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Summary

In this paper, we focus on performance of adjustment rules for a machine that
produces items in batches and that can experience errors at each setup operation
performed before machining a batch. The adjustment rule is applied to compensate
for the setup offset in order to bring back the process to target. In particular, we
deal with the case in which no prior information about the distribution of the offset or
about the within-batch variability is available. Under such conditions, adjustment rules
that can be applied are Grubbs’ rules [1], the EWMA controller [2] and the MCMC
adjustment rule, based on a Bayesian sequential estimation of unknown parameters
that uses Markov Chain Monte Carlo (MCMC) simulation [3]. The performance metric
of the different adjustment rules is the sum of the quadratic off-target costs over the
set of batches machined. Given the number of batches and the batch size, different
production scenarios (characterized by different values of the lot-to-lot and the within-
lot variability and of the mean off-set over the set of batches) are considered. The
MCMC adjustment rule is shown to have better performance in almost all the cases
examined. Furthermore, a closer study of the cases in which the MCMC policy is not
the best adjustment rule motivates a modified version of this rule which outperforms
alternative adjustment policies in all the scenarios considered.
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1 Introduction

The quality of discrete-part manufactured products can significantly worsen when parts are
processed off-target, i.e. the mean of the quality characteristic shifts to values different from
its target. Such shifts frequently arise when parts are machined in batches because setup
operations are often manually executed given the intrinsic complexity of these procedures
(e.g. the fixturing of workpieces can be automated just for very simple part geometry).
Even in cases when automatic setup operations are available, batches of the same part type
are often affected by different initial offsets because conditions of the machine, materials,
and operators vary from time to time. In this case, procedures designed to automatically
compensate for the initial offset or setup error can significantly improve the outgoing quality
of the parts processed. Assuming a quadratic off-target cost function, Grubbs [1] presented
two adjustment rules aimed at adjusting for a potential initial offset present at setup of a
single batch (what we will refer to as Grubbs’ ”harmonic” rule) and over a set of batches
(what we will call Grubbs’ ”extended” rule), respectively [4]. The second rule, in particular, is
optimal for a quadratic off-target cost function when parameters characterizing both within-
batch and between-batches variability are known in advance. Del Castillo, Pan and Colosimo
[5] show how Grubbs’ extended rule has a Bayesian interpretation based on a Kalman filter
when prior knowledge of parameters characterizing both batch-to-batch and within-batch
distributions is required. Hence, Grubbs’ extended rule can be applied just after a set of
batches have been already machined in order to have accurate estimates of the required
parameters. To start adjusting when no estimates are available, e.g., when a new product
has to be processed or a new process is installed, simpler adjusting rules such as the harmonic
rule and a discrete integral controller or EWMA controller [2], can perform better than the
extended rule as shown by Del Castillo et al. [6].

Recently, a different adjustment rule was proposed [3] for situations in which no prior
knowledge on parameters characterizing offset and process distributions is available. This
rule is based on computing sequential Bayesian estimates of the unknown parameters using
Markov Chain Monte Carlo (MCMC) methods.

In this paper, an in-depth comparison of the performance of setup adjustments rules that
can be applied when no parameter estimates are available, namely, Grubbs’ harmonic rule,
the EWMA controller, and the MCMC policy, is provided. Performance will be evaluated
considering different production scenarios characterized by the following set of parameters:
a) the number of lots, b) the number of parts in each lot, c) the variability within and
between-batches and d) the presence of a systematic error affecting the mean offset over
a set of lots. Not all parameters are equally uncertain in practice. In fact, the first two
parameters, i.e., the number of lots and the lot size, can be assumed known even when a new
product and/or a new process is considered. Given these two parameters, the better rule will
be considered as the one which determines enhanced performance over all the alternative
scenarios associated with a set of possible values of the remaining unknown parameters (i.e.,
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the within-batch and between-batches variability and the mean offset over a set of lots).
It will be shown that the MCMC-based approach outperforms the other rules in almost

all the cases. A closer study of situations in which performance of the MCMC policy is
actually worse has motivated a modified version of this rule, which, as we will show, has an
enhanced performance in all the cases examined.

Rules for adjusting an initial offset over a set of batches

when parameters are unknown

When discrete parts are processed in batches and no adjustment rule is adopted, a common
model used in the statistical literature to describe the quality characteristic observed after
each part is machined is the random effects model [7], given by:

Yij = θi + vij (1)

θi ∼ N(µ, σ2
θ)

vij∼N(0, σ2
v) ;

where:

• i = 1, ..., I is the batch index;

• j = 1, ..., J is the part index;

• Yij is the deviation from the nominal value for the quality characteristic observed at
the jth part of the ith batch;

• θi is the (unknown) mean in each batch, here representing the initial offset due to setup
errors. This is assumed to be normally distributed with mean µ and variance σ2

θ ;

• vij represents the random error due to the combined effect of the intrinsic variability
in the machining process and the variability in the measurement system. It is assumed
to be normally distributed with mean equal to zero and variance σ2

v .

The mean offset over a set of batches µ can be interpreted as the systematic error in the
set-up operations, while the two variance components σ2

v and σ2
θ represent the within and

between-batches variability, respectively.
To improve the quality of parts processed, adjustment rules should be adopted to elim-

inate the initial offset of parts processed in each lot by means of a compensatory variable
Uij (i = 1, ..., I; j = 1, ..., J). When the adjustment rule is applied, the mean of the quality
characteristic of the jth part processed in the ith lot is given by:

θij = θij−1 +∇Uij−1 (2)
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where θi0 = θi, ∇Uij−1 = Uij−1 − Uij−2 is the magnitude of the adjustment, and the quality
characteristic can be thus expressed as:

Yij = θij + vij . (3)

In view of equation (2), the “ideal” adjustment would be given by ∇Uij−1 = −θij−1, but
the actual adjustment should be based on an estimate of θij−1 since it is unknown. Solving
recursively equation (2) and considering that ∇Uij = Uij − Uij−1 , the quality characteristic
at the jth part in the ith lot can be rewritten as:

Yij = θi + Uij−1 + vij (4)

and the adjustment problem can be reformulated as selecting Uij−1 (j = 2, .., J) to be closer
as possible to −θi.

If parameters µ, σθ, σv characterizing the distribution of the quality characteristic Yij

(equation 1) are unknown, traditional adjustment rules that can be applied in this case are:

• Grubbs’ harmonic rule [1] where ∇Uij = −1
j
Yij (Ui0 = 0 ∀i). We note that Grubbs

extended rule, characterized by ∇Uij = Yij/(j + σ2
v/σ

2
θ), is not applicable in practice

as it requires knowledge of σ2
v/σ

2
θ ;

• the integral or EWMA controller [2], where ∇Uij = −λYij (Ui0 = 0 ∀i) and λ is some
weight parameter (the integral constant) that needs to be chosen a priori;

• the sequential Bayesian adjustment rule [3], in which required parameters are sequen-
tially predicted or estimated using Markov Chain Monte Carlo (MCMC) as detailed
in the Appendix. In particular:

1. before processing a new lot i (where i ≥ 3 because at least two lots must be
processed to estimate the variance between lots σ2

θ), the initial set-point Ui0 that
has to be set on the machine before processing lot i is based on the predictive
distribution of the offset;

2. after observing at least one part in a lot, adjustments ∇Uij (j = 1, .., J) are based
on the posterior distribution of the offset in the current lot, as seen from equation
(4).

The Appendix describes the hierarchical normal means model used to estimate/predict re-
quired parameters and details on computation performed using the Gibbs Sampler method.
Although the Gibbs sampler method is not the only approach available to compute the
Bayesian analysis required, it has been selected because of its simplicity and flexibility.
As Gelfand et al. [8] pointed out ”the efficiency of other approach is at the expense of de-
tailed sophisticated applied analysis [7] or tailored ”one-off” numerical tricks or sophisticated
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adaptive quadrature methodology, in conjuction with subtle sensitivity of parameterization
issues”. Furthermore, Gibbs sampler approach can be easily extended to deal with a wide
range of problems (i.e., unbalanced data, non homogeneous variances, missing data) that,
although not considered in the paper, represent further directions of future research in this
area.

Evaluation of different adjustment rules with reference

to different performance indexes

Colosimo, Pan and del Castillo [3] compare the performance of the three adjustment rules
mentioned above under the usual quadratic cost function, given by:

C =
I∑

i=1

J∑
j=1

Y 2
ij . (5)

Two classical variance components examples presented in [7] were used for evaluation pur-
poses. Percentage advantages in quadratic cost determined by the MCMC Bayesian proce-
dure over Grubbs’ rule and EWMA controllers varied from 27 % to 63 % for the first example
and from 18 % to 50 % for the second one [3].

To deepen comparison between adjustment rules applicable when no knowledge of pa-
rameters is a priori available, we refer to a manufacturing process where parts are processed
in lots. To represent a wide range of production situations, we considered as initial reference
the second example presented in [7], further studied in [8] (characterized by I = 6, J = 5,
σv = 4, µ = 4, σθ = 2) and we perturbed all the parameters to generate different scenarios,
as reported in Table I. The number of lots (I) was considered fixed and equal to 20, since
performance for a number of lots I < 20 can be computed from partial results of the complete
20-lot simulations. For the other four parameters affecting the performance of the rules, the
set of cases studied in this paper was derived considering all the possible combinations of
the parameters at two values, as reported in Table II. Three replications were conducted for
each scenario, thus the total number of simulations in this analysis was equal to 24 ∗ 3 = 48
runs.

insert Tables I and II about here

For each scenario, percentage savings in quadratic costs (equation 5) obtained using the
MCMC-based approach instead of Grubbs’ harmonic rule and two EWMA controllers (with
λ = 0.4 and λ = 0.1) were computed. Nonparametric statistical analysis was used to an-
alyze results because of the lack of normality of percentage savings obtained in simulated
scenarios. Figure 1 reports the interquartile (IQ) and the confidence interval (CI) boxplots
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of the percentage savings induced by the MCMC-based adjustment rules over competitor
rules. In particular, each CI boxplot is plotted inside the IQ one, and refers to the 95%
confidence interval on the median. IQ and CI boxplots are reported in Figure 1 as a function
of: the number of lots (I); the number of parts in lots (J); the ratio of the mean offset to
the within-lot standard deviation (µ/σv); the ratio of the between to the within-lot standard
deviation (σθ/σv).

insert Figure 1 about here

As it can be observed, the MCMC approach outperforms the competitor adjustment
rules in almost all the scenarios, inducing sometimes significant advantages. In particular,
actual applications of the adjustment rules should be based on the behavior of the percentage
savings with respect to the number of lots (I) and the number of parts in each lot (J). In
fact, when a new product is considered or a new process is introduced I and J are the only
parameters that can be assumed known. Table III reports the 95% confidence interval on the
median of the percentage savings induced by the MCMC policy over the competitor rules, as
a function of the number of lots I and the number of parts in each lot J . These confidence
intervals represent possible advantages induced by the MCMC policy if all the scenarios
simulated for the other set of parameters (µ, σθ and σv) can be considered a priori equally
likely. We note that the lower confidence intervals on the percentage savings induced by the
MCMC policy is almost always greater than zero, except for cases in which the number of
lots processed (I) and the lot size (J) are small. Thus, for example, when I = 5 there is
no significant advantage in adopting the MCMC rule instead of Grubbs’ rule, because the
95% confidence interval on the median of percentage savings is given by (-1.9% , 5.8%) and
contains 0%. A similar comment applies to the case when the lot size is small, i.e. J = 5,
where there is no significant advantage compared to Grubbs’ rule and the EWMA controller
with λ = 0.4.

insert Table III about here

To better investigate the performance of the different methods, the quadratic cost func-
tion reported in equation (5) was expanded into its different components. The total sum of
squares criterion contains the part-to-part errors vij that are not controllable. Therefore, a
more informative evaluation of the performance of any adjustment rule is to discount the
variability induced by the vij. This alternative criterion is evidently more preferable the

6



large σ2
v is. To do this, we partitioned the total quadratic cost function as follows:

C =
I∑

i=1

J∑
j=1

Y 2
ij =

I∑
i=1

J∑
j=1

(θi + Uij + vij)
2 =

=
I∑

i=1

J∑
j=1

(θi + Uij)
2 +

I∑
i=1

J∑
j=1

2(θi + Uij)vij +
I∑

i=1

J∑
j=1

v2
ij (6)

Since vij ∼ NID(0, σ2
v) and is independent of (θi + Uij), the second term in equation (6)

(
∑

i

∑
j 2(θi + Uij)vij) will be close to zero for relative large I and J . The third term, which

is independent of Uij, is not controllable. The first term
∑

i

∑
j(θi + Uij)

2, the only part left
in the total cost function that could be improved by an adjustment rule, will be refereed to
in what follows as the quadratic bias cost function.

The quadratic bias directly measures how well Uij converges to −θi, where the gap
between Uij and −θi is the bias. Notice that, for an ideal adjustment rule without any
bias, i.e. when Uij always equals −θi (a situation impossible to achieve in practice), the
corresponding saving rates would be 100%.

Considering this new performance index, IQ and CI boxplots of percentage savings in-
duced by the MCMC policy are shown in Figure 2. Focusing just on parameters known
before processing, Table IV shows the 95% confidence interval on the median of the percent-
age savings induced by the MCMC policy as a function of the number of lots I and the size
of the lots J . Although basic considerations drawn for the quadratic cost function hold in
this case too, the adoption of the quadratic bias cost function better outlines the advantages
and disadvantages implied by the use of the MCMC policy. In particular, considering just
the parameters known before processing lots (I and J), the new performance index confirms
that when few lots are processed (i.e., I = 5) there is no statistical evidence to assess that
the MCMC policy performs better than Grubbs’ rule. Similarly, when lot size is small (i.e.,
J = 5) the performance of the MCMC policy is equivalent to that of an EWMA controller
with λ = 0.4 (note that this conclusion was reached also using the quadratic cost function,
but using such function the performance of Grubbs’ rule was also found to be equivalent).
However, the relative performance of the EWMA controller is very sensible to a proper selec-
tion of the weight λ. In fact, when λ = 0.1 in the EWMA controller, savings induced by the
MCMC policy are significantly greater than zero even for a small lot size (J = 5) since in this
case the median of the percentage savings is equal to 45.7% and the 95% confidence interval
is given by (37.5% , 55.8%). It is important to emphasize that in practice, there is no way
to determine λ appropriately in an EWMA controller if the process parameters are unknown.

insert Figure 2 about here

insert Table IV about here
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Motivation for a modified rule

As shown in the previous section, the MCMC method can result in significant savings over
the other three adjustment methods in most, but not all, cases. To better explore situa-
tions in which the MCMC adjustment policy induces worst performance, a particular study
was conducted to better investigate motivation for this behavior. The two cases where the
MCMC policy results in worse performance compared to competitor rules were studied more
in detail. Table V reports the mean of the percentage savings implied by using the MCMC
policy for the three simulations in each scenario. From it, cases 16 (J = 5; µ = 0, σv = 2
σθ = 4) and 9 (J = 5; µ = 4, σv = 4 σθ = 2) were considered as representative of the
worst and the best performance of the MCMC policy. Behavior of adjustment rules in one
simulation from each of these cases was specifically analyzed.

insert Table V about here

Figure 3 shows the sum of quadratic costs induced over the set of lots I by all the com-
petitor rules as a function of the number of parts in the lot, i.e.,

∑20
i=1 Y 2

ij for j = 1, 2, ..., 5. In
particular, graphs (a) and (b) in Figure 3 refer to simulation of case 16 (worst performance
case) and 9 (best performance case), respectively. As it can be observed in Figure 3 (a), the
worst performance of the MCMC policy is mainly due to the first part (j = 1) processed in
the lot. For parts other than the first one (i.e., j = 2, ..., 5), costs of the MCMC approach
are almost identical to the one obtained with Grubbs’ rule, which is the best approach in
this case. On the contrary, Figure 3(b) shows that the MCMC policy outperforms the other
rule starting from the first part (j = 1) processed in each lot.

insert Figure 3 about here

This behavior could be better explained considering the two components of the MCMC
policy:

1. the initial setpoint Ui0 which is computed starting at the third lot (i ≥ 3) and is based
on the posterior predictive distribution of a future offset θ′i given all the data collected
from previously produced lots (equation 12 in the Appendix);

2. the adjustments ∇Uij for j = 1, .., J based on the posterior distribution of the offset θi

and which affect the quality characteristic of parts other than the first (equations 11
and 14 in the Appendix).

Figure 3 clearly shows how the first component of the MCMC policy, the initial setpoint
(and initial adjustment since ∇Ui0 = Ui0) does not perform well for some cases. From
equation (12) in the Appendix, the initial setpoint Ui0 set on the machine before processing
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the first part in lot i, is given by:

Ui0 = −E(θ′i|xi−1 J ,M1) for i = 3, ..., I , (7)

where xi−1 J represents information (data and adjustments) available at this point in time
and M1 refers to the hierarchical normal means model used in the MCMC simulation (see
the Appendix for further details). Figure 4 shows a plot of the estimated θ̄′i and of the
accuracy of this estimate, measured by the interval θ̄′i ± σ̂θ′i , as a function of lots processed.

Both the sample mean θ̄′i and the sample standard deviation σ̂θ′i were obtained from the
MCMC simulation.

insert Figure 4 about here

As it can be seen, the sample mean converges to the true value of µ (equal to 0 and 4
for cases represented in Figure 4 (a) and (b), respectively) as the number of lots processed
increases. Thus, the initial set-point Ui0 tends to be set to the proper value −µ. That is, once
the steady-state behavior is achieved, the MCMC policy allows to correct a possible system-
atic error before observing parts in a lot. However, there is some slowness in converging to
the right value, as it is clear from Figure 4 (a). When µ = 0, Grubbs’ rule and the EWMA
controllers perform better because they do not include the predictive feature in the control
rule, i.e., Ui0 = 0 is set by default, and this happens to be the optimal selection for the initial
set-point Ui0. Figure 4 (a) and (b) show that also the accuracy of the estimate depends on
the specific scenario examined. Hence, a new modified version of the MCMC adjustment
rule should take into account the disadvantage of using the initial adjustment when there is
no systematic error (i.e., when µ = 0) and when the uncertainty in the predicted lot mean
θ′i is large. This is discussed next.

Conditional First Adjustment Rule based on MCMC

Approach

It is clear from the preceding discussion that applying the first adjustment in each lot ∇Ui0 =
Ui0 can lead to an advantage or a disadvantage when using the MCMC policy, depending
on whether there is a systematic error (µ 6= 0) or not (µ = 0). However, the actual value of
µ can not be known in advance, due to our assumption on unknown parameters. Therefore
a different MCMC approach should be based on selecting ”online” the best strategy for the
Ui0’s. This can be done taking into account the accuracy of the estimate σ̂θ′i . Figure 4 shows

that the width of the interval θ̄′i ± σ̂θ′i reduces as the number of lots processed increases.

Hence, problems related to the slow convergence of θ̄′i to µ can be overcome by including
information on estimate accuracy in the adjustment rule.

A new “Conditional First Adjustment” MCMC method is thus proposed as follows:
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1. At the beginning of each lot i (with i ≥ 3), substitute equation (12) of the original
approach with:

{
adjust (Ui0 = −θ̄′i) if |θ̄′i| > kσ̂θ′i ;

do not adjust (Ui0 = 0) otherwise.
(8)

2. Use the original MCMC method (equations 11 and 14) for all the other adjustments.

Here, k is a tuning constant of the method that we shall discuss later and θ̄′i and σ̂θ′i are
respectively the mean and standard deviation of the posterior predictive distribution of the
offset, conditional on the data observed before lot i. When the ratio |θ̄′i|/σ̂θ′i is relatively
high, i.e., the estimate has a high precision compared with its magnitude, we have a strong
belief of the estimate. This is similar to a test of significance for a normal population mean.
While strictly speaking we should use a Bayesian factor for testing significance since the
posterior distribution is not necessarily normal, the simpler conditional rule works very well,
as will be shown below. Therefore, we decided to keep its simplicity instead of the rigor of
Bayesian factors.

As k → 0, the conditional first adjustment rule becomes the same as the original MCMC
method. As k increases, the percentage savings in the cases where the MCMC performs
well start to drop, while those in the cases with poor performances become higher. When
k →∞, the conditional rule becomes the same as an MCMC rule that always omits the first
adjustment in each lot.

Figure 5 shows how the maximum and minimum of the percentage savings among the
16 cases vary as k is changed in the Conditional First Adjustment rule. In particular, this
Figure indicates that k should be chosen to have a proper trade-off between reduction of the
maximum savings (i.e., the best performance of the MCMC policy in Table V) and improve-
ment of the minimum savings (i.e., the worst performance of the MCMC policy in Table
V). The figure indicates that the best performance deteriorates very little while the worst
performance improves considerably for the first few values of k that were tried. From this
it was concluded that the value of k = 0.64 showed the best performance and was used in
what follows.

insert Figure 5 about here

Figures 6 and 7, report IQ and CI boxplots of the percentage savings obtained with the
Conditional First Adjustment MCMC rule (k = 0.64) using the quadratic and the quadratic
bias cost functions, respectively. Compared with previous boxplots obtained adopting the
original MCMC approach (Figures 1 and 2, respectively), these graphs show that the new
policy induces advantages over the competitor rules. In particular, when the quadratic cost
function is used as performance index, the 95% CI boxplots obtained with the new rule shifts
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all above the line at 0% (Figure 6).

insert Figures 6 and 7 about here

Focusing only on the performance related to parameters that are always known (I and
J), Tables VI and VII report the 95% confidence interval on the median of savings induced
by the Conditional First Adjustment MCMC method with k = 0.64 (using the quadratic
and quadratic bias costs, respectively). Comparing these two tables with Tables III and IV
(obtained with the original MCMC method), we find that the new policy is preferable to
other competitor rules for all the values of I and J , since the left confidence interval limits
are now always greater than 0%. In terms of the medians of the percentage savings induced
by this new rule, (Tables VI and VII), it should be noticed that the median of advantages
ranges from 2.8% to 29.0% when using the quadratic cost function and from 9.6% to 57.6%
when using the quadratic bias cost function. Therefore, we can conclude that the Conditional
First Adjustment MCMC rule should be preferred to competitor rules when new products
or new processes need to be introduced.

insert Tables VI and VII about here

Conclusions

In this paper, we dealt with the problem of adjusting initial offsets for quality characteristics
of discrete-parts manufactured in batches. At the beginning of each batch, a set-up error can
cause the mean of the quality characteristic to be off-target and the adjustment procedure
is designed to compensate for this initial off-set as the number of parts processed in the
lot increases. In particular, we focused on the case in which off-target costs are quadratic,
adjustment costs can be neglected and no previous knowledge on parameters characterizing
the off-set distribution and the process intrinsic variability is available. This situation can
properly model adjustment rules designed for new products or newly installed processes, in
which there is no previous experience on set-up operations. We compared different adjust-
ment rules that can be applied in this case: Grubbs’ rule, the integral or EWMA controller,
and the adjustment rule based on a Bayesian sequential estimation of unknown parameters
using MCMC simulation (MCMC adjustment rule). Considering different production sce-
narios, the last rule was shown to outperform other existing rules unless very few lots has
to be machined or lots size is particularly small. A further study of performance of the
MCMC adjustment rules in these last cases motivated a revised version of the rule, that has
consistent advantages over Grubbs’ rule and the EWMA controller in all the cases examined.
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Appendix: A Bayesian adjustment rule based on MCMC

simulation

When no prior knowledge on parameters is available, an adjustment rule can be based
only on the history of data acquired which includes the response values and the previous
adjustments. Under this assumption, a transformed variable Xij computed at the time Yij

is observed (since at that time Uij−1 is known) is completely defined as:

Xij = Yij − Uij−1 = θi + v (9)

and allows to derive a one-way random effects model for the adjusted process. Adopting a
Bayesian perspective, the one-way random effects model is a special case of a hierarchical
model, where the first stage models the distribution of observable data conditionally on
unknown parameters, the second stage in the hierarchy specifies the prior distribution of
these unknown parameters which can depend on some hyperparameters, which in turn have
a prior at a third stage. The three-stage hierarchical model (that we will call M1) is hence

13



given by:

first stage: Xkp|θk, σ
2
v ∼ N(θk, σ

2
v) (k = 1, ..., i and p = 1, ..., J); (10)

second stage: θk|µ, σ2
θ ∼ N(µ, σ2

θ) (k = 1, ..., i) ,

σ2
v |a1, b1 ∼ IG(a1, b1) ;

third stage: µ|µ0, σ
2
0 ∼ N(µ0, σ

2
0) ,

σ2
θ |a2, b2 ∼ IG(a2, b2) ;

where conjugacy has been used at each step of the hierarchical model (a common choice
for the random effects model [8], [9]) and where IG represents an Inverse-Gamma dis-
tribution. Parameters µ0, σ

2
0, a1, b1, a2, b2 are assumed known. In particular, they were

selected according to values suggested in the literature [10] to model ”vague” prior dis-
tributions, i.e., µ0 = 0, σ2

0 = 1.0E + 10, a1 = b1 = a2 = b2 = 0.001. Denoting with
xij = {x11, x12, ..., x1J , ..., xi1, ..., xij} all (transformed) data observed after the jth part in
the ith lot has been just machined, the adjustment ∇Uij = Uij − Uij−1 (j > 0) can be
computed using the posterior distribution (θi|xij ,M1) when at least one part in the lot has
been processed. The predictive distribution θ′i+1|xiJ ,M1 [11] can be used to select the initial
set-point Ui+1 0 that has to be set on the machine before processing the first part in the next
lot (lot i + 1), i.e.:

Uij = −E(θi|xij ,M1) i = 2, ..., I and j = 1, ..., J, (11)

Ui+1 0 = −E(θ′i+1|xiJ ,M1) for i = 2, ..., I (12)

where the index i is set to consider that adjusting can be performed only if σ2
θ can be

estimated (i.e., when at least two parts from different lots have been already processed) and
θ′i+1|xiJ ,M1 is the posterior predictive distribution [11] of a future offset given all the data
collected from previously produced lots.

Adjustments for parts in the first lot can be similarly derived considering a ”reduced”
two-stage hierarchical model M2 given by:

first stage: X1j|θ1, σ
2
v ∼ N(θ1, σ

2
v) , (13)

second stage: θ1|µ, σ2
θ ∼ N(µ, σ2

θ)

σ2
v ∼ IG(a1, b1) .

Since at least two parts have to be processed to estimate the within-lot variance σ2
v , the

adjustments ∇U1j for j = 2, .., J can be computed using the hierarchical model M2 while a
trivial estimator (as in Grubbs’ harmonic rule) can be used to start adjusting just after the
first part in the first lot has been machined , i.e.:

U11 = −x11 , (14)

U1j = −E(θ1|x1j ,M2) j = 2, 3, ..., J .
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As each observation becomes available, a Gibbs Sampler is run to estimate the parameters
of the hierarchical normal means model given the observations up to that point in time. The
current lot mean estimate is then used for adjustment. The MCMC simulation coded in
the Bugs (Bayesian inference Using Gibbs Sampling, [10] language was used to perform
Gibbs Sampling. Following the literature on convergence diagnostic ([12], [13], [14]) both
the algorithms of Raftery and Lewis [15] and Gelman and Rubin [16] were used within the
MCMC simulation for assessing convergence of the chains (for details on the integration of
software packages used, the interested readers can refer to [3].
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Tables and Illustrations

parameters Value in example 2 by Box and Tiao ([7] p. 247) Perturbed value
I 6 20
J 5 20
µ 4 0
σθ 2 4
σv 4 2

Table I: Parameters characterizing different scenarios examined.

Case J σv µ σθ Case J σv µ σθ Case J σv µ σθ Case J σv µ σθ

1 20 4 4 2 5 20 2 4 2 9 5 4 4 2 13 5 2 4 2
2 20 4 4 4 6 20 2 4 4 10 5 4 4 4 14 5 2 4 4
3 20 4 0 2 7 20 2 0 2 11 5 4 0 2 15 5 2 0 2
4 20 4 0 4 8 20 2 0 4 12 5 4 0 4 16 5 2 0 4

Table II: Set of parameters characterizing cases studied in this paper.

Grubbs EWMA (0.1) EWMA (0.4)
median lower CI

95%
upper
CI 95%

median lower
CI 95%

upper
CI 95%

median lower CI
95%

upper
CI 95%

I 5 2.7% -1.9% 5.8% 18.1% 5.4% 29.3% 9.0% 3.9% 11.4%
10 3.7% 0.4% 6.7% 20.6% 13.9% 32.8% 9.7% 6.7% 13.5%
20 6.8% 3.6% 9.5% 24.4% 18.3% 33.8% 10.7% 7.4% 14.0%

J 5 5.1% -1.6% 11.1% 28.5% 20.1% 34.0% -0.4% -3.8% 8.8%
20 3.7% 2.6% 6.5% 16.7% 9.1% 25.5% 11.7% 9.7% 13.7%

Table III: Confidence intervals (at level 95%) on the median of the percentage savings in total
quadratic costs induced by the MCMC method compared to each alternative adjustment rule.
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Grubbs EWMA (0.1) EWMA (0.4)
median lower CI

95%
upper
CI 95%

median lower
CI 95%

upper
CI 95%

median lower CI
95%

upper
CI 95%

I 5 7.3% -2.3% 21.6% 40.4% 13.1% 55.6% 24.2% 9.5% 35.3%
10 15.2% 8.2% 28.3% 47.8% 32.7% 65.3% 38.3% 22.1% 46.6%
20 25.4% 16.0% 36.4 58.3% 38.8% 68.2% 39.3% 28.3% 48.4%

J 5 14.0% 0.3% 27.0% 45.7% 37.5% 55.8% 2.0% -4.7% 17.9%
20 20.2% 11.1% 27.9% 55.5% 31.6% 65.9% 41.6% 38.8% 49.3%

Table IV: Confidence intervals (at level 95%) on the median of the percentage savings in
quadratic bias costs induced by the MCMC method.

5 lots 10 lots 20 lots
Case J σv µ σθ Grubbs EWMA

(0.1)
EWMA
(0.4)

Grubbs EWMA
(0.1)

EWMA
(0.4)

Grubbs EWMA
(0.1)

EWMA
(0.4)

1 20 4 4 2 5% 12% 12% 9% 20% 17% 11% 20% 15%
2 20 4 4 4 -2% 22% 4% 3% 20% 9% 4% 20% 11%
3 20 4 0 2 7% -1% 16% 4% -2% 13% 7% -1% 13%
4 20 4 0 4 -1% 1% 5% 1% 5% 6% 2% 5% 7%
5 20 2 4 2 6% 44% 21% 9% 46% 23% 11% 47% 23%
6 20 2 4 4 5% 36% 14% 9% 47% 19% 13% 51% 23%
7 20 2 0 2 3% -4% 9% 0% 8% 8% 2% 10% 9%
8 20 2 0 4 -4% 13% 2% -2% 29% 8% 0% 30% 9%
9 5 4 4 2 24% 34% 22% 26% 36% 25% 27% 38% 25%
10 5 4 4 4 -16% -2% -24% -1% 18% -3% 6% 24% 4%
11 5 4 0 2 18% -20% -6% 18% -11% -3% 15% -7% 0%
12 5 4 0 4 -11% 19% -5% -5% 23% -1% 0% 23% -1%
13 5 2 4 2 27% 44% 21% 26% 50% 26% 33% 59% 36%
14 5 2 4 4 0% 43% 8% -2% 37% 5% 8% 55% 25%
15 5 2 0 2 -12% 8% -14% -9% 16% -11% 0% 14% -5%
16 5 2 0 4 -24% 36% -5% -20% 24% -14% -11% 29% -6%

Table V: Mean percentage savings in total quadratic costs induced by the MCMC method
in simulated scenarios.
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Grubbs EWMA (0.1) EWMA (0.4)
median lower CI

95%
upper
CI 95%

median lower
CI 95%

upper
CI 95%

median lower CI
95%

upper
CI 95%

I 5 2.8% 1.5% 5.9% 22.8% 13.3% 28.8% 9.4% 6.6% 11.2%
10 3.8% 1.7% 6.6% 24.4% 16.9% 33.8% 10.6% 7.3% 13.8%
20 5.8% 2.7% 8.5% 26.5% 19.7% 32.0% 10.5% 7.5% 13.8%

J 5 4.2% 2.0% 8.4% 29.0% 24.2% 32.5% 5.7% 2.1% 8.5%
20 4.1% 2.6% 6.0% 18.3% 10.7% 26.1% 12.1% 10.7% 14.4%

Table VI: Confidence intervals (at level 95%) on the median of the percentage savings in
total quadratic costs induced by the Conditional First Adjustment MCMC method.

Grubbs EWMA (0.1) EWMA (0.4)
median lower CI

95%
upper
CI 95%

median lower
CI 95%

upper
CI 95%

median lower CI
95%

upper
CI 95%

I 5 9.6% 2.6% 21.2% 44.2% 27.4% 57.0% 27.1% 15.4% 32.6%
10 19.1% 8.3% 26.5% 55.5% 37.7% 64.7% 35.3% 27.9% 40.9%
20 21.6% 17.6% 33.2% 57.3% 38.6% 64.9% 37.5% 24.5% 46.5%

J 5 18.7% 6.9% 24.0% 50.4% 38.9% 57.6% 10.9% 0.1% 18.2%
20 19.4% 10.3% 25.9% 57.6% 37.3% 65.5% 41.3% 37.2% 48.7%

Table VII: Confidence intervals (at level 95%) on the median of the percentage savings in
quadratic bias costs induced by the Conditional First Adjustment MCMC method.
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Figure 1: Boxplots of the percentage savings (using the quadratic cost function) induced
by the MCMC adjustment rule over Grubbs’ harmonic rule and the two EWMA controllers
(λ = 0.1 and λ = 0.4) as a function of different parameters: the number of lots (I); the
number of parts in lots (J); the ratio of the mean offset to the within-lot standard deviation
(µ/σv); the ratio of the between to the within lot standard deviation (σθ/σv).
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Figure 2: Boxplots on the percentage savings (using the quadratic bias cost function) induced
by the MCMC adjustment rule over Grubbs’ harmonic rule and the two EWMA controllers
(λ = 0.1 and λ = 0.4) as a function of different parameters: the number of lots (I), the
number of parts in lots (J), the ratio of the mean offset to the within-lot standard deviation
(µ/σv), and the ratio of the between to the within-lot standard deviation (σθ/σv).

20



Figure 3: Quadratic costs in two simulation runs (a: case 16 and b: case 9) as a function of
the number of parts processed in the lot.
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Figure 4: Plot of the interval θ̄′i ± σ̂θ′i , as a function of lots processed.
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Figure 5: The maximum savings vs. the minimum savings among the 16 cases on the Tables
as a function of the adjustment limit k when applying the Conditional First Adjustment
MCMC rule.
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Figure 6: Boxplots on the percentage savings (using the quadratic cost function) induced by
the Conditional First Adjustment MCMC policy over Grubbs’ harmonic rule and the two
EWMA controllers (λ = 0.1 and λ = 0.4) as a function of different parameters: the number
of lots (I), the number of parts in lots (J), the ratio of the mean offset to the within-lot
standard deviation (µ/σv), and the ratio of the between to the within-lot standard deviations
(σθ/σv).
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Figure 7: Boxplots on the percentage savings (using the quadratic bias cost function) induced
by the Conditional First Adjustment MCMC policy over Grubbs’ harmonic rule and the two
EWMA controllers (λ = 0.1 and λ = 0.4) as a function of different parameters: the number
of lots (I), the number of parts in lots (J), the ratio of the mean offset to the within-lot
standard deviation (µ/σv), and the ratio of the between to the within-lot standard deviations
(σθ/σv).
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