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Abstract

Consider a machine that can start production off-target where the initial offset is
unknown and unobservable. The goal is to determine the optimal series of machine
adjustments that minimize the expected value of the sum of quadratic off-target
costs and fixed adjustment costs. Apart of the unknown initial offset, the process is
supposed to be in a state of statistical control, so the process model is applicable to
discrete-part production processes. The process variance is also assumed unknown.
We show, using a dynamic programming formulation based on the Bayesian esti-
mation of all unknown process parameters, how the optimal process adjustment
policy is of a deadband form where the width of the deadband is time-varying and
U-shaped. Computational results and implementation details are presented. The
simpler case of a known process variance is also solved using a dynamic program-
ming approach. It is shown that the solution to this case is a good approximation
to the first case, when the variance is actually unknown. The unknown process vari-
ance solution, however is the most robust with respect to variation in the process
parameters.

Key words: Statistical Process Control, Deadband Adjustment, Feedback Control

1 Introduction

Adjusting a discrete-part manufacturing process is frequently necessary when
the setup of the machine is improperly done. An incorrect setup can result in
an offset in the quality characteristic (usually, some dimension) of the parts
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produced in the batch of product made subsequently to the setup. The offset
cannot be observed directly, and sequential adjustments must take place after
fabrication and measurement of a series of parts.

In the mechanical engineering literature, this adjustment problem has received
attention under the name “process positioning” (e.g., see Bjorke, 1989). In the
statistical quality control literature, this problem, called the setup adjustment
problem, was originally studied by F.E. Grubbs (1954, in a paper reprinted in
1983). Grubbs considers only off-target quadratic costs and studies two cases
depending on whether the offset is an unknown constant or a random variable
with known distribution. In the first case, he shows the optimal adjustment
policy to have the form Ui = Yi/i, where Ui is the adjustment made after
part i is processed and Yi is the observed deviation from target of the quality
characteristic. The sequence of adjustments then follow a harmonic rule, so
Trietsch (1998) refers to this adjustment policy as the ”harmonic rule”. A
review and unification of these and other rules for setup adjustment have
been given recently by Del Castillo et al. (2003a, 2003b). These authors show
how the previous setup adjustment rules are all cases of Linear Quadratic
Gaussian control.

In the literature on setup adjustment, process parameters are all assumed
known. These includes the offset moments (if the setup is assumed random)
and the part-to-part variance. Furthermore, only off-target costs have been
considered before, but no reference to the important case of fixed adjustment
costs has been made. In this paper, a solution to the setup adjustment problem
is given for the case all process parameters are unknown and there are fixed
adjustment and quadratic off-target costs.

Process control problems under fixed adjustment costs have been studied by
Box and Jenkins (1963), Crowder (1992), and Box and Luceño (1997), among
others. Solution to these problems is of the form of a deadband, where the pro-
cess is adjusted only if it is predicted to be far enough from target, with the
deadband width denoting the action limits that depend on the costs involved.
These authors consider a process that would drift off-target if let uncontrolled.
They all consider known process parameters. In contrast, the present paper
considers a simpler stochastic process, adequate to model discrete-part pro-
cesses, but assumes no a priori knowledge of the process parameters. The
justification for adjustments is not a drifting process, but rather an incorrect
setup operation that results in an offset. Such production processes are called
setup dominant by Gryna (2001). Some examples include cutting processes,
drilling, and presswork.

The paper is organized as follows. We next present the process assumptions
and the bayesian approach utilized for parameter inferences. Section 3 then
shows the dynamic programming (DP) formulation for the case all parameters
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need to be estimated. Section 4 gives details about the computer implemen-
tation of the DP solution. Then, in Section 5, the sensitivity of the optimal
adjustment solution to changes in the true process parameters and on the
prior estimates utilized is studied. The simpler case when the part to part
variance is known is solved and analyzed in Section 6. This is a case that re-
sults in a simpler DP solution due to the smaller state-space. Finally, Section
7 compares the two cases, for known and unknown part-to-part variance.

2 Process Model, Cost Criterion and Parameter Esti-
mates

Suppose N parts are processed sequentially in time and suppose the machine
setup results in an unknown initial offset θ0, which, if unadjusted, will affect
all N parts. Let us denote by Yi the deviation from target of the quality
characteristic of interest for the ith part. We assume a controllable factor ui

exists to adjust the process in a linear manner, and denote by Ui = ui+1 − ui

the adjustment made before processing part i + 1. The adjustment Ui is then
computed based on observations obtained up to and including part i. Then,
the equations describing the observed quality characteristic can be expressed
as follows:

Yi = θi + υi (1)

θi = θi−1 + Ui−1, i = 1, 2, ..., N (2)

where υ
iid∼ N(0, σ2

υ) and συ is unknown. We assume there exists a quadratic
and symmetric off-target cost. Furthermore, we assume a fixed cost c is in-
curred whenever an adjustment Ui is non-zero. Under these assumptions, the
expected loss function is

L = E





N∑

i=1

(Y 2
i + cδ(Ui−1))



, (3)

where δ(x) = 1 if x 6= 0 and δ(x) = 0 otherwise. Following Crowder (1991),
the cost c can be understood as the ratio of the adjustment cost to the per
unit quadratic off-target cost. The objective is to find the optimal adjustments
{Ui}N

i=1 based on the observed deviations from target in order to minimize the
cost criterion in (3).

We use a Bayesian model to make inferences about the two unknown param-
eters, θ0 and συ, and be able to adjust the process based on these inferences.
For this purpose, a useful model, discussed by Gelman et al. (2003), is the
two-parameter normal conjugate model with prior distributions given by:
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θ0|συ ∼N(µ0, σ
2
υ/κ0) (4)

σ2
υ ∼ Inv − χ2(ν0, σ

2
0), (5)

where the second distribution is a scaled inverse chi-square distribution with
degrees of freedom v0 and scale parameter σ0. The joint model is frequently
denoted (θ0, σ

2
υ) ∼ N − Inv − χ2(µ0, σ

2
0/κ0; ν0, σ

2
0). Note that the parameters

θ0 and σ2
υ are assumed dependent in their joint prior distribution such that

a large value of σ2
υ induces a high-variance in the prior distribution of the

initial mean θ0. As discussed by Gelman et al. (2003), this is useful since prior
beliefs about θ0 can be calibrated by the scale of measurement of Y so that
they are equivalent to κ0 prior measurements on this scale. This facilitates the
assessment and incorporation of prior information, if any. Alternatively, these
conjugate priors can also be set to be noninformative or “objective”.

The Bayesian model on the unknown parameters allows to make predictions
on the quality characteristic Y , which is directly observable in contrast to the
unknowns θ0 and συ. Our interest is to make inferences in future values of Y at
time i, for which we need to obtain an expression for the posterior predictive
density of Y . For this purpose, we use the conjugate prior distributions in
(4-5) and equations (1-2) to get the posterior densities:

Yi|θi, σ
2
υ ∼N(θi, σ

2
υ) (6)

or alternatively

Yi+1|θi, σ
2
υ ∼N(θi + Ui, σ

2
υ), (7)

where

(θi, σ
2
υ)|Y (i), U (i)∼N − Inv − χ2(µi, σ

2
i /κi; νi, σ

2
i ). (8)

Here, Y (i) and U (i) are sets containing all observations and adjustment values,
respectively, through the time when part i is finished and observed.

As shown in Appendix 1, the posterior predictive density f(Yi+1| Y (i), U (i)) is
obtained from integrating

∫ ∞

0

∫ ∞

−∞
f(Yi+1| θi, σ

2
υ)f(θi, σ

2
υ | Y (i), U (i)) dθi dσ2

υ.

This density is characterized by the four state variables (µi, κi, νi, σ
2
i ) and will

be denoted by

f(Yi| Y (i), U (i)) = Ψ(·| µi, κi, νi, σ
2
i ) (9)

4



where the mean of the distribution is adjusted by Ui. It is not difficult to show
(see Appendix 1) that the posterior density Ψ is a Student t distribution with
vi degrees of freedom, mean equal to µi + Ui, and scale parameter equal to
σ2

i (ki +1)/ki. This is a valuable result we use in the next section to determine
an optimal setup adjustment policy.

A nice feature of the two-parameter normal conjugate model is that the four
state variables (µi, κi, νi, σ

2
i ) are easily updated recursively. From expressions

in Gelman et al. (2003) in conjunction with the posterior density (8) written
at time i − 1 (used as the prior density at time i), we obtain the recursive
updating expressions:

µi =
κi−1

κi−1 + 1
(µi−1 + Ui−1) +

1

κi−1 + 1
yi (10)

κi = κi−1 + 1 (11)

νi = νi−1 + 1 (12)

νiσ
2
i = νi−1σ

2
i−1 +

κi−1

κi−1 + 1
(yi − µi−1 − Ui−1)

2, (13)

Where yi is the observed value of Yi at the end of period i. In these equations
it is assumed an adjustment of magnitude Ui modifies the updated mean after
each observation yi is obtained. The expressions will be used in Section 3
to build a Dynamic Programming formulation to solve the setup adjustment
problem.

3 Dynamic programming solution to the setup adjust-
ment problem

Suppose at stage i, i.e. after part i is observed and before part i + 1 is pro-
cessed, the posterior predictive density in (9) is obtained by updating four
state variables κi, νi, µi and σ2

i . Assuming κ0 and ν0 are fixed when the prior
information is given, the κi’s and νi’s are all constants determined by the stage
index i, that is

κi = κ0 + i, νi = ν0 + i, for ∀ i. (14)

Therefore, only two state variables, µi and σ2
i , are needed to describe the pre-

dictive density.

Two obvious properties of a Student t random variable X ∼ Ψ(·|µ, κ, ν, σ2),
used in what follows, are that it is symmetric and has decreasing tails, namely:
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Ψ(x|µ, κ, ν, σ2) = Ψ(−x|µ, κ, ν, σ2)

Ψ(x1|µ, κ, ν, σ2) > Ψ(x2|µ, κ, ν, σ2), if |x1 − µ| < |x2 − µ|. (15)

In addition, its expectation and variance are given by

E{X}= µ

V ar{X}= σ2 ν

ν − 2
(1 +

1

κ
)

.
= V (κ, ν, σ2), for ν > 2. (16)

Since the state variables κ and ν are uniquely defined by stage index i, we
introduce the simpler notation

V (κi, νi, σ
2) = Vi(σ

2)

and Ψ(·|µ, κi, νi, σ
2) = Ψi(·|µ, σ2). (17)

Define Ri(µi, σ
2
i ) to be the minimum cost from parts (i + 1) to N given the

current density Ψi(·|µi, σ
2
i ). Then R0(µ0, σ

2
0) is the expected cost of the opti-

mal solution we seek to the problem.

At the boundary, i.e., at stage N−1, we have that YN |yN−1, uN−1 ∼ ΨN−1(·|µN−1+
UN−1, σ

2
N−1), so

RN−1(µN−1, σ
2
N−1) = min

UN−1

E{Y 2
N + cδ(UN−1)}

= min
UN−1

{V (κN−1, νN−1, σ
2
N−1) + (µN−1 + UN−1)

2 + cδ(UN−1)}
= VN−1(σ

2
N−1) + min{µ2

N−1, c}. (18)

The optimal adjustment which minimizes this last expression is clearly

UN−1 =




−µN−1 if |µN−1| > c1/2

0 if |µN−1| ≤ c1/2
(19)

For stage i < N − 1, we recursively define by using backwards induction

Ri(µi, σ
2
i ) = min

Ui

{Vi(σ
2
i )+(µi+Ui)

2+cδ(Ui)+E{Ri+1(µi+1, σ
2
i+1)|Ui}}, (20)

where

E{Ri+1(µi+1, σ
2
i+1)|Ui}=

∫
Ri+1(µi+1, σ

2
i+1)f(Yi+1| Y (i), U (i))dYi+1

=
∫

Ri+1(µi+1, σ
2
i+1)Ψi(µi + Ui, σ

2
i )dYi+1, (21)
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and from (10) and (13),

µi+1 =
κi(µi + Ui) + Yi+1

κi+1

(22)

σ2
i+1 =

νiσ
2
i + κi

κi+1
(Yi+1 − µi − Ui)

2

νi+1

. (23)

The optimal adjustment rule or controller U∗
i depends on µi and σ2

i , and is the
optimal solution to (20). For each possible Ui, the expected cost can be calcu-
lated numerically using backwards induction and Monte Carlo integration. U∗

i

is chosen to be the Ui yielding minimum cost, and this is a numerically inten-
sive computation. The computational complexity can be reduced by narrowing
the candidates Ui(µi, σ

2
i ) we evaluate.

3.1 Deadband structure of the optimal adjustment policy

Let R′
i(µi, σ

2
i ) be the minimum expected cost for parts i + 1 to N given that

no adjustment will be made for part i + 1. Since an adjustment will not affect
σi, Ri (minimum cost if an adjustment is made) can be rewritten in terms of
R′

i:

Ri(µi, σ
2
i ) = min

Ui

{cδ(Ui) + R′
i(µi + Ui, σ

2
i )} (24)

If we can find µi = µ∗i,σi
that minimizes R′

i(µi, σ
2
i ) for given σi, (24) can be

rewritten as:

Ri(µi, σ
2
i ) = min{R′

i(µi, σ
2
i ), c + R′

i(µ
∗
i,σi

, σ2
i )}. (25)

The optimal controller is thus

U∗
i (µi, σ

2
i ) =





µ∗i,σi
− µi if R′

i(µi, σ
2
i )−R′

i(µ
∗
i,σi

, σ2
i ) > c

0 o.w.
(26)

Thus the decision is made based on a tradeoff between the adjustment cost
and the cost savings gained by adjusting at the current stage. In such man-
ner, we can find the optimal adjustment for each state (µi, σi) by numerically
calculation.

However, the optimal controller (26) is not in a ”deadband” form, which would
be easier to implement. To get a deadband form for the optimal controller,
consider two states at stage i, (µi = x1, σ

2
i ) and (µi = x2, σ

2
i ), where the pos-

terior densities are the same except for their means. It is easy to show that
R′

i(x1, σ
2
i ) = R′

i(x2, σ
2
i ) when |x1| = |x2| due to the symmetries in the process
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and in the cost structure. Suppose |x1| > |x2|, i.e., the first state represents
a process with a larger expected offset while both processes have the same
offset variance. The expected offset of the first process will either remain or be
brought down at some cost, so it has a higher expected cost than the process
at the second state. Hence R′

i(x1, σ
2
i ) > R′

i(x2, σ
2
i ), i.e., R′

i(µi, σ
2
i ) is symmetric

around µi = 0 and increasing with |µi|. Following (25) and (26) we have

Ri(µi, σ
2
i ) = min{R′

i(µi, σ
2
i ), c + R′

i(0, σ
2
i )} (27)

and the optimal controller is

U∗
i (µi, σ

2
i ) =




−µi if |µi| > αi,σi

0 if |µi| ≤ αi,σi

(28)

where the adjustment or action limit αi,σi
is a number depending on σi such

that R′
i(αi,σi

, σ2
i ) = c + R′

i(0, σ
2
i ).

The adjustment rule is therefore of the deadband type (Box and Jenkins, 1963,
Box and Luceño, 1997, Crowder, 1992). This means that only for process states
with a mean far enough from target an adjustment is justified. The action lim-
its defining the deadband are clearly a function of the adjustment cost c.

According to the foregoing discussion, only two choices are compared for U∗
i

in calculating each Ri(µi, σ
2
i ). During the backwards calculation, αi,σi

can be
obtained by finding the minimum |µi| with |U∗

i (µi, σ
2
i )| > 0. Once the limits

αi,σi
are obtained, the control policy in (28) can be applied to adjust the initial

offset for the process described by (1)- (2).

4 Computer implementation of the solution

The complete procedure to adjust process (1-2) with the the optimal controller
(28) can be divided into two steps: i) generating the control table with the ad-
justment limits, a computation that can be done off-line, that is, prior to start
producing parts, and ii) on-line adjustment of the process. We now explain
each of these two steps in detail. An R program that implements this procedure
(called chart.R) can be downloaded from http://www.ie.psu.edu/researchlabs/
EngineeringStatistics/software.htm.

4.1 Generating the control table

The state variables (µi, σi) belong to an unbounded continuous space R⊕R+

where ⊕ denotes Cartesian set product. Such state space need to be mapped to
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a bounded discrete space D with finite elements so that for each (µi, σi) ∈ D,
Ri(µi, σi) can be approximated numerically by backwards induction. A typ-
ical form of D will be D = Dµ ⊕ Dσ, where Dµ = {µ|µ = i × dµ, i =
−n1,−n1 + 1, ...n1 − 1, n1} and Dσ = {σ|σ = i × dσ, i = 0, 1, ..., n2}. dµ

and dσ are positive numbers and n1, n2 are positive integers. A state (µ, σ)
is mapped to (µ′, σ′) ∈ D such that µ′ is the closest element to µ in Dµ and
σ′ is the closest element to σ in Dσ. Increments dµ and dσ are set to be small
enough for accuracy. Upper bounds n1 × dµ and n2 × dσ are set to be large
enough in order to include most of the possible states that can occur.

The steps to generate the control table are summarized as follows:

• Step 1. Specify the value of c, the relative adjustment cost. Set the prior
state variables, κ0, ν0, µ0 and σ0, according to the prior information of the
process. A proper selection of the prior distribution is discussed in the next
section.

• Step 2. Determine the sample state space D. The increments and upper
bounds can vary for different processes, cost structure or accuracy require-
ments.

• Step 3. Calculate Ri(µi, σi) for each (µi, σi) ∈ D backwards for each stage
i, by computing (20) using Monte Carlo integration.

During Step 3, for each σi ∈ Dσ and each i, αi,σi
is determined by setting it

to be the smallest positive µi ∈ Dµ such that R′
i(µi, σi) ≥ c + R′

i(0, σi). Thus
a control table containing the αi,σi

’s is obtained.

Example. To illustrate the procedure above, consider the following example.
Suppose N = 10 parts are to be processed. The adjustment cost is c = 9. The
initial prior state variables are set at κ0 = 1, and ν0 = 2.01. The discretized
state variable space D is chosen to be {µi, σi|µi = 0.1a, σi = k}, where a is an
integer such that |a| ≤ 50, and k is a nonnegative integer such that k ≤ 10.
The control table generated from using the procedure described above is shown
in Table 1.

As shown in Table 1, the limits αi,σi
are generally increasing with σi, reflecting

the fact that a higher σi value provides less precision in the process mean or
offset θi. This can be better seen from the unconditional variance of the process
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Table 1
Control table showing the adjustment limits αi,σi calculated for the example.

σi

Part i
0 1 2 3 4 5 6 7 8 9 10

1 1.0 1.9 2.3 2.6 2.7 2.8 2.9 2.9 2.9 3.0 3.0

2 1.0 1.5 2.0 2.3 2.5 2.6 2.7 2.7 2.8 2.9 2.9

3 1.1 1.3 1.8 2.0 2.2 2.4 2.5 2.6 2.7 2.7 2.8

4 1.2 1.3 1.6 1.9 2.1 2.2 2.3 2.4 2.5 2.6 2.7

5 1.3 1.3 1.5 1.7 1.9 2.1 2.2 2.3 2.4 2.5 2.5

6 1.4 1.4 1.5 1.6 1.8 2.0 2.1 2.2 2.3 2.4 2.4

7 1.5 1.6 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.3

8 1.8 1.8 1.8 1.8 1.9 1.9 2.0 2.0 2.1 2.2 2.2

9 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.3 2.3

10 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

mean, V ar(θi), which equals to:

V ar(θi) = E[V ar(θi|συ)]+V ar(E[θi|συ]) = E[σ2
υ/κi]+V ar(µi) =

σ2
i

κi

νi

νi − 2
.

(29)

The “U” shape of the deadband implies that the optimal controller is more
likely to suggest adjusting when the precision is higher. This fact is also re-
flected by another tendency observed from the table, that for a fixed σi, αi,σi

is “U” shaped when seen as a function of the part number i. This implies the
adjustment limits are “U” shaped. This is explained as follows (see also Figure
1). The more observations, the higher the precision of the predictive density
of the process mean. Since κi increases linearly as a function of i, the variance
V ar(θi) is decreasing with i. However, the role of the precision becomes unim-
portant when the process approaches its end, when high precision is already
obtained by the large number of observations and it can not be significantly
increased further by simply increasing the number of observations. At that
point, all αi,σi

limits are close to each other for a given stage i regardless of
σi. This is so because as κi gets larger it reduces the differences in precision
obtained from the different σi’s. Near the end, if σi is fixed, αi,σi

is increasing
with i because the future benefit of an adjusted process is not justified, given
there are few parts to produce until the end of the batch of N parts. A sim-
ilar “funneling out” of the adjustment limits due to an end of horizon effect
was reported by Crowder (1992) for a different process model with known
parameters.
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1 2 3 4 5 6 7 8 9 10
1

2

3

Part i

i,
i

   
i
=8

   
i
=4

   
i
=1

Fig. 1. Adjustment limits αi,σi for all parts i and σi = 1, 4, 8 in the numerical
example.

4.2 Adjusting a Process with the Control Table

Once the control table is created, the control policy described in (28) can be
applied to adjust the initial offset of a process. At each stage i of the process,
i = 1, 2, ..., N − 1, the following procedure is repeated.

• Step 1. Update the state variables (µi, σi) as in (10-13) given the new ob-
servation yi.

• Step 2. Map σi to σ′i ∈ Dσ, i.e., find the σ′i on the control table closest to
σi.

• Step 3. If |µi| > αi,σ′i , adjust the process by Ui = −µi; otherwise make no
adjustment (Ui = 0).

Example (cont.) An example is shown to illustrate the procedure to adjust
a process with a generated table. The process is simulated such that it has 10
parts and the initial offset is θ0 = 6. Assume the adjustment cost is c = 9 and
the prior state variables are µ0 = 0, σ = 10, κ0 = 1, and ν0 = 2.01. The same
discrete state space D is chosen as in section 4.1, so table 1 is used to adjust

11



the process at each stage.
At stage 0, i.e. at the beginning of the process, the prior state variable µ0 = 0
implies that no adjustment is necessary. Therefore, U0 = 0.
At stage 1, the first part is made and observed, and suppose we get Y1 = 4.28.
The new current state variables are:

κ1 = 2, ν1 = 3.01

µ1 =
κ0

κ0 + 1
× 0 +

1

κ0 + 1
Y1 = 2.14

σ1 =

√
(ν0σ2

0 +
κ0

κ0 + 1
Y 2

1 )/ν1 = 8.36

The closest element to σ1 in Dσ is σ′1 = 8. Referring to table 1, α1,8 = 2.8 is
larger than µ1. Therefore, adjusting is not justified, so U1 = 0.
At Stage 2, suppose we observe Y2 = 6.70. The updated state variables are:

κ2 = 3, ν2 = 4.01

µ1 =
κ1

κ1 + 1
µ1 +

1

κ1 + 1
Y2 = 3.66

σ2 =

√
(ν1σ2

1 +
κ1

κ1 + 1
Y2 − µ0

2)/ν1 = 7.47

In this case, σ′2 = 7 in Dσ is the closest element to σ2, and we find α2,7 = 2.6 in
the control table. Since µ2 > α2,7, we should adjust the process by U2 = −3.66.
Continuing in this form, at each stage from 3 to 9, we update the state vari-
ables and decide whether to adjust or not according to the control table. An
illustration after ten hypothetical observation is shown in Figure 2. The figure
shows all observations and how the true means θi change due to the adjust-
ments.

As we can see in the figure, for this specific sample process, only two adjust-
ments are made at times 2 and 5. Figure 3 shows an “adjustment plot” which
indicates when the process mean µi exceeds the adjustment limits αi,σi

. As it
can be seen, the adjustments efficiently drive the true mean closer to target.

5 Sensitivity Analysis and Extremal Situations

Thus far, only one example has shown how the adjustment rule works. In this
section, more cases are investigated and for each case more replications are
simulated to evaluate the average performance of the optimal policy. In each
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 True means θ
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i

Fig. 2. Plot of the true means and observations

of the next subsections the sensitivity of the optimal policy with respect to
different process and cost parameters is investigated.

5.1 System Parameters: θ0,σν

To show the impact of the proposed adjustment rule on a real processes, the
control table for the example in Section 4.1 is applied to different types of
processes with 10 parts and fixed adjustment cost c = 9, assuming the prior
state variables are the same for all cases, µ0 = 0, σ = 10, κ0 = 1, ν0 = 2.01.
For each type of process, 1000 replications are made to estimate the expected
total cost. The results are summarized in Table 2, where θ0 is the true initial
offset and συ is the standard deviation of the noise. L̄A is the average loss
when the adjustment rule was applied and L̄N is the average loss without any
adjustment. ∆ = 1− L̄A/L̄N is the saving rate made by the adjustment rule.
The 99% confidence intervals of ∆ are included in the table.

The behavior of the adjustment rule can also be seen in Table 3, where |θi|
is the average level of true offset for each part and PAi is the proportion of
times an adjustment is made right before part i. PAi is obtained from the total
number of adjustments made right before part i divided by the total number
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Table 2
Savings made by the adjustment

Case θ0 συ L̄A L̄N ∆

1 0 2 40.2 39.4 -1.1%±0.8%

2 2 2 75.3 81.1 3.2%±1.6%

3 4 2 99.2 201.3 49.2%±0.9%

4 0 3 100.1 89.7 -9.3%±2.0%

5 3 3 141.3 183.0 18.6%±1.9%

6 6 3 193.8 448.4 55.7%±0.8%

of replications.

As one can see in Tables 2 and 3, the proposed adjustment rule reduces the
costs significantly as θ0/συ goes up. Limited number of adjustments are made
as early as the offsets are estimated with high confidence, and the initial off-
sets are brought down. The worst performance occurs when the initial offset
θ0 is actually 0 (cases 1 and 4). In such cases, any adjustment is redundant
and will increase both the quadratic losses and the adjustment costs. How-
ever, if the rule is applied in these cases, very few adjustments are made and
the cost increase is small. Therefore, the optimal adjustment rule is robust

14



Table 3
Summary of the behavior of the adjustment rule

Part
Case

1 2 3 4 5 6 7 8 9 10

|θi| 0 0.016 0.018 0.023 0.025 0.032 0.034 0.034 0.034 0.034
1

PAi 0 0.005 0.001 0.002 0.005 0.005 0.003 0.000 0.000 0.000

|θi| 2 1.966 1.890 1.765 1.630 1.503 1.326 1.234 1.224 1.224
2

PAi 0 0.043 0.073 0.093 0.086 0.075 0.099 0.049 0.006 0.000

|θi| 4 3.312 2.274 1.526 1.253 1.104 1.048 1.026 1.026 1.026
3

PAi 0 0.208 0.329 0.259 0.104 0.066 0.027 0.015 0.000 0.000

|θi| 0 0.188 0.315 0.324 0.372 0.364 0.362 0.350 0.341 0.341
4

PAi 0 0.054 0.047 0.031 0.046 0.027 0.034 0.027 0.006 0.000

|θi| 3 2.586 2.089 1.668 1.353 1.161 1.043 0.943 0.926 0.926
5

PAi 0 0.188 0.196 0.164 0.133 0.091 0.062 0.056 0.013 0.000

|θi| 6 3.722 2.614 2.175 1.976 1.814 1.647 1.487 1.450 1.450
6

PAi 0 0.565 0.310 0.149 0.099 0.080 0.090 0.080 0.018 0.000

with respect to different process parameters without requiring the parameter
estimates before processing.

5.2 Changes in initial prior state variables: µ0,σ0,κ0,ν0

According to (5), ν0 and σ2
0 determine the precision of the initial prior density

of σ2
υ. From (4) and (29), κ0, ν0 and σ0 together determine the precision of

the initial prior density of θ0. Low precisions (i.e., large variances) should be
utilized when no prior information about the process parameters (θ0, σ

2
υ) is

available. In such case, σ0 should be set to a reasonably large number and κ0

and ν0 should be as small as possible. κ0 can be a small positive number like
0.01, and ν0 may be a number slightly larger than 2, because ν0 > 2 is neces-
sary for calculating the optimal expected loss R0(µ0, σ0), where the variance
of Y1 described in equation (16) is needed. These choices for a noninformative
prior are close to Jeffrey’s rule (see, e.g., Gelman et al., 2003)

The parameter κ0 determines (more than σ2
0 and ν0) the precision of the ini-

tial prior density for θ0. A larger κ0 indicates more confidence that the initial
offset is close to µ0. The parameter κ0 can also be considered a tuning variable
used to trade-off the performance when θ0/σν is small and when θ0/σν is large.

15



Example (cont.) We illustrate the effect of changing κ0 in the example
of Section 4 by setting it equal to 0.01 (as opposed to κ = 1). The other
parameters were not changed: µ0 = 0, σv = 10, and ν0 = 2.01. The new
performance statistics are shown in Table 4 for the same six cases as before.

Table 4
Savings made by the adjustment when κ0 = 0.01 and µ0 = 0

Case θ0 συ L̄A L̄N ∆

1 0 2 53.0 40.3 -25.8%±4.7%

2 2 2 77.1 79.2 -4.3%±3.3%

3 4 2 84.4 198.4 55.7%±1.5%

4 0 3 123.6 90.1 -35.0%±3.8%

5 3 3 146.9 180.9 13.2%±2.8%

6 6 3 172.6 446.0 59.9%±1.4%

Comparing Table 4 with Table 2, although the smaller value of κ0 slightly
improves the performance for processes with high θ0/σ0, the loss for low θ0/σ0

cases is dramatically increased. The reason lies in the forward updating of µi

in equation (13). A smaller κ0 gives more weight to new observations. When
σν is large, the fluctuation of the first several observations can drive µi high
enough to justify adjustments no matter how small or non-existent the true
offset is. A slightly larger value of κ0 (around 1.0) makes the adjustment rule
more robust.

5.3 Fixed Adjustment Cost: c

When c is very large, the limits α will also be large and hence no adjustment
will be made. When c → 0, the α’s will converge to 0. In that case an adjust-
ment will be made at every stage. It is easy to show that, when c = 0 and
κ0 → 0, the proposed adjustment rule works exactly as Grubbs’ Harmonic
Rule (Grubbs, 1983).

6 A simpler case: σ2
υ known.

Now we consider a simpler problem, in which the system equations and cost
function are the same as in (1) - (3), but the system parameter συ is assumed
to be known. A different Bayesian model is employed to estimate the unknown
parameter θ0, based on which we can adjust the process.
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A conjugate prior distribution is given by

θ0 ∼ N(µ0, τ
2
0 ) (30)

Y1|θ0 ∼ N(θ0 + U0, σ
2
υ). (31)

At state i, when part i is finished, we have a new observation yi of Yi. A
posterior distribution of the offset can thus be obtained through the Bayesian
model,

θi|Y (i), U (i) ∼ N(µi, τ
2
i ), (32)

where similarly as before Y (i) and U (i) are sets that contain all known obser-
vations and adjustment values, respectively, from the beginning of the process
till part i is finished and observed. The model can be used to predict the
quality characteristic Y . The marginal density is

Yi+1|θi ∼ N(θi + Ui, σ
2
υ). (33)

The posterior predictive density of Yi is

Yi+1|Y (i), U (i) ∼ N(µi + Ui, σ
2
υ + τ 2

i ) (34)

This density is characterized by two state variables, µi and τ 2
i . These two

variables can be easily updated recursively. Using the prior density in stage
i− 1 as the prior, we obtain the recursive updating equations:

1

τ 2
i

=
1

τ 2
i−1

+
1

σ2
υ

(35)

µi =

µi−1+Ui−1

τ2
i−1

+ yi

σ2
υ

1
τ2
i−1

+ 1
σ2

υ

=
µi−1 + Ui−1 +

τ2
i−1

σ2
υ

yi

1 +
τ2
i−1

σ2
υ

(36)

6.1 Dynamic Programming

Once the prior state variable τ0 is specified, all other state variables τi are
constants determined by the stage index i. Therefore, the predictive density
at stage i is described by only one state variable, µi. The predictive density
Yi+1|Y (i), U (i) can be denoted as φi(Yi−µi), a normal distributed density with
mean µi and variance σ2

υ + τ 2
i .

Define Ri(µi) to be the minimum cost from parts (i + 1) to N given the
current density φi(Yi−1 − µi). At stage N − 1, we only need to consider the
cost associated with current adjustment and part N :
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RN−1(µN−1) = min
UN−1

E{Y 2
N + cδ(UN−1)}

= min
UN−1

{σ2
υ + τ 2

N−1 + (µN−1 + UN−1)
2 + cδ(UN−1)}

= σ2
υ + τ 2

N−1 + min{µ2
N−1, c}. (37)

The optimal adjustment which minimizes this last expression is clearly

UN−1 =




−µN−1 if |µN−1| > c1/2

0 if |µN−1| ≤ c1/2
(38)

For stage i < N − 1, we recursively define by using backwards induction

Ri(µi) = min
Ui

{σ2
υ + τ 2

i + (µi + Ui)
2 + cδ(Ui) + E{Ri+1(µi+1)|Ui}}, (39)

where

E{Ri+1(µi+1)|Ui} =
∫

Ri+1(µi+1)φi(Yi+1 − (µi + Ui))dYi+1, (40)

and

µi+1 =
µi + Ui +

τ2
i

σ2
υ
Yi+1

1 +
τ2
i

σ2
υ

(41)

Now we introduce a theorem which is proved in Appendix 2.

Theorem 1. For the problem described by equation (39), the following three
statements are true:
i)Ri(µi) is a nonnegative function which is symmetric about µi = 0 and non-
decreasing in |µ|.
ii) E{Ri+1(µi+1)|Ui} is a function of µi +Ui; it is symmetric about µi +Ui = 0
and nondecreasing in |µi + Ui|
iii) If the optimal controller U∗ is not zero, U∗ = −µi.

According to the third statement in Theorem 1, (39) can be transformed
to

Ri(µi) = σ2
υ+τ 2

i +min{µ2
i +E{Ri+1(µi+1)|Ui = 0}, c+E{Ri+1(µi+1)|Ui = −µi}}

(42)

The corresponding optimal controller is

U∗
i (µi) =




−µi if µ2

i + E{Ri+1(µi+1)|Ui = 0} > c + E{Ri+1(µi+1)|Ui = −µi}
0 o.w.

(43)
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We notice that, in (43), µ2
i +E{Ri+1(µi+1)|Ui = 0} is an increasing symmetric

continuous function of |µi|, whose minimum value is at E{Ri+1(µi+1)|Ui = 0}
when µi = 0 and a maximum value of infinite. The right hand side of the
inequality is a constant for all µi, which is between the minimum and maximum
values of the left hand side. So there exist a nonnegative critical number αi

such that both sides are equal when |µi| = αi. Thus the optimal controller can
be rewritten as

U∗
i (µi) =




−µi if |µi| > αi

0 |µi| ≤ αi

(44)

This control policy is of the deadband form. We can also conclude that all
deadband half widths αi are less or equal to

√
c, becauseE{Ri+1(µi+1)|Ui =

0} > E{Ri+1(µi+1)|Ui = −µi}.

6.2 Computer Implementation

In order to find the half widths αi of the deadband, we need to calculate
Ri(µi) for all possible µi ∈ R, or alternatively, for all µi ∈ [−αi, αi] since
Ri(µi) = Ri(αi) for all |µi| > αi. To make the calculation possible, we can
map µi to µ′i ∈ D, where D is a discrete state space. In this paper we let
Dµ = {µ|µ = i× dµ, k = −n,−n + 1, ...n− 1, n}, where the increment dµ is a
positive number and n is a positive integer such that n× dµ >

√
c. This way,

αi can be approximated by α′i ∈ D.

Example 2. Suppose N = 10 parts are to be processed and the process pa-
rameter συ = 1 is known. The adjustment cost is c = 9. The initial prior
parameter is set at τ0 = 1. The discrete state variable space D is chosen to be
{µi|µi = 0.1k}, where k is an integer such that |a| ≤ 50. The control limits
αi are shown in Table 5. The usage of the control limits table is very similar

Table 5
Control table showing the adjustment limits αi calculated for the example.

Stage i 0 1 2 3 4 5 6 7 8 9

αi 2.7 2.3 2.1 1.9 1.7 1.6 1.7 1.8 2.2 3

to the procedure described in section 4.2. At each stage i, i = 0, ..., N − 1, we
compare the updated state variable µi with the control limit αi. If |µi| > αi,
we make an adjustment Ui = −µi. Otherwise, no adjustment is needed at this
stage.

An R computer program that implements the variance known case (chart n.R)
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is also available from download from http://www.ie.psu.edu/researchlabs/ En-
gineeringStatistics/software.htm.

7 Comparison of known vs. unknown σ2
υ approaches

We have presented two methods for the adjustment problem described in (1)
- (3): 1. The method derived in sections 2 to 4, in which the system param-
eter συ is unknown; 2. The method described in section 6, where the system
parameter συ is assumed to be known. A comparison between each of these
two methods and Grubbs’ Harmonic Rule is conducted next.

Suppose a process is going to be adjusted when N = 10, and no prior in-
formation about the system parameters θ0 and συ is given. For method 2, a
guess of συ is required, and suppose this guess is συ = 5. The prior parameters
are set to be µ0 = 0 and τ0 = 5. For method 1, the prior parameters are set as
following: µ0 = 0, σ0 = 5, κ0 = 1, and ν0 = 2.01. Notice that from equations

(10) and (36) if κ0 =
τ2
0

σ2
υ
, the recursive updating of µi is essentially the same

for methods 1 and 2. The only difference between the methods will be the
estimate of true parameter σ∗υ and the confidence of µi as a estimator of θi.
(σ∗υ here denotes the true parameter to differ from the parameter συ used in
method 2.) Several cases were investigated to compare method 1, method 2
and Grubbs’ rule. The settings of the prior parameters were kept the same
for all cases. The results are summarized in Table 6. Each saving rate in that
table is the percentage savings induced by an adjustment rule, compared to
the total loss incurred when there is no adjustment. The savings are average
estimators based on 1000 replications. In each replication, the same random
errors were used for method 1, method 2, Grubbs’ rule, and no adjustment
case. The 99% confidence intervals are also shown in the table.

Some general conclusions can be reached from Table 6:

• As the process {Yt} becomes more noisy (larger σ∗υ), it becomes harder to
control. Thus in every case when adjustments may be needed (i.e., when
θ0 6= 0), the advantages of the more complex methods 1 and 2 over Grubbs’
rule disappear as the noise (σ∗υ) increases.

• Only in a few cases method 1 is significantly better than method 2. This
occurs when the offset is large and the συ estimate used in method 2 is
far from the true value σ∗υ. Method 1, although started with a quite non-
informative prior for σ2

υ, has the ability to update its estimates of συ as
more observations become available, an ability that method 2 lacks. It is
interesting to note that even when the συ estimate of method 2 is correct
(i.e., when συ = σ∗υ), the difference in performance between methods 1 and
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Table 6
Average savings compared to total losses under no adjustment

Savings
c θ0

σ∗υ
θ0 σ∗υ method 1 method 2 Grubbs

0 1 -0.2%±0.4% 0.0%±0.0% -555%±24%

0 0 5 -17.4%±1.6% -16.8%±1.6% -35.0%±1.7%

0 7 -16.8%±1.5% -16.7%±1.4% -24.5%±1.4%

1 1 -0.5%±1.0% -0.6%±0.6% -226.7%±9.9%

1 5 5 29.3%±1.7% 29.3%±1.7% 23.4%±1.9%

7 7 30.9%±1.8% 31.0%±1.7% 28.1%±1.8%
4

2 1 38.8%±1.2% 32.0%±1.4% -25.5%±3.0%

2 10 5 62.5%±0.8% 62.4%±0.8% 60.9%±0.9%

14 7 63.2%±0.8% 63.2%±0.8% 62.6%±0.8%

3 1 59.5%±0.5% 58.6%±0.5% 34.1%±1.0%

3 15 5 73.3%±0.4% 73.3%±0.4% 72.9%±0.4%

21 7 73.7%±0.4% 73.8%±0.4% 73.6%±0.4%

0 1 0.0%±0.0% 0.0%±0.0% -1149%±49%

0 0 5 -19.6%±1.9% -19.0%±2.0% -61.2%±2.9%

0 7 -19.2%±1.6% -18.7%±1.6% -37.8%±1.7%

1 1 -0.4%±0.3% -0.02%±0.3% -532%±28%

1 5 5 27.5%±1.9% 27.3%±1.8% 11.4%±2.2%

7 7 31.5%±1.8% 31.3%±1.8% 24.1%±2.0%
9

2 1 29.9%±1.4% 6.1%±1.0% -147%±5.5%

2 10 5 61.0%±0.8% 60.7%±0.8% 56.6%±1.0%

14 7 62.3%±0.8% 62.2%±0.8% 60.3%±0.9%

3 1 54.1%±0.5% 45.2%±0.8% -19.7%±1.9%

3 15 5 72.4%±0.4% 72.5%±0.4% 71.3%±0.4%

21 7 72.9%±0.4% 73.0%±0.4% 72.4%±0.4%

0 1 0.0%±0.0% 0.0%±0.0% -2065%±102%

0 0 5 -19.0%±2.1% -17.9%±2.1% -100.9%±4.5%

0 7 -19.6%±1.9% -18.8%±1.8% -57.5%±2.6%

1 1 0.0%±0.0% 0.0%±0.1% -931%±38%

1 5 5 25.3%±1.8% 25.0%±1.9% -5.4%±2.8%

7 7 25.6%±1.8% 25.6%±1.8% 10.8%±2.3%
16

2 1 1.6%±0.7% 0.0%±0.3% -307.3%±9.5%

2 10 5 58.6%±0.8% 58.5%±0.8% 50.3%±1.0%

14 7 60.9%±0.8% 61.0%±0.8% 57.0%±0.9%

3 1 35.3%±1.1% 24.9%±1.2% -101%±3.5%

3 15 5 71.2%±0.4% 71.3%±0.4% 68.4%±0.5%

21 7 72.5%±0.4% 72.6%±0.4% 71.4%±0.5%

2 is negligible. We can conclude that method 1 is the most robust of the
three methods considered.

• Grubbs’ harmonic rule has a performance always dominated by the other
two more complex policies. This is because it was not designed considering
adjustment costs, thus it suggests adjustments for every part i. However,
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given its notorious simplicity it should be the preferred method when the
adjustment cost is very low or for very noisy processes.
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Appendix 1. Derivation of the predictive density

We have that

f(Yi+1|Y (i), U (i)) =
∫ ∞

0

∫ ∞

−∞
f(Yi+1| θi, σ

2
υ)f(θi, σ

2
υ | Y (i), U (i)) dθi dσ2

υ.

where the two densities in the integral are as in (6) and (8), respectively.
Therefore,

f(Yi+1|Y (i), U (i)) ∝
∫ ∞

0

∫ ∞

−∞
(σ2

υ)
−νi/2−2 exp

{−1

2σ2
υ

(
ki(µi − θi)

2 + (Yi+1 − θi)
2 + νiσ

2
i

)}
dθi dσ2

υ.

Integrating first with respect to θi we get

f(Yi+1|Y (i), U (i))∝
∫ ∞

0
σ−νi/2−3/2

υ exp



−

1

2

κi(Yi+1−µi)
2

κi+1
+ νiσ

2
i

σ2
υ



dσ2

υ

∝
[
κi(Yi+1 − µi)

2

κi + 1
+ νiσ

2
i

]−( νi+1

2 )

∝
[

κi

κi + 1

(
Yi+1 − µi

σi

)2 1

νi

+ 1

]−( νi+1

2 )

which is the kernel of a student t density tνi
(µi, σ

2
i (κi + 1)/κi). If prior to

producing part i + 1 we adjust the process mean by Ui, then Yi+1|Y (i), U (i) ∼
tνi

(µi + Ui, σ
2
i (κi + 1)/κi).

Appendix 2. Proof of Theorem 1.

Lemma 1 Let Z be a random variable with probability density Ψ(z), which
is symmetric about z = 0 and nonincreasing in |z|. Let H(z) be a nonnegative
function that is symmetric about z = 0 and nondecreasing in |z|. Then, the
function

G(µ) = E{H(µ + Z)} (45)

is nonnegative, symmetric about µ = 0 and nondecreasing in |µ|.
Proof. It is obvious that G(µ) is nonnegative since H(µ + z) ≥ 0 for ∀z. It is
also easy to show the symmetry:
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G(−µ) =
∫ ∞

−∞
H(−µ + z)Ψ(z)dz

=
∫ −∞

∞
H(−µ− z)Ψ(−z)d(−z)

=
∫ ∞

−∞
H(µ + z)Ψ(z)dz

= G(µ). (46)

Now we are going to prove that G(µ) is nondecreasing in |µ|.
Since H(z) is symmetric and nondecreasing, there exits a nonnegative value
βr,

βr = inf z|H(z) > r, z ≥ 0 (47)

such that

P{H(z) > r} = P{|z| > βr} (48)

Since H(z) is nonnegative, we have

G(µ) = E{H(µ + z)} =
∫ ∞

0
P{H(µ + Z) > r}dr. (49)

Without loss of generality, let µ2 > µ1 ≥ 0, and δ = µ2 − µ1 > 0.

G(µ2)−G(µ1) =
∫ ∞

0
{P{H(µ2 + Z) > r} − P{H(µ1 + Z) > r}}dr (50)

Consider,

P{H(µ2 + Z) > r} − P{H(µ1 + Z) > r} (51)

= P{|µ2 + Z| > βr} − P{|µ1 + Z| > βr}
= P{µ2 + Z < −βr}+ P{µ2 + Z > βr} − P{µ1 + Z < βr} − P{µ1 + Z > βr}
= P{Z < −βr − µ1 − δ}+ P{Z > βr − µ1 − δ} − P{Z < −βr − µ1} − P{Z > βr − µ1}
= P{βr − µ1 − δ < Z < βr − µ1} − P{−βr − µ1 − δ < Z < −βr − µ1}
=

∫ βr−µ1

β1−µ1−δ
Ψ(z)dz −

∫ −βr−µ1

−β1−µ1−δ
Ψ(z)dz

=
∫ δ

0
{Ψ(βr − µ1 − δ + s)−Ψ(−βr − µ1 − δ + s)}ds. (52)

Since δ − s > 0 for s ∈ [0, δ], we have

| − βr − µ1 − δ + s| = βr + µ1 + δ − s ≥ |βr − µ1 − δ + s| (53)

In addition, Ψ(z) is nonincreasing in |z|, for any s ∈ [0, δ],

Ψ(βr − µ1 − δ + s)−Ψ(−βr − µ1 − δ + s) ≥ 0. (54)
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Hence, (52)≥ 0, and therefore (50)≥ 0. So G(µ) in nondecreasing in |µ|. Q.E.D.

Theorem 1. For the problem described by equation (39), the following three
statements are true:
i)Ri(µi) is a nonnegative function which is symmetric about µi = 0 and non-
decreasing in |µ|.
ii) E{Ri+1(µi+1)|Ui} is a function of µi +Ui; it is symmetric about µi +Ui = 0
and nondecreasing in |µi + Ui|
iii) If the optimal controller U∗ is not zero, U∗ = −µi.
Proof. Obviously, statements i), ii), and iii) are true for stage N − 1, where
RN is defined to be 0.
By induction, assume i), ii), and iii) hold true for stage i + 1. At stage i, first
consider
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where,

x = Yi+1 − (µi + Ui), (56)
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and φ′i(z) is the density function of a normal distribution with mean 0 and

variance
σ2

υ+τ2
i

(σ2
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i +1)2
., which is symmetric about z = 0 and nonincreasing in |z|.

Lemma 1 implies that (55) is symmetric about µi +Ui = 0 and nondecreasing
in |µi + Ui|. Therefore, ii) is proved.

Consider

Ri(µi) = min
Ui

{σ2
υ + τ 2

i + (µi + Ui)
2 + cδ(Ui) + E{Ri+1(µi+1)|Ui}. (58)

If the optimal control U∗
i 6= 0, obviously (58) is optimized when U∗

i = −µi.
Therefor, iii) is proved.

Finally, note that (58) can be rewritten as

Ri(µi) = σ2
υ+τ 2

i +min{µ2
i +E{Ri+1(µi+1)|Ui = 0}, c+E{Ri+1(µi+1)|Ui = −µi}.
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(59)

Consider the terms in (59). µ2
i and E{Ri+1(µi+1)|Ui = 0} are both functions

that are symmetric about µi = 0, and nondecreasing in |µi|. All the other
terms are constants for ∀µi. So Ri(µi) is indeed a function that is symmetric
about µi = 0 and nondecreasing in |µi|, and i) is proved to be true. Q.E.D.
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