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Setup Adjustment of Multiple Lots Using 
a Sequential Monte Carlo Method 
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A new sequential Monte Carlo (SMC) adjustment method is presented for solving the machine setup ad 

justment problem when process parameters are unknown. In setup adjustment problems, the mean of the 

distribution of the quality characteristic of parts can change from lot to lot due to an improper setup op 
eration. It is shown how a first SMC approach has performance equivalent to a recently proposed Markov 

chain Monte Carlo method but at a small fraction of the computational cost, allowing for on-line control. 

A second, modified SMC rule that avoids unnecessary adjustments that can inflate the variance is also 

presented. A simulation approach is presented that allows tuning of the modified SMC rule to provide ro 

bust adjustment with respect to the unknown process parameters. Applications in short-run manufacturing 
processes are discussed. 

KEY WORDS: Bayesian hierarchical models; Engineering process control; Random-effects model; 
Short-run manufacturing. 

1. INTRODUCTION 

In this article we consider the so-called "setup adjustment 
problem," first studied by Grubbs (1954). This problem refers 
to a machine that produces discrete parts in lots or batches, with 
the possibility of an improper setup operation resulting in an er 
ror or offset in the quality characteristic of interest. If there are 

considerable costs associated with producing off-target relative 
to the cost of adjusting a process, then adjusting is justified. 
This problem often arises in discrete machining processes that 

may experience large lot-to-lot variation. We discuss some in 

stances within the range of applications of this problem in Sec 
tion 3. 

Grubbs proposed two solutions to this problem, depending 
on whether one considers a single lot of parts or multiple lots 

of parts with one setup operation before each lot is started. The 

objective in either case is to minimize the sum of squared devia 
tions from target of the quality characteristic (i.e., the only rele 

vant cost is a quadratic off-target cost). Grubbs's solutions to the 

setup adjustment problem were recently studied and extended 

by Trietsch (1998) and by Del Castillo, Pan, and Colosimo 

(2003a, b). In this article we focus on the second problem stud 
ied by Grubbs, the multiple-lot case, in which the initial offset 
can vary from lot to lot, and propose a Bayesian approach to its 
solution. One main difference from past efforts is that we make 
the more realistic assumption of unknown process parameters. 
The problem is then one of estimation and adjustment, not only 
of adjustment. 

Recent work by Colosimo, Pan, and Del Castillo (2004) 
presents a Bayesian adjustment rule for the multiple-lot, un 

known-parameters case, based on Markov chain Monte Carlo 

(MCMC) techniques (Gilks, Richardson, and Spiegelhalter 
1996). Lian, Colosimo, and Del Castillo (2006) conducted a 

sensitivity analysis on the performance of this MCMC adjust 
ment rule and modified it to obtain a rule that is more robust 
with respect to a wider set of process conditions. 

Despite the good performance of the modified MCMC setup 
adjustment rule of Lian et al. (2006), this rule requires substan 
tial computational time at each point in time, an obvious disad 

vantage if on-line control is needed for a process in which the 
time between parts is relatively short. This motivates the ap 
proach taken in the present article. As an alternative to MCMC 

methods, we consider sequential Monte Carlo (SMC) meth 
ods applied to the multiple-lot, unknown-parameters, setup 

adjustment problem. 
SMC methods also rely on Monte Carlo algorithms for the 

solution of Bayesian inference problems in which posterior dis 
tributions of the unknown parameters are created numerically 
from the generation of a large number of random variates or 

"particles." SMC techniques use the observation available at 

time t + 1 to update the previous posterior distributions at time t 

(the priors at time f + 1). The new posterior is then used to ob 
tain updated inferences that are useful for adjustment purposes. 
In contrast to SMC techniques, MCMC methods do not use 
this sequential updating approach. Every time that a new ob 
servation is available, MCMC starts from the prior distributions 
available before observing data and passes through all data up 
to the current time to derive posterior distributions. Clearly, the 

computational efficiency of SMC techniques is relevant in pro 
duction environments in which the time between consecutive 

parts is short and rapid on-line adjustments are required. 

? 2006 American Statistical Association and 
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A relatively new area of research, SMC techniques have 

appeared in the last few decades in the statistical literature 
under such names as sampling/importance resampling (SIR), 

bootstrapping filters, and particle filters, among others. These 

techniques have great potential in process control applications 
where parameters are unknown and rapid on-line computations 
are necessary. 

The remainder of this article is organized as follows. Sec 
tion 2 presents the statistical model that we consider for the 

multiple-lot adjustment problem and techniques that were pre 
viously proposed for the solution of its different versions. 
Section 3 contains a discussion of areas of applications of the 

proposed model and methods. Section 4 presents a first rule 
based on SMC techniques and indicates the reasons that lead us 
to the particular choice of SMC techniques that we recommend. 
This section also presents an illustrative example of the use of 
the proposed rule in an air-bending process. Section 5 presents a 

study of the performance of the first SMC adjustment rule com 

pared with other existing rules for setup adjustment. The effects 

resulting from changing the prior parameters and changing the 

prior distributions themselves are studied. A problem when us 

ing the first SMC method (inflation in variance) is identified 
when the mean of the lot-to-lot offset distribution is actually 0. 
To avoid this problem, Section 6 presents a second, modified 
SMC adjustment rule with improved performance. Finally, Sec 
tion 7 summarizes the conclusions of this research. 

2. PROCESS MODEL AND EXISTING 
ADJUSTMENT PROCEDURES 

Consider a multilot discrete-part manufacturing process, in 
which an initial offset can occur during the setup of each lot. 
The assumed statistical model can be expressed as 

Yij 
= 

eij + vij, (i) 

0io~(n,cr2), (3) 

Vij^(0,a2), (4) 

where / = 1,..., / is the lot or batch index, j 
= 1,..., J is 

the part index, and Yy is the deviation from the nominal value 
for the quality characteristic associated with the yth part in the 
ith batch [part (i,j)]. Parameter By is the unknown mean devi 
ation for they'th part in the ith batch. 0/n 

~ 
(/x, 0%) represents 

the initial offset due to setup errors; thus 0% is the lot-to-lot 
variance. No specific distributional assumption is made on By, 
because the SMC procedure does not require it. The iid part 

to-part errors, Vy 
~ 

(0, a2), are due to the combined effect of 

the intrinsic variability in the process and in the measurement 

system. Normality was used for the distribution of these errors 

in the simulations given later, but this is not an assumption of 

the model. 

Let Utj be the adjustment made after the jfth part in the ith lot 

is produced (i.e., after Yy is observed). It can be represented 
as the difference between the levels of two consecutive control 

variables or setpoints, that is, Uy 
= ?// 

? 
Ui(j-i). Equation (2) 

can then be rewritten as 

Oy=Oio + uiU-i), (5) 

where we assume that Uy 
= 0 for j < 0. An adjustment policy 

can then be represented by the series Uy (i> l,j > 0) or by a 
rule (the adjustment rule), a mathematical expression that indi 
cates how to set these values. Note how fory = 0, uio, the initial 

setpoint, must be selected as well. As shown later, some existing 
adjustment rules simply set w;o to the "neutral" value of 0, in the 
absence of prior information on the distribution of the offsets. 
In contrast, the class of Bayesian rules that we propose allows 
us to use a better initial setpoint in each lot, "anticipating" the 
initial error of each lot. 

The parameters p, oq, and ov in equations (l)-(4) are as 
sumed to be unknown. This places the resulting adjustment 
problem in the adaptive control category (see, e.g., Astrom and 
Wittenmark 1994). Note that Kalman filtering schemes are not 

applicable, because the process variances are unknown. The 

adjustments are assumed to contain no error. In manufactur 

ing applications, the adjustments typically constitute a simpler 
operation than setting up a new lot, for which errors are more 
common. 

We assume that we can always set the desired mean deviation 
to be 0; that is, over the region of operation of the process, there 
are no constraints on the magnitudes of the adjustments. The 

performance of an adjustment rule is evaluated by a quadratic 
symmetric loss function over all parts, given by 

i=l y=l 

In this article we do not consider adjustment costs. [For treat 
ments of adjustment costs and errors in the adjustments in 

(known parameter) setup adjustment problems, see Trietsch 

1998; Del Castillo et al. 2003a.] We further discuss the applica 
bility of these assumptions in Section 3. 

Several adjustment rules can be applied to this problem based 
on different assumptions. For instance, we can apply Grubbs's 
harmonic rule (Grubbs 1954), where Uy 

= 
?jYy (U? = 0 Wi). 

This is optimal if the initial offsets ftn are totally unpredictable 
[or p = 0 and 0% 

-> oo in (3)]. In practice, however, the initial 
offsets follow a certain distribution (3) that can be inferred and 
used to better predict the offsets. Note how the first part in each 
lot goes uncontrolled. 

Grubbs's extended rule (Grubbs 1954) can also be applied. 
This, given by Uy 

= 
?Yy/(j + a2/og), requires knowing 

cr2/cr# 
and assumes that /x = 0. 

A recently proposed rule that also could be applied is the 

Bayesian adjustment rule of Colosimo et al. (2004), in which 
desired parameters are estimated sequentially through posterior 
distributions using MCMC, in particular, Gibbs sampling, and 
the adjustments are made accordingly. This method, in contrast 
to Grubbs's rules, makes it possible to eventually predict the 
offset so that the first part in each lot is controlled. 

In later sections we contrast these methods with the proposed 
SMC adjustment rule. We next discuss the application of the 
model and of the proposed solution methods in practice. 

3. APPLICABILITY OF THE SETUP ADJUSTMENT 
PROBLEM AND OF THE PROPOSED SOLUTION 

IN INDUSTRIAL PRACTICE 

The model given by (l)-(4) is essentially [after a simple 
transformation; see (7)] a one-way random-effects model, com 
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mon in the SPC literature on variance components (see, e.g., 
Woodall and Thomas 1995) and used for multiple-lot setup ad 

justment by Colosimo et al. (2004) and Lian et al. (2006). The 
model is in fact considerably more flexible than a standard one 

way random-effects model, because no restrictions are placed 
on the distribution of the random effects. 

One of the key assumptions of the model is the lack of ser 
ial correlation in the observations. In addition, the solution that 
we propose provides significant savings over existing methods 
when J, the lot size, is small. Finally, the cost function assumes 
no adjustment costs. We now discuss how this set of assump 
tions and conditions holds true for an important class of real 

manufacturing processes. An actual illustration of the solution 
method is presented in Section 4, where the first SMC method 
that we propose is given. 

In general, the assumed model provides a good approxi 
mation of reality in discrete-part manufacturing processes that 
do not exhibit process or noise dynamics (Del Castillo 2002). 
An example where the model assumptions hold is precision 
sheet metal bending, schematically represented in Figure 1. In 
air bending, a blank sheet is supported by two shoulders of a 

stationary die and the depth of the punch stroke (which acts as 
a controllable parameter) determines the bend angle obtained 
on the workpiece after unloading (the response variable). The 
actual angle obtained on the unloaded sheet depends on the 

"springback," that is, the elastic recovery of the original geome 
try, as represented in Figure 1. Springback is affected mainly by 
the thickness and the mechanical properties of the blank sheet, 
which vary from batch to batch because of different suppli 
ers or different conditions of the supplier's process (Elkins and 

Sturges 2001). Therefore, the observed bent angles will often be 
biased with respect to the target angle, and the punch depth can 
be used to compensate for this offset. Each time a lot of a new 
material is to be bent, a setup operation needs to be done which 
involves further lot-to-lot variability. The lot sizes of parts bent 
in precision machining are typically small (sizes of fewer than 
10 parts are common). Siu (2004) recently studied the effect of 

controlling the punch depth in sheet metal bending (see Fig. 1). 
He showed experimentally how the process is characterized by 
the absence of dynamics and a natural variability of the bent 

angle that can be modeled as white noise. 

Another important example in which the model assump 
tions hold and fabrication is done in small lots is in metal ma 

chining processes in the aerospace sector. Koons and Luner 

(1991) reported a SPC study at McDonnell Aircraft Co. on an 

end-milling process where "typical lot sizes range from 12 to 
48 units." They noted how "all of the isolated special causes of 
variation that were identified were traceable to improper ma 
chine setup," and how the basic corrective action was to im 

prove the setup practices. They further noticed how operators 
made adjustments because the first few pieces were sometimes 

off-target. They concluded that "modifications to the process, 
such as adjusting machines, may eliminate the effects" of the 
observed setup error. However, their article was on process 

monitoring, and the adjustment procedures were not discussed 
further. This seems to be an ideal scenario for the proposed 

models and methods. 

Setup adjustment methods, particularly multivariate ones 

(Del Castillo et al. 2003a), also have applications in certain 
semiconductor manufacturing processes (Moyne, Del Castillo, 
and Hurwitz 2000). Consider, for instance, a photolithogra 
phy process. Test policies for this process involve processing 
a wafer from a lot, inspecting it, adjusting the parameters of the 

process if necessary, and processing a new wafer until the step 

per machine is "qualified" (Akcalt, Nemoto, and Uzsoy 2001). 
Usually, several short lots are processed in a stepper machine, 
with reticle changes that can induce setup errors between lots. 
The adjusting procedure can be based on setup adjustment tech 

niques. 

Although the main aim of the methods presented here is ap 
plication in high-precision short-run manufacturing processes, 
there are other applications beyond what we have described 
as the setup adjustment problem. [In the manufacturing litera 
ture, the setup adjustment problem is sometimes called "process 
positioning" (Bjorke 1989).] For example, Grubbs (1954) de 
scribed potential applications to calibration and even to ar 

tillery. 
In all of these applications, the adjustment costs are minor 

compared with the off-target cost, as adjustments imply chang 
ing a setting in a computer-controlled machine; thus they can 
be neglected, in accordance with the assumed cost function (6). 

4. A SEQUENTIAL MONTE CARLO APPROACH 

The model described by (l)-(4) can be rewritten as a one 

way random-effects model by substituting (5) in (1), thus ob 

(a) (b) 
Controllable parameter: 
punch position I 

I-*-, PUNCH 

V / S BLANK 

Figure 1. Schemes of the Air-Bending Process (a) and the Springback Phenomenon (b), Where a Represents the Bent Angle. 
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taining 

Yij 
= QiO + ?? (/-1) + u//' 

From this last equation, we define the transformed variable, 

Xij 
= 

*y 
~ 

uHj-D 
= ?i0 + Vij, (7) 

which can be computed each time after a new part is processed. 
Equation (7) together with (3) and (4) form a traditional one 

way random-effects model?provided that the random effects 
are normal?and adjustments can be made as was done by 
Colosimo et al. (2004) at the following two levels: 

1. Before processing a new lot / (where / > 3), the initial set 

point w/o that must be set on the machine before process 
ing lot i is based on the predictive distribution of the setup 
offset, that is, 

UiO 
= W/o 

? 
W/(-l) 

= Ui0 

= 
|oA|D"-"y ??U <*> 

where jl\D^-\)j is the mean of the posterior distribution 

p(li\D(i-\)j) and 

D(i-\)j 
= 

{xii, ...,X(/_i)i, ...,X(i-\)j) 

denotes all of the (transformed) data observed before lot / 
starts (i.e., after the last part in the previous lot / ? 1 is 

observed). 

2. After observing at least one part in a lot, adjustments are 

based on the posterior distribution of the offset in the cur 
rent lot, 

Uij 
= 

-0ij\Dij fovj=l,2,...,J-l or 

Uij 
= 

-MDy, (9) 

where B(o\Dy is the mean of the posterior distribution 

p(Bjo\Dy) and Dy 
= 

{x\\,..., Xy} denotes all of the (trans 

formed) data observed before the (j + l)th part in the 
ith lot is processed. 

In this article the following priors were used: 

/x|/x0,o-02 ^N(/xo,tf02)' (10) 

a^Vl^l^LNOzi,^2), (11) 

and 

a2|/x2,cj2-LN(/X2^22)' (12) 

where /zo, crfi, jjl\, g2, /z2, and o^ 
are known constants and LN 

stands for a lognormal distribution. A lognormal prior for the 

variances was chosen because (a) SMC does not require the use 

of conjugate priors; (b) the LN provides more "robust" behavior 

than other priors, as explained in Section 5.3; (c) making a con 

jugate inverse-gamma "noninformative" is actually difficult, 
a fact that has not been recognized until recently (Spiegelhalter, 
Abrams, and Myles 2004); and, in contrast, (d) the degree of 

information of the prior can be easily changed using the log 
normal. 

4.1 Overview of the First SMC Method and 
Illustrative Example 

To implement the adjustment rule, the posterior distributions 
of the process parameters must be computed at each step when 
a new part is observed. In this case the MCMC setup adjust 
ment method (Colosimo et al. 2004) becomes time-inefficient 
as the size of the dataset grows. With SMC methods, the com 

putational effort does not grow with the size of the total dataset. 
SMC methods consist of generating a set of draws or "par 

ticles" from the prior distributions of unknown parameters and 

associating a weight with each set of particles. These weights 
are sequentially updated each time new data are observed, as 
described in Section 4.2. Despite the benefits of sequential up 
dating, this method poses some implementation difficulties in 

practice. The problem arises if the generated particles remain 
the same throughout all iterations and only the weights or the 

frequencies associated with the particles change. In this case, 
a phenomenon known as the "degeneracy" of the sample can 
arise. Degeneracy means that after some iterations of SMC, just 
a few of the N original particles will have weights >0, pro 
ducing biased estimates of the distribution of the parameters. 
The degeneracy problem is particularly severe when the origi 
nal prior distributions have large variances or high dimension, 
when the number of particles is small, or when the observed 
dataset is large. The degree of this type of degeneracy due to 
an "impoverished" sample can be monitored using the effec 
tive sample size (ESS) statistic (Kong, Liu, and Wong 1994; 

Ridgeway and Madigan 2002), as described in Section 4.2. 

Recently, Balakrishnan and Madigan (2004) proposed a one 

pass particle filtering (1PFS) algorithm, in which a "rejuve 
nation" step is used to disperse the particles when ESS drops 
below a specific level and reduce in this way the degeneracy. 
In this article we use the rejuvenation step from the 1PFS al 

gorithm and apply it to multilot setup adjustment problems for 
distribution computations. It turns out that this regeneration step 
is crucial for successful implementation of the SMC methods. 

A MATLAB computer program that implements the SMC 
method as described in this section can be downloaded from the 
website given at the end of the article. A detailed algorithmic 
description of the estimation steps in the SMC method is given 
in Section 4.2. We first illustrate the use of the method in actual 

practice. 

Example. We apply the SMC procedure to the experimen 
tal data obtained by Siu (2004), who studied the air-bending 
process described in Section 3. The controllable factor is the 

punch depth (position), and the response of interest to control 
is the angle, a, of the bend. Whenever a sheet of a different 

material is to be processed, a new setup operation is necessary. 

Several different materials are to be bent in lot sizes of 
five parts. The collection of all materials (and thicknesses), in 

addition to improper setup operations by operators, implies a 

distribution on the lot-to-lot means, such as (3). In addition, 
measurement error and part-to-part variability imply a distribu 
tion like expression (4). A common target angle in air bending 
is 90 degrees, which we use, so the deviations from target are 

Yy 
= oty 

- 90 and follow the model (l)-(4), where we assume 

normality in (3) and (4). The priors of a| and o2 were set with 
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Table 1. Illustration of First SMC Adjustment Rule, Air-Bending Example 

/' j Ujj Ujj djj Yjj otjj Int K Material 

10 0 1.63 -156 150.85 
1 -5.10 -5.10 1.60 5.26 95.26 -156 150.85 .025 steel 
2 -5.16 -.06 1.60 .11 90.11 -156 150.85 .025 steel 

3 -5.33 -.17 1.60 .46 90.46 -156 150.85 .025 steel 
4 -5.36 -.03 1.60 .09 90.09 -156 150.85 .025 steel 

5 -5.36 1.60 .12 90.12 -156 150.85 .025 steel 

2 0 0 1.70 -153.3 143 
1 -4.11 -4.11 1.67 2.24 92.24 -153.3 143 .02 steel 
2 -3.63 .48 1.68 -1.50 88.50 -153.3 143 .02 steel 
3 -3.23 .40 1.68 -1.53 88.47 -153.3 143 .02 steel 
4 -2.96 .27 1.68 -1.16 88.84 -153.3 143 .02 steel 

5 -2.96 1.68 -.82 89.18 -153.3 143 .02 steel 

3 0 -3.92 1.60 -156.9 151.9 
1 -4.00 -.08 1.60 .22 90.22 -156.9 151.9 .032 aluminum 
2 -4.08 -.08 1.60 .27 90.27 -156.9 151.9 .032 aluminum 
3 -4.17 -.09 1.60 .36 90.36 -156.9 151.9 .032 aluminum 

4 -4.17 0 1.60 -.01 89.99 -156.9 151.9 .032 aluminum 
5 -4.17 1.60 -.20 89.80 -156.9 151.9 .032 aluminum 

4 0 -4.08 1.67 -153.3 143 
1 -4.51 -.43 1.67 .91 90.91 -153.3 143 .02 steel 
2 -4.58 -.07 1.67 .20 90.20 -153.3 143 .02 steel 
3 _4.47 .11 1.67 -.43 89.57 -153.3 143 .02 steel 
4 -4.53 -.06 1.67 .24 90.24 -153.3 143 .02 steel 

5 -4.53 1.67 .50 90.50 -153.3 143 .02 steel 

5 0 -4.31 1.60 -156 150.85 
1 -4.27 .04 1.60 -.04 89.96 -156 150.85 .025 steel 
2 -4.15 .12 1.60 -.37 89.63 -156 150.85 .025 steel 
3 -4.05 .10 1.60 -.41 89.59 -156 150.85 .025 steel 
4 -4.00 .05 1.60 -.25 89.75 -156 150.85 .025 steel 

5 -4.00 1.60 .03 90.03 -156 150.85 .025 steel 

the following approach. A 95% credible region on the parame 
ter was set on values believed to be a priori likely for each pa 
rameter. The two percentiles provide two equations from which 
the parameters /z, and a, in (11) and (12) can be obtained. For 
the air-bending example, it was believed a priori that the lot-to 
lot variance o@ 

was in the range (.1, 10) and that the measure 

ment noise variance o2 was much smaller, in the range (. 1, 1.0). 
From the cumulative distribution function of the lognormal and 
the two 95% percentiles, we obtain jjl\ = 1.1276, o\ = .7142, 
/x2 

= -.9504, and o2 = .5528. 

An important practical problem when applying a feedback 
controller is appropriately scaling the "gains," that is, the coef 

ficients multiplying the controllable factor(s). In expression (7), 
the gain is evidently 1.0, but this will not be true in general, and 
a transformation is necessary. Siu (2004) fitted simple linear re 

gression models between the observed bend angle, a, and the 

actual depth of cut, d, of the form a = int + Kd, where int is 

some intercept and K is the actual gain. These models depend 
on the material type; the corresponding intercepts and gains are 

given in Table 1. Depending on the material type, the relation 
between the scaled controllable factor, u, and the actual punch 
depth, d, is given by dy 

= 
(uy -h T ? int)/K, where T is the 

target (90 degrees in this illustration). Table 1 shows the adjust 
ments and observed angles for five different lots of five parts 
using the SMC rule. (The Matlab program was used to com 

pute the adjustments Uy.) Figure 2 shows a time graph of the 

setpoints (unsealed dy and scaled mj) and the corresponding ob 
served angles oty. As can be seen, the largest adjustment (largest 
change in the setpoint) is in the first part in each lot, with the 
SMC rule able to "anticipate" the error in the first part in each 
lot starting from lot 3. 

Figure 3 shows graphs of the posterior distributions obtained 

by the SMC procedure at the end of the five lots. This is ad 
ditional useful information for the process engineer, because it 

(a) (b) (c) 
0.00 

-p.-,-1 
1.721-j | 96.00t-1 _ 1.70-fr- -1.00-4-4-\ 

% 
1.68-A^=?\- * .2 QQ _ ̂ ̂M 

| 1.66-J-i-/~~1- ^ 
' 

' M ^92'??-\-\ B 1-64-/-i- | -3.00-4-44--r-\- | \ \ 
V 

& \ \ % \ \\ / \ r 90.00-k?^--\--*"^^-Xv/^-^_* o 
1.62-4-\- 3 / \ "5, \ ^ V ^?? 
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Figure 2. Punch Depth Setpoints dy (a), Scaled Setpoints u,j (b), and Observed Angles a,y (c), Air-Bending Example. 
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Figure 3. Final Posterior Distributions of fi (a), a? (b), ando^ (c) Obtained at the End of the Fifth Lot, Air-Bending Example. 

can be used to center the machine once sufficient precision has 
been reached in the lot-to-lot offset /x. 

4.2 Algorithmic Details of the First SMC 
Adjustment Method 

To better describe in detail our basic (first) SMC adjustment 
rule, consider (8) and (9). The adjustments are selected based 
on the posterior distributions p(p\D(i-\)j) and p(Oio\Dy). In 
this section we use a more general notation in which \\r = 

{x[r\,..., \J/p,..., xj/p} denotes the vector of P unknown para 

meters in the model and t represents the total number of parts 
machined thus far at a given time. In other words, if we con 
sider the time instant in which the yth part of the ith lot has 
been completed, then t is given by t = (i 

? 
1) x J +j. Conse 

quently, Dt 
= 

{x\, X2,..., xt] represents all of the data observed 

by time t. At time t = (i 
? 

I) x J -\-j, the vector \\r comprises 
all unknown parameters {0\o, #20> , #/0> M> aQ, Gy}i and the 

posterior distribution p(\jr\Dt) can be computed using Bayes's 
theorem, 

,/lnv p(f)p(Dtm qWDt) 

j p(i/)p(Dt\if) dxfr m(Dt) 
where p(Dt\\k) is the likelihood of observing data in Dt, p(xjr) 
is the prior distribution of unknown parameters, m(Dt) = 

f p(\j/)p(Dt\\j/)d\\r is the marginal distribution that is acting 
as a normalizing constant, and q(\\r\Dj) = p(\\r)p(Dt\\\r) repre 
sents the unnormalized posterior density. A closed form of this 

posterior distribution is available only under specific conditions 

(e.g., using conjugate analysis for simple, nonhierarchical prob 
lems). For the hierarchical one-way random-effects model that 

we are dealing with, no closed form is available for the poste 
rior. 

Simulation-based approaches allow us to circumvent the 

problem of directly computing the posterior in (13) by drawing 
samples from this posterior. If N iid samples, \js^ 
(n = 1, 2,..., N), are drawn from the posterior distribution 

p(\jr\Dt), then any desired estimate can be computed using 
Monte Carlo integration, 

J = E(h(x/,)\Dt) 

r 1 N 
= 

J hW)PW\Dt)d*KJ=-J2K*{n))> <14) 
n=\ 

where, for example, if h{\j/) = ifr, (14) allows computation of 
the posterior mean. 

Therefore, the problem now is how to sample draws from 
the posterior distribution. We used the sequential importance 
sampling (SIS) approach, a particular SMC method (Doucet, 
de Freitas, and Gordon 2001). This method is a sequential vari 
ant of the SIR procedure presented by Rubin and described by 
Smith and Gelfand (1992). 

The SIR approach consists of drawing TV samples, called 

"particles," of all unknown parameters xj/ 
= 

(\J/\,..., xj/p) from 

a convenient distribution, gity), which is called the importance 
sampling distribution, provided that its support contains the 

support of the posterior from which we want to sample. By us 

ing these draws, desired posterior estimates can be derived by 
slightly manipulating (14) as 

J = E(hW) | A) = j MVO^'^W) 
d** J 

= 
^E*(*?I>?I). 

(15) 
n=\ 

where 

(B) p(fM\Dt) 
W' = 

g(^(?)) 
' n=\,...,N, (16) 

are weights that should be computed for each draw sampled 
from g(-). This approximation improves as N grows. 

As often happens in Bayesian analysis, the posterior is 
known up to the normalizing constant, which implies that, given 
the nth particle (n = 1,..., N), we cannot compute p(x//^ \Dt) 
in (16) but can compute the unnormalized density q(\j/^ \Dt) oc 

p(\jr^\Dt). In this case, we can still use the importance sam 

pling approach by first computing the unnormalized weights as 

(?) = q{^n)\Dt) 

and then normalizing them to get the desired estimates, 

. 
\/NTNn_,h{xlr^)w{^ j=E(hw)\Dt)**j= 
' 
^-y (I) 

- <l8> 
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A further step, called "resampling," usually allows better 

approximation of the desired estimates. Given the set of gener 
ated samples, the resampling step draws from the discrete dis 

tribution t/t(1), ..., \l/(n\ ..., i/fW allocating mass w, to the 

nth sample. 
When data arrive sequentially, SIS uses past particles gen 

erated before observing the last outcome from the process. To 
show how SIS works, consider the special case in which the im 

portance sampling function g{yfr) is the prior distribution p(\/r) 
in (13). Because q(ty\Dt) is the product of the likelihood times 
the prior (13), the weights given by (17) can be rewritten as 

Wt 
=^^r= **<->) ='(D''*()>-(19) 

As shown by Smith and Gelfand (1992), this resampling strat 

egy simply means that more weight is given to prior samples 
that are more likely to occur. In this case, the unnormalized 

weight associated with the nth particle can be computed as 

w<n) = p(Dt\^n)) =p(x,\f{n))p{Dt.{\^) 
= 

p{xt\ir^)Wf\. (20) 

Therefore, the weight associated with the nth particle changes 
according to the likelihood of observing xt evaluated at each 

particle ̂n\ This expression can be used to sequentially up 
date the weights each time that new data are observed and thus 
is applicable in situations in which data arise sequentially. 

A problem associated with SMC approaches relates to the 

"degeneracy" of the sample of particles. When the N particles 
are generated from noninformative priors, most of these parti 
cles (those that are less likely, given the data observed) will have 

weights equal to 0 after few iterations. In these cases particles 
associated with weights >0 will be very few, say N* <^ N. This 

"degeneration" of the initial number of N particles to a much 
smaller number, N*, will deeply affect the effectiveness of the 
SMC approach, inducing biased estimates of the unknown para 
meters. This problem is severe when the original prior distribu 
tions have large variances or high dimension, when the number 
of particles is small, or when the observed dataset is large (i.e., 
the number of iterations of the SMC method is large). 

The degree of this type of degeneracy due to an "impover 
ished" sample (Balakrishnan and Madigan 2004) can be moni 
tored using the ESS (Kong et al. 1994; Ridgeway and Madigan 
2002). At time index t, this is given by 

AT 
ESSt =-tt- , (21) 

l+N2\ar(wr) 

where N is the original number of particles and w} is the 

weight associated with particle n at time t. In (21) the degree of 

degeneracy is described by the variance of the weights wjw). If 
at time t just few particles have associated weights >0, then the 

variance, var(w?(n)), will be large, resulting in a smaller ESSt. 
To overcome the degeneracy problem, a rejuvenation step of 

the N particles can be performed using the 1PFS algorithm de 
scribed by Balakrishnan and Madigan (2004). This involves ap 
proximating the posterior densities of particles with a shrinkage 
kernel-smoothing method. After the rejuvenation step, a resam 

pling step is then performed. In this case the new draws are 

resampled from the rejuvenated particles. 

The basic SMC algorithm, including the test on degeneracy 
and possible rejuvenation step, is summarized as follows: 

Algorithm for estimating the process parameters \i, Biq, o~q, 

and cr2. At the beginning of the process: 

Draw N random numbers /x(n) from the prior distribution 

of/x. 

Draw N random numbers cre 
(n) from the prior distribution 

of a2. 

Draw N random numbers crv^ from the prior distribution 

ofa2,n=\,2,...,N. 

Create an initial weight vector (w(1\ w(1\ w>(2),..., w(A^), 
where w^ = \/N for all n. 

Iterations throughout all lots/parts processed: 
For / = 1, 2, 3,..., 1, generate one random number, 0.q 

, 

from the distribution N(//n\ aQ ) for each n. 

For j= 1,2,3,...,/: 

Obtain the new observation yy and calculate the new vari 
able xy= ytj 

- 
Ui(j-1). 

Calculate the likelihood of the nth particle [combination 
(.An) n(n) 2(n) 2(n)y, 

Update the new weight vector and normalize it: 

w{n) <-wnxL{n), then 

i=\ 

Obtain the new parameter estimators: 

N 

Bi0\Dy 
= 
? 

w{n)B{n) and By\Dy 
= 

Bi0\Dy 
- 

Uij, 
n=\ 

ai\Di}=fyv\ aiaj=fy v\ 
n=\ n=\ 

and 

^ =fyVn) n=\ 

Calculate the effective sample size factor, 

ESS= 
N 

l+Ar2var(u>W)' 

If ESS < N/2, then rejuvenate N particles using the 
1PFS algorithm (Balakrishnan and Madigan 2004). 

We now study the performance of this basic SMC rule com 

pared with previous approaches. A modified SMC rule is pre 
sented in Section 6. 
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5. COMPARISON WITH PREVIOUS ADJUSTMENT 
RULES AND PERFORMANCE ANALYSES 

5.1 Performance Comparison With Grubbs's Harmonic 
Rule and the MCMC Adjustment Rule 

Grubbs's harmonic rule does not require knowing any 
process parameters and is used as a benchmark in this section. 
The relative savings in quadratic cost induced by the proposed 
SMC adjustment rule compared with Grubbs's harmonic rule 
are 

~ t^/7 Cc ? Lc 
Ss 

= -~-^ = 
l--^, (22) 

Ch cn 

where Cn is the quadratic cost of a process adjusted by Grubbs's 
harmonic rule and Cs is the quadratic cost of the process ad 

justed using the SMC method. The savings obtained by using 
the MCMC approach relative to using the harmonic rule (Sm) 
were computed similarly. 

To compare the SMC and the MCMC adjustment rules 
with Grubbs's rule in various production situations, 16 differ 
ent cases were simulated, as given in Table 2. The lot num 

ber, /, was fixed at 20. The prior distribution of p is usually 
easy to choose. Here po was set to 0, and o^ 

was chosen to 

be 10,000. To investigate the impacts of the prior distributions 
for a2 and 0% on the adjustment performance, nine additional 
scenarios were created, as given in Table 3. A prior can be con 

sidered to be relatively accurate when its mode is close to the 
true parameter (prior scenarios 1-3) or to be inaccurate other 

wise (underestimated in scenarios 4 and 5, overestimated in sce 

narios 7-9). A higher variance gives a more vague prior (e.g., 
scenarios 3, 6, and 9), and a smaller variance represents more 

confidence on the prior (e.g., scenarios 1, 4, and 7). 
For each combination of case (Table 2) and prior scenario 

(Table 3), 10 replications were created to compute Ss given 
in (22). Similarly, 10 independent replications for each com 

bination of cases and scenario were created to compute Sm. The 

averages of the saving rates and their (frequentist) 95% confi 
dence intervals were then calculated; these are reported in Fig 
ures 4, 5, and 6 for prior scenarios 1, 4, and 9. The results for 
the other prior scenarios are omitted because they are close to 

those of scenario 1 or 9. 

Table 2. Cases of Parameters Characterizing the True Behavior 

of the Process Tried 

Case J av fi gq 

1 20 4 4 2 
2 20 4 4 4 
3 20 4 0 2 
4 20 4 0 4 
5 20 2 4 2 
6 20 2 4 4 
7 20 2 0 2 
8 20 2 0 4 
9 5 4 4 2 
10 5 4 4 4 
11 5 4 0 2 
12 5 4 0 4 
13 5 2 4 2 
14 5 2 4 4 
15 5 2 0 2 
16 5 2 0 4 

Table 3. Scenarios for Prior Distributions Tried 

Scenario Mode(cr{-) Mode(o^) Variance of o* and o% 
1 a2 Oq .25 x mode2 

2 a2 <j| 2 x mode2 
3 o2 o% 100 x mode2 

4 .5 x cr2 .125 x a2 .25 x mode2 

5 .5 x a2 .125 x 
o^ 

2 x mode2 

6 .5xa2 .125 x a2 100 x mode2 

7 8 x a2 2 x 
cr| 

.25 x mode2 

8 8xa2 2x<7| 2x mode2 
9 8xa2 2xa| 100 x mode2 

As can be observed, for each case the intervals on the average 
relative savings Ss and Sm overlap for the different prior scenar 
ios. Although the number of replications is small, there appears 
to be little difference in the relative savings obtained applying 
the two Bayesian adjustment rules (MCMC and SMC). How 
ever, the time required to perform SMC is very different from 
the time required by MCMC. This time comparison is discussed 
in the next section. 

To provide more insight into the effect of the prior scenarios, 

Figure 7 reports the 95% confidence intervals on Ss for all of 
the cases and prior scenarios 1, 4, and 9. 

Among the nine different scenarios for the prior distributions, 
scenario 4 is the only one that has a significant difference in av 

erage savings from the other scenarios. The prior settings on 

Oq and a2 may affect the convergence of the variance com 

ponent estimators, but their effect on estimating the offsets is 
almost always negligible. Only in scenario 4 do we observe an 
effect of the prior distributions of the variances on our ability 
to estimate the offsets. This occurs because in this scenario the 

modes of the prior distributions are smaller than the true values 
and the variances of the priors are small. This makes the density 
have a thin right tail, so that the probability density around the 
true value is low. This requires a longer time for the mean of 

the posterior distribution to converge to its true value. 
The prior distribution of the initial offset at the beginning of 

each lot depends on the prior distributions of fi and Gq, which 

are given by Bio\/n, Gq 
~ 

N(/x, Gq). A prior that indicates a very 

0.4 - 7 

-?-3" It 1 

M i, I 
'" *. M *" , ' , 

?-**-?Tf-~-^ 
cf*P c$*5> <f& cf<* cf# cfhh cfhh cfh?> cf& cf^> cf<$> cf<* cf<* cf& cf& cf# 

Case N 'V ?> tK<b fo A <bo>$>^&>$-3->Z><p 

Prior Scenario 1 

Figure 4. SMC Relative Savings Rates (Ss) and MCMC Savings 
Rates (Sm) for All Process Cases (Table 2) and Prior Scenario 1 (Ta 
ble 3). Lines represent the 95% confidence intervals. 
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Prior Scenario 4 

Figure 5. SMC Relative Savings Rates (Ss) and MCMC Savings 
Rates (Sm) for All Process Cases (Table 2) and Prior Scenario 4 (Ta 
ble 3). Lines represent the 95% confidence intervals. 

small Oq gives extra confidence to the prior distribution of #;o 
(i.e., its variance is small). This obviously can be dangerous if 
the difference between the actual setup offset 0;o and the esti 

mate of m is large. Creating definite rules on how to determine 
the prior distributions of the variances is difficult; one sugges 
tion is to use a credibility interval as in the example of Sec 
tion 4.1. 

Several conclusions about the comparison between the three 

adjustment rules can be drawn based on these results: 

The SMC method showed advantages over the harmonic 
rule that are comparable to those obtained with the MCMC 

adjustment rule. 
In cases when an appropriate prior was chosen (i.e., not 

in scenario 4), the SMC method showed significant advan 

tages against the harmonic rule, except for cases 8 and 16. 
In these two cases the means of the initial offsets are 0, and 
there are large lot-to-lot variances, 0%. These conditions 
are close to the assumptions on which the harmonic rule is 

based and for which it works best. On the other hand, extra 
errors are introduced in estimating p by the SMC method 
when there is a large variance Oq, and this increases the 
total quadratic cost. Even in such disadvantageous cases, 

0.4- r 

1 
?* 

I 
0.2- e e 

1 #& I ll "I ? T 

.** % %. ptH 'fr, 
-0.1- 1 

H?i?r?i?i?i-1?i?i?i?i?i?i?i?i?i?i?i?i?i?i?i?i?i?r?i?i?i-1?i?i?i? 
cfc$ cfc? ̂cS> cfcip cfdp cfcp ^c? cfc? cfcfi cfc? tfcs? tfc? tfc? tfcf* cfcj* cfc? 

Case N'V'b * <o <o A <b0)-$>-^<^<Z>>^>(p><p 

Prior Scenario 9 

Figure 6. SMC Relative Savings Rates (Ss) and MCMC Savings 
Rates (Sm) for All Process Cases (Table 2) and Prior Scenario 9 (Ta 
ble 3). Lines represent the 95% confidence intervals. 
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prjor \t?0) \S0) NNO) VNO) *ytKO> \NO) \\0) \t?.0) \NO) ?vtK<^ *vN0) -vtKO) V&.0) SNO) *yfcO> S.1KO) 
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F/gftvre 7. SMC Relative Savings Rates (Ss) for Select Process 

Cases (Table 2) and Priors (Table 3). Lines represent the 95% confi 

dence intervals. 

the performance of the SMC rule is still close to that of the 
harmonic rule (average savings are <0, but the confidence 
intervals include 0). 
The percentage savings when using the SMC rule de 
creases as the number of parts per lot, J, increases. This 
is because for the assumed process model, large adjust 

ments are needed only in the first few parts in each lot. 
Once the process is centered, the remaining variability is 
uncontrollable. For a large lot, any of the adjustment rules 
that we discussed earlier provides adjustments that rapidly 
tend to 0. The total cost, C, includes the cost of all variabil 

ity sources for all IJ parts. Thus if / is large, then in only 
a few of the J parts (the first ones in each lot, particularly 
the very first one) will there be an opportunity for a rule to 

outperform Grubbs's harmonic rule. Because we are mea 

suring percentages of savings across all // observations, 
this percentage cannot be large for large J. One way to 

make the uncontrollable part of the total cost C evident is 
to partition it as 

i=l 7=1 

I J I J 
= 
E E<ft+u&2+HT, 2<f>i+u^ 

i=l 7=1 i=l j=\ 

+ LE4 (23) 
;=i j=i 

where the variance due to the last term clearly is not con 
trollable. Once Uy has converged to the true value of ?Bj, 
which typically occurs after a few parts in each lot, the 
last term dominates the total cost C. (This explains why 
in cases 1-4, where g2 is at its high level and J = 20, the 

savings offered by the SMC rule compared with Grubbs's 
rule, are among the lowest, because we are comparing to 

tal cost.) To see more clearly that greatest savings occurs 
in the first few parts per lot, consider Figure 9(a) in Sec 
tion 6, which shows the total quadratic cost per part ob 
tained when processing lots under case 9, scenario 2. 

TECHNOMETRICS, AUGUST 2006, VOL. 48, NO. 3 

This content downloaded from 130.203.241.179 on Thu, 16 May 2013 17:18:15 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


382 ZILONG LIAN, BIANCA M. COLOSIMO, AND ENRIQUE DEL CASTILLO 

Similar comparisons between the SMC rule and Grubbs's ex 
tended rule were performed, but the results are not reported 
here. The extended rule was competitive when p was actually 0 

(or known), in accordance with one of its underlying assump 
tions for which it is optimal. For cases when p differs from 0 
and was unknown, the SMC rule was significantly better (see 
Lian 2004 for details). 

5.2 Computational Time Comparison of the Bayesian 
Approaches: SMC versus the MCMC 

Adjustment Rules 

To outline the computational savings that can be achieved 
if the SMC algorithm is used instead of the MCMC approach, 
comparisons were made of the time required by the two algo 
rithms to compute the adjustment setting after each new part 
has been observed. This is the only time that can not be masked 
in real time applications, because during this time interval the 

machine has to wait to receive as input the new setting of the 
control parameter that must be used to machine the next part. 

Both the MCMC and the SMC algorithm were run on a 
Pentium 4. The SMC approach was implemented in Matlab 

(following the algorithm described in Sec. 4.2) and using 
10,000 particles. The MCMC approach was performed using 

WinBUGS (Spiegelhalter, Thomas, and Best 2003) called by 
a script that uses a "burn-in" period equal to 1,000. Then 

10,000 additional iterations of the chain were run to compute 
the required estimates from the steady-state distribution. 

Figure 8 shows histograms of the time required at each 

adjustment step by the MCMC and the SMC algorithms for 

processing 20 lots of 20 parts (process case 1 in Table 2 and 

prior scenario 4 in Table 3). Similar behaviors were observed 
for other cases and prior scenarios and are not reported here. 

As can be observed in Figure 8, the time required at each 

step by the MCMC ranges from 8 to 12 seconds. This time 
is required to scan through the dataset of observations already 
collected and perform the required estimates. In contrast, the 

computational time required by the SMC algorithm is almost 

always less than 1 second, whereas for just a few iterations the 
time required ranges from 9 to 12 seconds. These few iterations 
are those in which the rejuvenation step is required to avoid the 

degeneracy problem (Balakrishnan and Madigan 2004). 

The comparison of computational time clearly shows the 

advantages related to the use of the proposed SMC algo 
rithm. Referring again to the bending process illustrated in Sec 
tion 4.1, the cycle time for an automated manufacturing cell is 
on the order of 6 seconds (Bollheimer 2004). It is clear that in 
this type of application, the MCMC adjustment rule is impracti 
cal, whereas the SMC approach represents a viable adjustment 
procedure. 

5.3 Effect of Changing the Type of Prior Distribution 
in the SMC Procedure 

In the previous section it was shown that the first SMC rule 
and the MCMC adjustment rule give essentially equivalent per 
formance in terms of cost. To study the sensitivity of the SMC 

approach to the type of prior, additional simulation results, not 

reported here, were conducted for uniform (0, b) priors on the 
variances. In summary, although the performance of the SMC 
method is generally not overly sensitive to the choice of prior 
distribution, we suggest using LN priors. These have a decaying 
right tail that provides some extra "robustness" not provided by 
finite-range priors such as the uniform, are easy to assess and 

calibrate from expert opinion, and, compared with the inverse 

gamma priors frequently used for variances, are easier to make 

"noninformative" if that is what is desired. 

6. AVOIDING INFLATION IN VARIANCE DUE TO 
UNNECESSARY ADJUSTMENTS: A SECOND 

(MODIFIED) SMC RULE 

Two types of process adjustments are made by the SMC 
method discussed in previous sections. The first type of ad 

justment is made according to the posterior distribution of By 
immediately after a new part is observed. These adjustments 
are similar to those suggested by the harmonic rule. The sec 

ond type of adjustment is made at the beginning of a lot based 
on the estimate of p before any part in that lot is observed. No 

analogous adjustment is provided by Grubbs's harmonic rule, 
because the first observation in each lot is uncontrolled. 

In the experiments of the previous section, cases 8 and 16 

(see Table 2) have p = 0. In these two cases, extra errors can be 

introduced by the second type of adjustment (i.e., the quadratic 

(a) (b) 
Histogram of computational time MCMC 

Histogram of computational time SMC 
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Figure 8. Histograms of the Computational Time per Adjustment (in seconds) Incurred by the MCMC Method (a) and the SMC Method (b), 
Process Case 1 (Table 2) and Prior Scenario 4 (Table 3). 
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Figure 9. Total Quadratic Loss per Part for a Single Simulation of Two Cases: Case 9 (a) and Case 16 (b), Under Scenario 2 (-a? Grubbs; 
?e? SMC). Losses shown are totals per part j added across all 20 lots. 

cost will be inflated because there is no need to adjust if the lot 
means are really 0). This problem is obvious from looking at 
cases 8 and 16 in Figure 7. 

The poor performance of the first SMC method also can be 

observed by considering a case where the method works well 

compared with a case where it does not work so well due to 

unnecessary adjustments. Figure 9(a) shows the total quadratic 
losses per part for case 9 (where /x = 4), and Figure 9(b) shows 
the total quadratic losses per part for case 16 (where /x = 0), 

assuming the prior parameters as in scenario 2. In the case 9, 

the SMC procedure gives considerable savings over Grubbs's 
harmonic rule, particularly in the first couple of parts, whereas 
for case 16, where the mean is 0, the SMC actually is more 

costly than Grubbs's rule. 
In a first attempt at reducing this "inflation in variance" prob 

lem, one could think of a rule that would never adjust the first 

part in each lot. The effect of making this modification is illus 
trated in Figure 10, where the original SMC method is called 

method 1 and the SMC method omitting all first adjustments 
in each lot is called method 2. (We explain the third method 
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Figure 10. Average Savings Rates Obtained by the First SMC 

Method (method 1), the SMC Method When Always Omitting the First 
Adjustment (method 2), and the Conditional First-Adjustment SMC 

Method (method 3) Compared With the Harmonic Rule Using LN Pri 
ors. Lines indicate the 95% confidence intervals. 

shortly.) The average savings and confidence intervals were ob 

tained based on 10 replications. The advantages of this mod 
ification are significant in all cases where p = 0, because the 
extra errors made by the second type of adjustments are elim 
inated in these cases. But when p^O, these first adjustments 
would have been beneficial, so eliminating them in cases when 

p = 4 makes the saving rates actually drop significantly. 
To eliminate the disadvantages of the second type of adjust 

ments when they are unnecessary (p = 0) while keeping their 

advantages when they are beneficial (p ̂  0), a conditional first 
adjustment SMC method is proposed. Under this method, at the 

beginning of lot i (i > 2), the first adjustment is executed only 
when the 100(1 

? 
a)% credibility region of the posterior distri 

bution of p excludes 0; otherwise the first adjustment is omit 
ted. Note that when a = 1, this method works identically to the 
first SMC method of Section 4.2. When a = 0, all of the first 

adjustments are omitted, as in method 2 in Figure 10. 
We recommend selecting the value of a by simulation for 

given prior distributions. For instance, the graph in Figure 11 
was obtained by simulating the adjusted process for a set of 
real process parameters, in this case those in Table 2 and, for 
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Figure 11. Maximum and Minimum Average Savings When Using the 

Modified SMC Rule With Different a Values in the 16 Cases of True 
Parameters Assuming the Priors as in Scenario 2. 

TECHNOMETRICS, AUGUST 2006, VOL. 48, NO. 3 

This content downloaded from 130.203.241.179 on Thu, 16 May 2013 17:18:15 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


384 ZILONG LIAN, BIANCA M. COLOSIMO, AND ENRIQUE DEL CASTILLO 

illustration, scenario 2 from Table 3. For each case of true pa 
rameters, several values of a were used, and simulations were 

run. The largest and smallest savings obtained for each value 
of a were saved, giving the points on the graph. From the graph 
in Figure 11, we would choose a = 

.1, because for that a, the 

maximum saving rates are very high (these are cases when 

the method performed best) while the minimum saving rate 

(cases when the method performed worst) is also large. This 
choice of a is therefore "robust" with respect to variations in 
the true parameters of the process, which are unknown to us 

and are treated as "noise factors" in the simulation experiment. 
A MATLAB computer program that simulates the process and 

computes the graph for a given set of true parameters and given 
LN priors is available from the same website as before. From 
our numerical experiments, the best value of a is usually within 
the (.05, .3) interval. 

Figure 10 shows the performance of the conditional first 

adjustment method with a = .1 (method 3) compared with 
the harmonic rule. Compared with the original SMC method 

(method 1), the improved conditional first-adjustment method 
is more robust to variations in the different process conditions. 
This method retains the substantial savings provided by the 

original SMC method in the cases where p = 4 (e.g., process 
cases 13 and 14), while efficiently eliminating the unnecessary 
second type of adjustments in cases where p is actually 0 (e.g., 
process cases 15 and 16). 

We point out that performing a similar simulation analysis 
to implement the conditional first adjustment using the MCMC 
rule will require extremely time-consuming simulations, which 
the SMC rule avoids. 

7. CONCLUSIONS 

An adjustment rule based on sequential Monte Carlo tech 

niques for the setup adjustment problem was presented. The 
method was contrasted against Grubbs's harmonic rule and a 
MCMC method. Bayesian methods starting with vague priors 
have similar behavior in the first few lots as the harmonic rule, 

but they keep updating the posterior distributions of the parame 
ters as more observations are available, from which increasingly 
better adjustments are made. The SMC method is considerably 
more time-efficient than the MCMC method, with computa 
tional savings growing as the size of the dataset grows. At the 
same time, it provides equivalent performance to the MCMC 
rule. 

The performance of the first SMC method was analyzed with 

respect to changes in the prior parameters and changes in the 

type of prior. It was shown that unless the prior reflects strongly 
inaccurate information with respect to the true parameters, the 

performance of the first SMC method is superior to Grubbs's 
harmonic rule, because the method is able to "anticipate" the 
first observation in each lot. This analysis also provided justi 
fication for using the proposed lognormal priors for the vari 

ances, which are easy to assess in practice and were shown to 

provide some extra protection that other priors lack. 

A second, modified SMC rule was also presented to avoid 
variance inflation due to unnecessary adjustments, a situation 

that occurs if the lot-to-lot mean p is actually 0. In the modi 
fied rule, redundant adjustments are omitted when one can con 

clude that p^O based on the posterior distribution of p and a 

credibility parameter a, which is user-selected. A Taguchi-like 
simulation approach was presented to help the user select the 
value of a. 

Computer programs that implement the SMC method and 
that help select the value of a in the modified SMC method can 
be downloaded from http://www2.ie.psu.edu/Castillo/research/ 
EngineeringStatistics/. 

[Received November 2004. Revised December 2005.] 
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