired. As the performance metric of the designed controller we consider the variance of

the controlled process.

The MMSE control law for a process that obeys the BJ model (1) can be derived by

considering the ARMAX form A(B)Yt = Bk+1B′(B)Ut + C(B)εt of this model. Here, B′(B)

is defined as B′(B) = (1 − B)dφ(B) b(B)
B and the A(B) and C(B) polynomials are defined in

the same way as in (6). The MMSE control law is given as (Åström, 1970):

U∗
t = − H(B)

B′(B)L(B)
Yt. (27)

The H(B) and L(B) polynomials are defined as H(B) = h0 + h1B + ... + hn−1Bn−1 and
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Figure 2: The sample squared bias and variance of the identified models under different constraints
and sample sizes. A log scale is used. The bias and variance were estimated from the 1000 simulated
realizations. Left panels: identification by using a small model, right panels: identification by
using a large model.

L(B) = 1 + l1B + ... + lkBk where n = max{nA, nB′ , nC} and their coefficients are obtained

by solving the Diophantine identity

C(B) = A(B)L(B) + Bk+1H(B). (28)

For each β̂ and the Â(B), B̂′(B) and Ĉ(B) polynomials estimated in the simulations, the

estimated optimal controller Û∗
t can be computed, first, by solving (28) for Ĥ(B) and L̂(B)

and, then, by inserting the estimated polynomials in expression (27). It can be shown that

the true optimal controller, or the optimal controller computed from the true process (25),

is U∗
t = − 0.7(1−0.8B)

10(1−B)(1+0.7B)
Yt.

The variance of the process controlled by the true optimal controller can easily be cal-

culated from the closed-loop equation of the process obtained with this controller; this is

equal to Yt = (1+0.7B)εt which is an MA(1) process with variance 1.49. The variance of the

process controlled by the estimated optimal controller is calculated numerically. For each

estimated controller Û∗
t we simulated a new realization of the process (25) under the actions

of this controller and calculated the sample variance of this simulated output. A sample size

of 200 was used for the variance calculations.
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The estimated optimal controllers and the corresponding controlled process variances

were computed for the parameter estimates obtained under the constraint scenarios that

include the delay constraint and under the unconstrained case. The benefit of adding con-

straints is evaluated by comparing the variance provided by the estimated optimal controller

to the variance value 1.49, provided by the true optimal controller. It is assumed that the

controllers that provide variances in the range (0,3) are approximately equal to the true

optimal controller and hence they are “good” controllers; and that the controllers that pro-

vide variances in the range (100,∞) are “unstable”. Figure 3 gives the percentages of the

estimated controllers (out of 1000) that have good control performance and those that are

unstable.
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Figure 3: Percentages of the estimated controllers that have good control performance (left panels)
and those that are unstable (right panels). The estimated controllers were computed from the
models identified in the 1000 simulation runs under different constraints and sample sizes. The
labels of the constraints are given in the x− axis of the plots. Top panels: identification by using
a small model, bottom panels: identification by using a large model.

It can be seen that by having a more certain prior knowledge on the true model (i.e.

using a smaller assumed model) or by using a larger sample size we can improve the control

performance. We can also see the benefits of adding constraints. With the knowledge of the

delay the control performance can be significantly improved with respect to the unconstrained

case regardless of the sample size and the model size. With the knowledge of the gain, the

improvement in the control performance is larger when a relatively large sample size is used
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(e.g. when N = 200 or 400) and the knowledge of the noise model is more advantageous

when a relatively small sample size is used (e.g. when N = 50).

Among all constraint scenarios, the best control performance is obtained with the knowl-

edge of the delay and the gain (i.e. the constraints k, g) when the sample size is relatively

large and with the knowledge of the delay and the noise model (i.e. the constraints k, n)

when the sample size is relatively small regardless of the model size used.

6 Case Study: Gas Furnace Process

In this section we compare the performance of the proposed approach and the dither signal

approach by applying them on the gas furnace data set given by Box, Jenkins and Reinsel

(1994).

The data set contains 296 input and output observations which are collected during

open-loop operation of the process. The process input is the gas rate of a gas furnace and

the output is the %CO2 concentration at the furnace outlet. The transfer function model

estimated from these open-loop data is:

Yt =
−0.4976B − 0.39156B2 − 0.56424B3

1− 0.51213B B2Ut +
1

(1− 0.54505B)(1− B)
εt (29)

and σ̂2
ε = 0.06398.

In order to illustrate closed-loop identification we need a data set for the closed-loop

operation of the process. We generate the closed-loop operating data using the reconstructed

disturbance data of the process and by assuming that a PI controller was in operation. To

reconstruct the disturbance data from the open-loop input and output measurements we

assume that the model (29) is the true description of the process; that is, (29) gives the

polynomials b̃(B), ã(B), θ̃(B), φ̃(B), the delay k̃, and the degree of integration d̃ of the process.

Denoting the open-loop input and output observations by Uot and Yot, the disturbance data

can be obtained by using Nt = Yot − b̃(B)
ã(B)

B2Uot.

For generating the closed-loop output of the process we assumed that the transfer function

numerator polynomial in (29) is b̃(B) = −0.4976B (i.e. the higher order terms were ignored).

This simplification is made so that the resulting closed-loop model has a lower order and thus

is easier to estimate. From the disturbance data, the controlled output sequence {Yt}296
t=1 was

generated by using Yt = b̃(B)
ã(B)

B2Ut + Nt where {Ut} is the input sequence according to the PI

control law Ut = c1+c2B
1−B Y ′

t . Y ′
t is the deviation of the output from target T (i.e. Y ′

t = Yt−T )

where the target is assumed to be 53 (the average of the Yot sequence).

Two PI controllers were used; the first one is with (c1, c2) = (1,−0.7) and the second

one is with (c1, c2) = (0.05,−0.03). The first one, with its larger proportional and integral
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Figure 4: Closed-loop identification of the gas furnace process data set. (a) Closed-loop output
under the first PI controller including an added dither signal with S/N = 0 (i.e. no dither applied)
and S/N = 1. (b) PI controller actions including an added dither signal; with S/N = 0 and
S/N = 1.

constants, varies the input more frequently and hence would result in more precise estimates

of the closed-loop model than the second one. Figure 4 shows the closed-loop output and

input data generated with the first PI controller. This figure also shows the controlled input

and output values with dither signals (i.e. the data that correspond to S/N 6= 0). The dither

signal approach will be explained later.

The parameter identifiability of the process is checked by using the condition in (19) that

corresponds to d̃ = 1 and a PI controller; that is: max{ña, k̃ + ñb} − ñp ≥ ñφ + ña + ñb. It

can be seen that for this process ña = 1, ñb = 1, k̃ = 2, ñφ = 1, ñθ = 0 and ñp = 0 and that

this condition is satisfied.

Closed-loop identification using the CLS approach

It can be shown that the closed-loop equation of the true process (29) with a PI controller

is an ARMA(5,1). From the generated output data {Yt}296
t=1 shown in figure 4 (a) we have

(correctly) identified this model. The ARMA(5,1) model fitted to this data set is:

(1 −1.9515B +1.2099B2 +0.4557B3 −0.8476B4 +0.3341B5 )Y ′
t = (1 −0.6526B )εt

(0.1618) (0.2254) (0.1592) (0.1406) (0.0623) (0.1659)
(30)

where all estimates are highly significant (the numbers in the parentheses are the standard

errors of the estimates). An ARMA(5,1) model was also fitted to the closed-loop data of
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the second PI controller; in this model the standard errors of the estimates were relatively

larger.

We assumed a BJ model (1) with parameter vector β = (a1, b1, b2, b3, φ1, θ1) and delay

k = 0 for the identification and estimation of the process model. The degree of integration of

the disturbance is identified as d = 1 since the MA part of (30) does not contain a unit root

and the controller is PI. The parameters β of the model are estimated by minimizing the

sum of squared errors function (10) that is evaluated with the closed-loop model parameter

estimates given in (30). This corresponds to the unconstrained closed-loop identification.

To illustrate the CLS approach, we assume knowledge of the delay, the gain and the

noise model of the process. The true values for these constraints are k = 2 for the delay,

g = −0.4976/(1 − 0.51213) = −1.0199 for the gain, and φ1 = 0.54505 and θ1 = 0 for the

noise model. Similarly to Section 5, we use the symbols k, g and n to refer to the constraints.

The constraint scenarios k, (k, g), (k, n) and (k, n, g) were considered.

Closed-loop identification using the dither signal approach

In closed-loop identification with dither signals an external dither signal dt is added to the

feedback input. Provided that the added dither is signal is uncorrelated with εt and is

persistently exciting the system, the transfer function and the disturbance models can be

identified from the estimated cross-correlation function between the input and the output

sequences. This approach is sometimes referred to as the “direct” method for closed-loop

identification (Ljung, 1974).

After the addition of the dither signal, the input adjustment of the PI controller is:

∇Ut = (c1 + c2B)Y ′
t +∇dt

where dt is a pseudo random binary sequence (PRBS). The signal to noise ratio, or S/N , with

the dither signal is calculated as S/N = var(dt)/var(Nt). We considered the signal-to-noise

ratios S/N = 0.1, 1 and 5. For identification under each S/N , we added the dither dt to the

actions of the PI controllers and generated the corresponding closed-loop input and output

sequences {Ut} and {Yt}.
Similarly to the CLS approach, we assumed a BJ model (1) with a parameter vector

β = (a1, b1, b2, b3, φ1, θ1), a delay k = 0 and a degree of integration d = 1 to identify and

estimate the process model. The process transfer function model was estimated from the

generated closed-loop output and input data with the added dither signals (by using the

Proc ARIMA function in SAS). Figure 4 shows the generated closed-loop output and input

data using the first PI controller and a dither signal with S/N = 1.
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Figure 5: The unit step response of the dynamics and disturbance transfer functions of the true
and the estimated models. The estimated models are obtained by using the CLS and dither signal
approaches. The step input is applied at time 1. Left panels: the dynamics transfer function,
right panels: the disturbance transfer function.

Comparison of the CLS and the dither signal approaches

Model parameter estimates β̂ were computed from the closed-loop output data (with S/N =

0) using the CLS method and from the closed-loop input and output data under S/N = 0.1, 1

and 5 using the dither signal method. We summarized these estimates by considering the

corresponding estimated dynamics transfer function b1B+b2B2+b3B3

1−a1B and the estimated distur-

bance transfer function 1−θB
1−φB . Figure 5 shows the unit step response of the estimated and

true transfer functions and illustrates how the model estimates improve as more constraints

are added or as the signal to noise ratio of the dither signal is increased.

The two identification approaches were compared on the basis of the costs they incur

during identification and during operation. The cost of identification and the cost of oper-

ation were measured by the variability of the output around the target (the mean squared

deviation from target) MSE(Yt) and by the variability of the input V ar(Ut) during the iden-

tification experiment and during the operation. During the operation, an optimal controller

re-designed based on the identified model adjusts the process.

Similarly to section 5, we considered MMSE controllers as the optimal controller. Using

the expression (27), we computed an estimated MMSE controller Û∗
t for each of the models

estimated by the two approaches. As a point of reference, we also computed the true MMSE
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Controller design using closed-loop data using the first PI controller with c1 = 1 and c2 = −0.7
and open-loop data:

Cost Open loop Closed-loop w/ Closed-loop w/
(True MMSE) Dither Signal Constraints

S/N = 0.1 S/N = 1 S/N = 5 k k, g k, n k, n, g

Ident. MSE(Yt) 10.478 0.804 1.247 2.769 0.759 0.759 0.759 0.759
(N = 296) V ar(Ut) 1.151 1.3706 2.522 6.620 1.264 1.264 1.264 1.264

Oper. MSE(Yt) 0.432 0.529 0.460 0.451 0.520 0.484 0.472 0.436
(N = 296) (s.e.) (0.002) (0.003) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

V ar(Ut) 14.820 14.197 14.446 14.544 14.380 14.732 14.473 14.662
(s.e.) (0.401) (0.400) (0.401) (0.401) (0.401) (0.402) (0.401) (0.401)

Controller design using closed-loop data by using the second PI controller with c1 = 0.05 and
c2 = −0.03 and open-loop data:

Cost Open loop Closed-loop w/ Closed-loop w/
(True MMSE) dither signal CLS

S/N = 0.1 S/N = 1 S/N = 5 k k, g k, n k, n, g

Ident. MSE(Yt) 10.478 0.705 0.956 2.119 0.683 0.683 0.683 0.683
(N = 296) V ar(Ut) 1.151 0.106 0.778 3.812 0.037 0.037 0.037 0.037

Oper. MSE(Yt) 0.432 0.467 0.434 0.432 4.935 3.261 1.587 0.527
(N = 296) (s.e.) (0.002) (0.002) (0.002) (0.002) (0.091) (0.121) (0.018) (0.002)

V ar(Ut) 14.820 14.683 14.903 14.816 32.909 40.772 18.571 15.495
(s.e.) (0.401) (0.401) (0.401) (0.401) (0.776) (1.217) (0.414) (0.401)

Table 3: Cost of identification and cost of operation for closed-loop identification of the gas furnace
process using the CLS and dither signal approaches.

controller of this process. The true MMSE controller uses the parameter estimates obtained

from the open-loop data.

The cost of operation was calculated by simulating the process 1000 more times for

296 periods each under the action of these controllers. Table 3 summarizes the cost of

identification and the cost of operation of the controllers designed with the two approaches

and those of the true MMSE controller. During identification (performed only once) the cost

for the estimated controllers is calculated from the closed-loop data of the PI controllers.

With the dither signal approach the input varies more due to the dither signal, while with

the CLS approach no dither signal is added hence the output MSE and the input variance

remain at the corresponding PI control operation levels. During operation, the MSE(Yt)

and V ar(Ut) are the averages of the values computed from the simulations and the numbers

in the parentheses are the corresponding standard errors. The open-loop column gives the

corresponding costs when applying the true MMSE controller.

The two PI controllers represent rather extreme closed-loop experimental conditions for
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identification with constraints: the first one varies the input more frequently (i.e. it incurs

in a larger cost of identification) but results in better parameter estimates which in turn

provide a lower cost of operation. In contrast, the second controller varies the input less

frequently and results in relatively poor parameter estimates which in turn provide a higher

cost of operation.

However, the CLS approach gave a smaller overall cost than the dither signal approach

under both controllers. When the process was identified from the closed-loop data using the

second PI controller, the CLS approach (under the constraints k, n, g) gave only a slightly

larger operation cost than the dither signal approach (under S/N = 1), while incurring in

a considerably smaller cost of identification (in identification, S/N = 1 requires 20 times

as large input variance as that required by k, n, g). When the process was identified from

the closed-loop data using the first PI controller, the CLS approach achieved a smaller cost

of operation than the dither signal approach (under S/N = 0.1) and incurred in a still

smaller identification cost when only the delay (k) was assumed known. As more constraints

were added, the CLS approach (under the constraints k, n, g) achieved a smaller cost of

operation than the dither signal approach (under S/N = 1 and S/N = 5) while incurring

in a much lower identification cost (in identification, S/N = 1 requires almost twice as large

input variance as that required by k, n, g). We also note that the cost of operation with the

constraints k, n, g is almost equal to that of the true MMSE controller.

The results from using either of the PI controllers illustrate that, by using the CLS

approach and when prior knowledge about the process is available, one can identify models

with better quality (i.e. with lower cost of operation) than the dither signal approach by

introducing much less extra variability into the process (i.e. by incurring in a lower cost of

identification).

7 Conclusions

This paper presented a closed-loop system identification methodology, CLS, that uses prior

process knowledge to obtain improved model parameter estimates. We presented a simula-

tion example and a case study that demonstrated the benefits of using various forms of prior

process knowledge with different model and sample sizes over alternative methods, in par-

ticular, over the dither signal method. All investigated cases assumed a model that contains

the true process model. The results of the simulation example indicated that, regardless

of the model and sample size used, the knowledge of the input-output delay (k) is crucial

in closed-loop identification. It was further shown that when a small model is used, prior

knowledge of the delay and the gain (k, g) give best results. Likewise, when a large model is

used, knowing the delay and the noise model (k, n) give the best identified models. This is
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true with respect to both the bias and variance of the estimates and from a control perfor-

mance perspective. Therefore, if the objective in modelling the process is to better control

it, it is suggested that more effort be spent in identifying the delay and the asymptotic gain

of the process. The case study based on real process data shows that the proposed CLS

method provides better quality models than the dither signal approach without having the

need to introduce extraneous variability into the process.
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