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Abstract

A brief guide to the literature on Stochastic approximation/optimization methods
is provided with application to process adjustment and process optimization problems
in quality control, respectively. No intent is made of providing a literature review.

1 Newton’s method and Stochastic approximation

Consider Newton’s method for solving for the root of a function, i.e., find = such that
f(x) = 0 is true. Here f(z) is a deterministic function from R to R , in other words, f(z)
can be measured without error. The recursive equation that is known to converge to the

root is given by

— f(xn)
Tnt1 = Tn () (1)

where f'(x) = df(x)/dx is known analytically. In this setting, convergence simply means

that x, — 6 as n — oo (where 6 is the closest root to z7). The recursion is equivalent to
steepest descent applied to f(x).

The seminal work of Robbins and Monro (RM) [1] extended such approach to a stochastic
function, that is, assume y = y(z) = M (x) 4+ € where ¢ is a random variable with E[¢] = 0
so M(z) = Ely|z] is the regression of y on x, a function which can be nonlinear in x. No
parametric assumptions are made on the form of M (x). Suppose we want to find a root of
the equation M(z) = 0. Neither M(z) nor M'(z) are known analytically, and we cannot
observe M (x) directly, we can only observe y(x), i.e., y(x) is a measurable function. Suppose
that instead of using (1) (which is not possible to use since the functions needed are not

available to us) we use the recursion (sometimes called the “RM process”):
Tpt1 = Tn — any(xn) (2)
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where the sequence {a,}°; needs to be determined and z; is selected arbitrarely. This
recursion determines an experimental design on the factor space that will seek the root of
the equation. RM asked a very simple question: under what conditions on M(z), e, and
{a,}22, do we have convergence of the sequence of experimental factor levels {x,,}°2; to the

root of M(x) =0, call it 87 In their original paper, they showed that, if

a
o
a, — 0, E a, = 00
n=1
b

Y a) <o
n=1
¢ the regression function is such that M(z) < 0if z < @ and M(z) > 0if x > 0,

d the distribution function of € has finite tails

then using (2) we have

lim E[(z, —0)*] =0

n—oo
i.e., they show convergence in mean square of x, to the root 6. A sequence that satisfies
the first two conditions is the harmonic series a,, = 1/n = {1,1/2,1/3,...}. Condition a) is
needed because otherwise the search could stop before finding a root. Condition b) is needed
to eventually eliminate the “noise” in the observations. Some of the assumptions under
which mean square convergence is achieved were simplified and clarified by Dvoretzky [3].
In particular, instead of assumption d) it is only necessary that o2(z) < co. Note that the
variance can be non-homogeneous, a condition of considerable interest in response surface
methods. A simplified proof of MS convergence for the RM process is provided by J.Semple
[4]. The Dvoretzky conditions imply both MS convergence and convergence of x,, to 6 with

probability one.

2 Stochastic Gradient

Following a suggestion by RM, Kiefer and Wolfowitz [2] wrote a paper in which they pro-
pose to apply Robbins and Monro stochastic approximation approach to finding the root of
M'(x) = 0, i.e., for finding the stationary point 6 (say) of the regression function that is
known to have a maximum (say). Since the slope of the regression function is not observable

directly, they propose to use instead:
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(if we wish to minimize we subtract the second term instead). Kiefer and Wolfowitz show

that x,, as above converges in mean square to 6 given that

oo o0 oo
_ 2 2
a, — 0, ¢, — 0, a, = 00, ApCp < 00, a,c, < 00
n=1 n=1 n=1

besides of some regularity conditions on M (z). Blum [5] extended this procedure to the
multivariate case, of particular interest in RSM. Kesten [6] provided an acceleration routine

that should be useful for small samples.

3 Review papers

Given that the literature in these subjects is too large and the topic has been around for
almost 50 years, it is very instructive to read reviews of these methods before consulting the
original papers, which are quite technical in general. Of course, recent papers (post 1990) are
not found in these reviews. The book by Wilde [7] contains a highly readable exposition of
the first classic papers in stochastic approximation and stochastic optimization up to about
1965. A review on Stochastic Gradient up to 1970 is by Fabian [8]. A more recent review on
Stochastic approximation methods is the article by Sampson [9]. An equally recent review
on Stochastic Gradient (i.e., the KW method) is the article by Ruppert [10]. A very readable
and interesting review of papers and results up to around 1989 is provided by Ruppert [11].

4 Emphasis on asymptotic results

It is quite evident, from reading the aforementioned reviews and papers, that there exist a
large number of asymptotic results related to both the RM and the KW processes. Con-
vergence in mean and with probability one has been proved in both cases under certain
conditions. Also, the asymptotic normality of \/n(z, — #) has been shown, etc. Most au-
thors are interested in the long run behavior of z,,, although Frees and Ruppert [12] and Wu
[13] discuss a MR process where they looked at MSE(QAH) for small n using simulation. To
estimate the root @, they propose using either the last x,, or the solution to y = ﬁo + le
where the parameters are estimated using OLS from all the x] s and the s in the process.
Robbins and Lai [14] and Wei [15] discuss an ” Adaptive” RM procedure that considers the
cost 1" (z, —0)? (rather than E[(x,, — 6)?]), which they mention (correctly) that it should
be more important for control. However, their interest is really in the asymptotic value of
this sum, i.e., lim, e y i (z, — 0)?. Interest in quality control of expensive parts should

be on this sum for finite and small n.



In an early reference, Hodges and Lehmann [16] studied the behavior of E|[(z,, — 6)?] for
small n, and considered the best selection of the constant ¢ in the sequence a,, = ¢/n studied
by them. They concluded that using ¢ = 1/M’(0) was best. However, they didn’t consider

performance measures that are more relevant for control.

5 Applications and opportunities in process adjustment

The setup adjustment problem, where a machine is initially off-target by d units was studied
by Grubbs [17]. He finds an adjustment scheme that is identical to using the RM estimate
of d. Del Castillo and Pan [18] studied the connections between Grubbs’ procedure, the RM
process, and a Kalman filter approach. They studied the small sample Average Integrated
Squared Deviation (AISD) provided by each rule, and concluded that Grubbs’ rule was best
in general. However, results from Frees and Ruppert [12] indicate that it is worth exploring
the AISD performance of a RM-like rule where the weights are given by C/(if}; + r) where
By is the slope of M(x) (8 = 1 is known for Grubbs procedure, although this would work
also in case the gain or slope is not known) and C' is some constant. These authors did
not consider the AISD, but instead looked at E[(x,, — 6)?] for small n, in an analysis closely
related to the aforementioned one by Hodges and Lehmann . For this performance measure,
Frees and Ruppert indicate that using C' = 1.5 to 2 and r = 1 or 0 works best. It is of
interest to derive AISD formulae for such weights and try to determine recommendations for
C and r, as compared to simply using the harmonic rule {1/n} as used by Grubbs.

A different area of application is for those setup adjustment problems in which overad-
justment in one direction is much more expensive than under adjusting, i.e., the underlying
loss function is not symmetric. A typical example is in a drilling process, where a hole too
wide implies scrap whereas a hole too narrow can be reworked to save the part. RM-like
approaches exist that guarantee approaching the root without overshooting it with some
given probability [19, 20]. This can be used in such asymetric-loss problems.

Another area of considerable interest is applications of stochastic approximation (SA) to
processes that exhibit dynamics, contrary to setup adjustment problems in which the process
is assumed stable. Two very interesting, and practically forgotten papers by Comer [21, 22]
provide several results of ”adaptive proportional” controllers (he was actually referring to
integral controllers). The idea is to use a RM-like process for determining the controllable
factor. One of Comer’s methods is comparable with another stochastic approximation al-
gorithm recently developed by Patel and Jenkins [26], who proposed an adaptive EWMA
controller with guaranteed stability. Their results are similar to a modification to the RM

procedure proposed by Robbins and Sigmund [23]. No comparison of these methods for



small or large samples are available.

An interesting recent paper is by Chen and Guo [24] who propose to use SA to find MSE-
optimal EWMA weights in an EWMA controller when there is evidence of a shift, and use
a constant EWMA weight otherwise. The idea of coupling Grubbs procedure with a control
chart was originally proposed by Del Castillo [25]. It is not clear if always using SA (Grubbs)
procedure rather than having a minimum weight value is better or not. How to detect the
change point is very important, Chen and Guo used an EWMA control chart to trigger the
RM-like adaptation of the weights, unaware that they were using Grubbs’ procedure or SA.

6 Applications and opportunities in process optimiza-
tion

The KW procedure provides an experimental optimization method for industrial processes,
which, however, has not been used in practice where response surface methods are widely
used. It is therefore of interest to investigate if the KW procedure can converge to a station-
ary point in fewer experiments than a traditional application of RSM. One of the difficulties
of the KW method is that, given that the gradient of the response needs to be estimated, this
results in slower convergence compared to the RM approach. Furthermore, the multivariate
KW process studied by Blum requires 2k experiments at each iteration in order to estimate
the gradient. A more recent approach by Spall [27], termed ”Stochastic perturbation” re-
quires only 2 experiments per iteration. Recent research in this area has increased thanks to
the application of KW-like processes to Neural Network "learning” processes. Thinking in

this type of application, Darken et al. [28] investigate a KW algorithm with weight sequence:

1+ -4

_ 0T
ar = HOH%—WLT%
which equals to 7y for times t < 7. For ¢ > 7, this function behaves as ¢/t, the traditional
RM/KW weights. The idea is to make the algorithm approach a ”good” region rapidly, and
only then start the convergence phase thanks to the RM/KW harmonic sequence, which,
if used from the beginning, would make convergence too slow. Andradottir [29] provides
another modification of the RM method for use in simulation optimization which appears to
converge faster than the original RM process.

The convergence rate of KW-like processes can be improved if second-order information
is used in the search. Ruppert [30] provides a stochastic version of Newton’s method. The
method’s idea is to premultiply Y, by some estimate of the inverse of the Hessian of M (6).

This approach is a RM, not a KW, method. It seems that only Fabian [8] has investigated



incorporating second order information in KW processes but he did not provide any per-
formance analysis. Nonlinear optimization algorithms such as the BFGS method provide
a sequential method for approximating the Hessian of a deterministic function. It seems
plausible that such a scheme can be put in a stochastic optimization setting, providing an
algorithm that converges faster than traditional gradient-based KW methods. The emphasis
of such investigation, however, should be small sample behavior, i.e., to optimize a process
with the smallest number of experiments.

A different area of application of RM and KW processes is using them in certain parts of
the traditional RSM framework. Once instance of this area is the use of the RM process to do
the line searches needed in the steepest ascent phase of RSM. Investigation and comparison

of such approach vs. stopping rules used in steepest ascent are of interest.

7 Relations with recursive estimation and adaptive con-
trol

One of the major areas of application of the RM process is for the solution of statistical esti-
mation problems. Here, 6 is a parameter that needs to be estimated. In particular, recursive
estimation methods based on the RM approach have been investigated. An estimator 6, is
said to be recursive if it is a function only of 6,,_; and of y,,. The literature on recursive esti-
mation is very large, but a good source of information is the book by Ljung and Soderstrom
[31]. This reference emphasizes recursive estimation of parameters of models that define
observations of time-dependent processes (i.e., time series). In general, based on their speed
of convergence, this literature recommends a recursive version of the least squares algorithm

rather than the use of stochastic gradient.

8 More papers

The literature of RM and KW methods has grown to a very considerable size over the years.
Recent application to simulation optimization, process control, and Neural Network learning
has generated a renewed interest in these methods. This paper just provided a guide to the
most important and ”classical” sources. A detailed literature search should be undertaken
by anybody wishing to work in this areas. Since the literature is extremely technical, it is
expected that this guide together with some of the references herein will provide a more

gentle introduction to the topic, including some ideas for areas open to research.
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