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Abstract

This paper presents a feedback control rule for the machine start-up adjustment problem
when the cost function of the machining process is not symmetric around its target. In particular,
the presence of a bias term in the control rule permits the process quality characteristic to
converge to a steady-state target from the lower cost side, thus reducing the process quality
losses incurred during the transient phase of adjustment. A machining application is used to
demonstrate the savings generated by the biased linear feedback adjustment rule compared
to an adjustment rule due to Grubbs (1954, 1983) and to an integral (or EWMA) controller.
The performance of the different adjustment schemes is studied from a small-sample point of
view, showing that the advantage of the proposed rule is significant especially for expensive
parts which are usually produced in small lots. In this paper, two asymmetric cost functions –
constant and quadratic – are considered. Optimal biased control rules for both cost functions
are derived.

Keywords: process control, feedback adjustment, stochastic approximation, one-sided conver-
gence

1 Introduction

After an imprecise setup or maintenance operation, a machine can produce a systematic process

error which will show on the quality characteristic of the machined items. Adjustments are necessary

for eliminating such error if there are some controllable variables that can be manipulated on the

machine. However, the start-up error is unobservable directly due to the inherent randomness of

both the machining and measurement processes. Therefore, a sequence of adjustments that utilizes

the process information obtained on-line is useful for eventually removing the start-up error. Grubbs

(1954, 1983) proposed such an adjustment rule which has been more recently discussed by Trietsch

(1998) and del Castillo and Pan (2001). The latter reference shows the connections between Grubbs

rule and stochastic approximation techniques.

∗corresponding author
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Former research on the start-up adjustment procedure only dealt with the case of symmetric

cost functions. It is well-known that in industrial practice asymmetric cost functions can be more

appropriate, since the cost of oversized and undersized quality characteristics are often different,

like, for instance, in hole-finishing or milling operations. The impact of asymmetric cost functions

has been studied from several perspectives. Wu and Tang (1998) and Maghsoodloo and Li (2000)

have considered tolerance design with asymmetric cost functions, while Moorhead and Wu (1998)

have analyzed the effect of this type of cost function on parameter design. Ladany (1995) presented

a solution to the problem of setting the optimal target of a production process prior to starting the

process under a constant asymmetric cost function. Harris (1992) discussed the design of minimum-

variance controllers with asymmetric cost functions for a process characterized by a linear dynamic

model and ARIMA (AutoRegressive Integrated Moving Average) noise. Despite of the generality

of this model, a possible process start-up error has not been included into consideration.

When start-up errors exist under an asymmetric cost function, it is intuitive to have the value

of the quality characteristic converge to the optimal setting from the lower cost side. This is related

to certain stochastic approximation techniques in which a bias term is added to allow for one-side

convergence, as discussed by Anbar (1977) and Krasulina (1998). However, these approaches are

oriented to asymptotic or long-term performance, and the conditions they impose on the control rule

parameters are too complicated for practical engineering application. Since short-run production

processes have become more common with the advent of modern manufacturing environments,

small sample properties of sequential adjustment procedures need to be studied.

In this paper, we propose a generic framework for the start-up adjustment problem for asymmet-

ric cost functions and focus on its small sample performance. First, two asymmetric cost functions

representing two different cost models used in manufacturing are presented. We include a bias term

into a general linear control rule. The optimal value of this bias term in the sense of minimizing the

expected manufacturing cost at each time step is then derived. The proposed procedure is com-

pared with other adjustment methods in the literature by evaluating and comparing their short-run

costs. Finally, a real manufacturing process is used to demonstrate the practical application of our

adjustment procedure for asymmetric cost functions.

2 Process and cost models

Suppose the quality characteristic Yn of each machined part is measured with reference to a nominal

value, which is assumed, without loss of generality, to be equal to 0. After the start-up, the process is

supposed to be off-target by d units, i.e., Y1 = d+ε1, where ε1 models both the inherent production

variability and the error of measurement. After the first quality characteristic is measured the value

of the control parameter U1, which is assumed to have an immediate effect on the process output,

is set, thus inducing a change in the next quality characteristic: Y2 = d+U1+ ε2. The procedure is
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thus iterated and the general expression for the quality characteristic at the nth step, Yn, is given

by:

Yn = d+ Un−1 + εn (1)

where:

• n = 1, ..., N denotes a discrete time index or part number;

• Un−1 is the value of the controllable variable at the n− 1th step of the adjustment procedure,
with U0 = 0;

• d is the initial unknown offset (a constant);

• {εn} represents normally distributed white noise: εn∼N(0, σ2
ε), thus the errors are i.i.d.

random variables.

To evaluate the costs associated with the control procedure, two cost models often adopted in

industrial practice are considered. In the first case, costs are assumed to arise only when the part

processed is non-conforming, i.e., when the quality characteristic is out of the Specification Limits.

In particular, it will be assumed that the violation of the Lower or the Upper Specification Limit

could lead to different costs. For example, consider the case of a quality characteristic related

with a dimension obtained after a finishing operation. In such operation, the costs associated with

oversized and undersized items, which are mainly determined by either scrapping or re-working,

are almost always different.

Therefore, two constants, cc1 and c
c
2, are used to represent the costs associated with the violation

of the LSL and USL, respectively. The superscript c indicates the constant cost model, given by:

Cc
n =







cc1 if Yn < LSL
0 if LSL ≤ Yn ≤ USL
cc2 if Yn > USL

(2)

(see Figure 1).

Another asymmetric cost model considered is based on a piecewise quadratic cost function. In

this case, the cost function can be more properly considered as a penalty function, in which the

loss is assumed to be proportional to the square of the distance of the quality characteristic from

its nominal value. The asymmetry in the cost function is modeled through two constants, cq1 and

cq2, where the superscript q indicates the quadratic cost model, given by

Cq
n =

{

cq1Y
2
n if Yn < 0

cq2Y
2
n if Yn ≥ 0 .

(3)

The value of the constants cq1 and c
q
2 can be computed with reference to the Specification Limits as

suggested by Wu and Tang (1998). The distance between the nominal value and the LSL or USL
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Figure 1: The asymmetric constant cost function with different costs when the quality characteristic
is below LSL or above USL.

is denoted by ∆, and the cost corresponding to a quality characteristic equal to LSL or USL is L1

or L2, respectively. The constants, c
q
1 and c

q
2, are given by:

cq1 =
L1

∆2
and cq2 =

L2

∆2
(4)

(see Figure 2). The correspondence between the coefficients adopted with the constant and the

quadratic cost models can be found from (4) by letting L1 = cc1 and L2 = cc2. The traditional

symmetric cost models are therefore special cases of the above models, i.e., cc1 = cc2 and c
q
1 = cq1.

Since most of the recently developed devices for on-line inspection and measurement can trans-

mit the data acquired to the controller of the machine, the assumption of an automatic feedback

procedure is realistic. In this scenario, the cost of the adjustments can be neglected and therefore

has not been considered in the following analysis.

The asymmetry in the cost function implies two issues that have to be considered in designing

the adjustment rule. The first is related to the long-term or steady-state target T • that has to be

entered on the machine at start-up, where the superscript • is replaced by either c or q to indicate

either constant or quadratic cost function. The problem of determining this value, referred to in

the literature as the optimum target point, has been addressed for asymmetric cost functions in

manufacturing by Ladany (1995) and Wu and Tang (1998).

The second issue is related to the way in which, starting from an initial offset, the quality

characteristic should converge to the target as determined by the adjustment procedure. Both of

these issues are considered in the remainder of the paper. In particular, the steady-state target

T • will be derived by minimizing the long term expected costs, and the adjustment rule will be

determined by considering all the costs associated with the transient period, evaluating the Average
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Figure 2: The asymmetric quadratic cost function with different costs when the quality character-
istic is below LSL or above USL.

Integrated Expected Cost (AIEC) performance index:

AIEC• =
1

N

N
∑

n=1

E(C•
n) (5)

where E(C•
n) indicates the expected value of the costs at the n

th step of the adjustment procedure.

3 The Biased feedback adjustment rule

Since a control variable is available for removing a possible start-up error of a process, it is necessary

to design a feedback adjustment rule to manipulate this variable. A common feedback linear

adjustment rule is one of the form:

Un = Un−1 − kn(Yn − T •) . (6)

That is, the adjustments Un − Un−1 are proportional to the latest measured deviation of the

quality characteristic Yn from the steady-state target T •. Del Castillo and Pan (2001) showed

that, depending on the selection of the sequence {kn}, this form of feedback adjustment results in
Grubbs’ rule (Grubbs, 1954, 1983, which in turn is a direct application of Robbins and Monro’s,

1951, Stochastic Approximation techniques), the EWMA or integral controller (Box and Luceño,

1995), the Kalman filter (Kalman, 1960), and an approach based on Recursive Least Squares. The

performance of all the rules mentioned above has been studied in the literature only with respect

to symmetric cost functions.

Since the asymmetry in the cost model induces different losses depending on the side from

which the quality characteristic approaches the steady-state target, the performance of the linear
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adjustment rule could be enhanced by introducing a bias term in (6). Anbar (1977) proposed a

biased stochastic approximation procedure, further studied by Krasulina (1998), for the problem

of one-side convergence. In this model, a bias term bn is introduced into the adjustment rule, i.e.,

Un = Un−1 − kn(Yn − T • + bn) . (7)

Using the law of the repeated logarithm, Anbar demonstrated the convergence of Yn as n → ∞
when bn converges to zero in n

1
2 (log(log n))−

1
2 .

Equation (7) is the adjustment rule we will consider in what follows; however, the conditions

of process variables outlined in Anbar (1977) do not give insight on the selection of the sequence

{bn} with reference to a specific asymmetric cost function. The adjustment procedure proposed
in this paper is instead oriented to derive a sequence of bias coefficients {bn} that minimize the
costs incurred during the transient phase of convergence of the quality characteristic to its steady-

state target. In order to preserve its easiness of use, the bias sequence {bn} should be able to be
computed off-line even when the process measurements are not available. This condition assures

the control rule to be applicable to any manufacturing process, independently from the time units

characterizing its dynamics.

By recursively substituting (7) in (1), the general expression of the quality characteristic at the

nth step of the procedure is given by:

Yn =
n−1
∏

i=1

(1− ki)d−
n−1
∑

i=1



ki(εi + bi)
n−1
∏

j=i+1

(1− kj)



+ T •
n−1
∑

i=1



ki

n−1
∏

j=i+1

(1− kj)



+ εn (8)

where:
n−1
∏

j=n
(1− kj) = 1 .

Since process errors are normally distributed, the quality characteristic Yn at each step of the

procedure is also normally distributed, i.e., Yn ∼ N(µn, σ
2
n), with mean and variance equal to:

µn =
n−1
∏

i=1

(1− ki)d−
n−1
∑

i=1



kibi

n−1
∏

j=i+1

(1− kj)



+ T •
n−1
∑

i=1



ki

n−1
∏

j=i+1

(1− kj)



 (9)

σ2
n = σ2

ε



1 +
n−1
∑

i=1

k2
i

n−1
∏

j=i+1

(1− kj)
2



 . (10)

As it can be observed, the sequence of bias terms {bi} affects only the mean value µn of the quality
characteristic. Therefore, for a given selection of {ki}, the bias terms {bi} can be determined by
equating the right hand side of expression (9) to the optimal mean at the nth step m•

n, i.e., the n
th

component of the vector m• = {m•
n, n = 1, ..., N} that minimizes the AIEC• given by (5). The

computation of m• will be addressed in the next section.
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Although the approaches in Anbar (1977) and Krasulina (1998) utilize the harmonic sequence

for {kn}, i.e., kn = 1, 1/2, 1/3, ..., it is in principle possible to consider a different sequence, while
maintaining the form of the controller given by (7). For example, besides considering the harmonic

sequence (Grubbs’ approach), a constant sequence (the EWMA or integral control approach) can

be considered instead.

In the case when ki = 1/i, i = 1, 2, ..., n− 1 (a harmonic series), the value of the mean and the
variance of the quality characteristic at each step are given by:

µn = T • − 1

n− 1

n−1
∑

i=1

bi (11)

σ2
n = σ2

ε

(

n

n− 1

)

. (12)

If ki is instead set equal to a constant λ, as in the EWMA approach, the resulting mean and

variance are:

µn = T • + (1− λ)n−1(d− T •)− λ(1− λ)n−1
n−1
∑

i=1

bi
(1− λ)i

(13)

σ2
n = σ2

ε

[

2− λ(1− λ)2(n−1)

2− λ

]

. (14)

It is noticed that in Equation (11) the value of µn does not depend on the initial unknown

offset d, thus an off-line computation of bn is possible. For the biased EWMA approach, µn (eq.

13) is a function of the unknown offset d, so the sequence of biased coefficients {bn} can not be
computed off-line. Therefore, we will only consider the biased harmonic adjustment rule in what

follows. From Equation (11), the general expression for bn can be obtained by equating the mean

of the response to the optimal mean at the nth and the n+ 1th steps, i.e.,

− 1

n− 1

n−1
∑

i=1

bi + T • = m•
n

and

− 1
n
(
n−1
∑

i=1

bi + bn) + T • = m•
n+1 ,

from where the general expression for the bias term bn is given by

bn = n(T • −m•
n+1)− (n− 1)(T • −m•

n) . (15)

4 The optimal target and the sequence of bias terms

To complete the adjustment rule, the optimal steady-state target T • and the sequence of bias terms

{bn} have to be specified. As previously mentioned, the first value represents the optimal mean
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m•
n as n → ∞, while the sequence of bias terms can be instead computed by using (15), once the

vector of optimal means m• is known. To compute this vector, the minimization problem that has

to be solved can be stated as:

minµ AIEC• (16)

where µ = {µn, n = 1, ..., N} is the vector composed by the means of the response at each step of
the procedure, and AIEC• is the performance index given by equation (5). As showed in Appendix

A.1, when the linear control rule (7) is in use, the optimization in (16) is equivalent to the following

set of minimization problems:

minµn E(C•
n) , n = 1, 2, ..., N . (17)

Problems in (17) will be solved for the two types of cost functions studied.

Consider first the constant asymmetric cost function. The expected cost at time n is given by:

E(Cc
n) = cc1

LSL
∫

−∞

fN (yn;µn, σ
2
n)dyn + cc2

∞
∫

USL

fN (yn;µn, σ
2
n)dyn

= cc1Φ

(

LSL− µn
σn

)

+ cc2

[

1− Φ
(

USL− µn
σn

)]

(18)

where fN (·) is the normal density function and Φ(·) is the standard normal distribution function.
The minimum of this function with respect to µn can be derived by computing the first and second

order derivatives of E(Cc
n). As reported in Appendix A.2, the optimal mean mc

n, obtained by

equating the first derivative of E(Cc
n) to zero, is given by

mc
n =

σ2
n ln(

cc1
cc2
)

(USL− LSL)
+
1

2
(USL+ LSL). (19)

As a special case, when the cost function is symmetric, i.e. cc1 = cc2, the result obtained is

mc
n = (USL+LSL)/2, which is equal to 0 when USL and LSL are symmetric around the nominal

value. Since the second derivative with respect to µn (equation (36) in Appendix A.2) is always

greater than zero when the condition LSL < µn < USL is satisfied, the value of mc
n obtained is

the minimum for the expected cost E(Cc
n).

The steady-state target T c can be derived as a particular case of the general expression (19) by

considering the limit, as n→∞, of σ2
n given by (12). Since this limit is equal to σ

2
ε , we get

T c =
σ2
ε ln(

cc1
cc2
)

(USL− LSL)
+
1

2
(USL+ LSL) . (20)

Substituting (20) and (19) into the expression of the bias term, given by (15), the values of the

bias terms bn for the asymmetric constant cost function can be directly computed. In this case, all

bn’s except the first one equal to zero, i.e.,
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bn =







−
ln(

cc1
cc
2
)σ2
ε

(USL−LSL) if n=1

0 if n=2,...,N .
(21)

Although the feedback adjustment procedure has a non-zero bias bn only at the first step, b1

affects the following adjustments through the Un−1 term in the expression of the controller (7).

Consider now the quadratic asymmetric cost function. The expected cost at the nth step of the

procedure is given by

E(Cq
n) = cq1

0
∫

−∞

y2
nfN (yn;µn, σ

2
n)dy + cq2

∞
∫

0

y2
nfN (yn;µn, σ

2
n)dyn.

By solving the two integrals (as reported in Appendix A.3), the following expression for the expected

value of the cost is obtained:

E(Cq
n) = cq2(µ

2
n + σ2

n) + (c
q
2 − cq1)

[

σnµnφ

(

µn
σn

)

− (µ2
n + σ2

n)Φ

(

−µn
σn

)]

. (22)

Computing the first derivative with respect to µn and equating it to zero (as reported in Appendix

A.4), the optimal mean mq
n is determined by the following equation:

2cq2m
q
n + 2(c

q
2 − cq1)

[

σnφ

(

mq
n

σn

)

−mq
nΦ

(

−m
q
n

σn

)]

= 0 (23)

where φ(·) is the standard normal density function and Φ(·) is the standard normal distribution
function. Although there is no closed form expression for mq

n, it can be computed numerically

off-line, since all the quantities in expression (23) do not depend on the actual observations of the

quality characteristic. Similarly as the constant cost function, if the quadratic cost function is

symmetric, i.e., cq1 = cq2, the optimal mean m
q
n is zero for n = 1, 2, ..., N .

The second derivative of E(Cq
n) with respect to µn is always positive (as shown in equation (45)

in Appendix A.3), somq
n given by equation (23) determines a minimum of the expected cost. Again,

the steady-state target T q can be computed as a special case by considering limn→∞σn = σε, in

equation (23), so T q is the solution of

2cq2T
q + 2(cq2 − cq1)

[

σεφ

(

T q

σε

)

− T qΦ

(

−T
q

σε

)]

= 0 . (24)

Therefore, in the case of the quadratic cost model, the feedback adjustment rule can be obtained

by evaluating numerically the optimal means mq
n that satisfy equation (23) for n = 1, 2, ..., N , and

the optimal target T q can be obtained from equation (24). Substituting these values in equation

(15), we obtain the sequence of bias coefficients {bn}.
In summary, the biased linear adjustment procedure for constant and quadratic cost functions

are as follows:
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Solution to the Asymmetric Constant Cost Model

Given: cc1, c
c
2, USL, LSL, σε, N .

1. Compute the steady-state target T c using (20);

2. Compute the bias coefficient b1 using (21);

3. Adjust the control variable on-line according to the following equation:

Un =

{

−[Y1 − T c + b1] if n = 1
Un−1 − 1

n
[Yn − T c] if n = 2, ..., N .

(25)

Solution to the Asymmetric Quadratic Cost Model

Given: cq1, c
q
2, σε, N .

1. Compute the steady-state target T q by solving numerically equation (24);

2. Find the sequence of bias terms {bn} for n = 1, ..., N :

• Compute the optimal meanmq
n by solving numerically equation (23) where σn = σε

√

n
n−1 ;

• Substitute T q
n and m

q
n into (15) to obtain bn;

3. Adopt the biased linear adjustment rule for on-line process adjustment:

Un = Un−1 −
1

n
(Yn − T q + bn) .

5 An application to a real machining process

In this section, the biased linear adjustment procedure for start-up errors will be applied to a real

machining problem. The performance of the biased rule will be compared with that of Grubbs’

rule and with the EWMA (integral) controller. The latter two procedures follow the adjustment

rules of the form (6) where kn is equal to 1/n for Grubbs’ rule and equal to a constant λ for the

EWMA controller.

A hole-finishing operation is performed on a pre-existing hole in a raw aluminum part made by

pressure casting. The Specification Limits on the final hole diameter are at 57.000±0.030mm. After
the execution of the operation, the diameter of the hole (D) is measured in an automatic inspection

station constituted by a probe that acquires the diameter while the workpiece rotates 360 degrees

around the axis of the hole. The mean diameter is computed and recorded. Due to the materials

machined and the tools used (polycrystalline inserts), the tool wear can be neglected and no trend

is present in the data collected. We let the quality characteristic of this process be the difference

between measurement Dn and the nominal value of the hole diameter, i.e., Yn = Dn − 57000, in
microns. The standard deviation of the process σε is estimated through

√
MSE (the square root
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Figure 3: The hole finishing operation.

of Mean Square Error), which is obtained from an ANOVA analysis of historical process data after

start-ups and which is equal to 10 microns (thus the process capability ratio, PCR, is 1). From

the ANOVA analysis, it is also found that after setup or maintenance operations the process mean

often exhibits a shift or offset, which is, on average, in the order of 3σε. In this case, parts are

produced in lot of size 15.

The costs related to non-conforming items are different depending on whether the diameter

obtained is below the Lower or above the Upper Specification Limit. Indeed, when the hole diameter

is less than LSL, an additional machining operation can correct the defect by opportunely selecting

the depth of cut. On the other hand, when the diameter obtained is greater than USL, the part

has to be scrapped, since there is no possibility to recover the nonconforming workpiece. The cost

of an undersized hole, cc1, is determined by considering the additional repairing operation while the

cost of an oversized hole, cc2, is equal to the margin lost minus the value of the scrap. In this case,

the asymmetric ratio r (r = cc2/c
c
1) is 6.5. If a quadratic cost model is assumed, by adopting the

relation outlined in expressions (4), the same ratio between cq2 and c
q
1 can be obtained.

As showed in Figure 3, the controllable variable Un is the radial position of the tool. In

fact, by opportunely selecting this variable, the depth of cut can be changed, thus modifying the

dimension of the diameter obtained. Furthermore, the adoption of a parametric part program can

in principle allow for an automatic adjustment procedure: once a diameter is measured, the value

of the controllable variable can be determined and transmitted to the control unit of the machining

center that will process the next part accordingly. In a real-life application of an adjustment

procedure, the resolution of the machine in setting the tool position should be considered in order

to derive the approximation of the adjustment size. In this case a precision in the order of microns

determines that we round the adjustment to zero decimal places.

Assuming the asymmetric constant cost function model, the expected value of the cost reported
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in (18) can be rewritten as a function of r, thus a scaled form of the expected costs at each step of

the adjustment procedure is obtained as:

E(Cc
n)

cc1
= Φ

(

LSL− µn
σn

)

+ r

[

1− Φ
(

USL− µn
σn

)]

(26)

Therefore, the performance comparisons among the different control rules will be evaluated using

as performance index the Scaled Average Integrated Expected Cost (SAIEC), defined as:

SAIECc =
1

N

N
∑

n=2

E(Cc
n)

cc1
(27)

where the index in the summation starts from 2, since the quality characteristic of the first part

machined does not depend on the adjustment procedure. To define the Biased adjustment rule,

the steady-state target T c and the biased coefficients bn need to be computed and rounded to the

closest integer. Using equation (20), the steady-state target results T c = −3 micron. Therefore,
according to (21), the biased coefficients are given by:

bn =

{

3 n = 1
0 n = 2, ..., 15

(28)

Figure 4 reports the plots of the expected value of the quality characteristic obtained with

both the Biased and Grubbs’ procedures. In particular, the piecewise behavior of the biased

mean converging to the target value is due to the approximation (rounding) adopted to consider

the precision of the machine in setting the tool position. In fact, changing the precision of the

approximation to the second decimal place, the mean at each step of the Biased procedure is

represented by the dotted line in Figure 4. As it can be observed, the adoption of the Biased

procedure induces a convergence of the mean to the steady-state target value T c from the side of

lower nonconforming costs.

The savings in cost obtained by the Biased rule are shown in Figure 5, where the percentage

difference in SAIECc determined by the Biased and Grubbs’ procedures is reported as a function

of the items processed (computed from data in Table 1).

A further comparison between the Biased and different EWMA control rules, characterized

by values of the parameter λ ranging from 0.2 to 0.8 (Box and Luceño, 1995), has been carried

out. Since the performance of an EWMA controller depends on the initial offset d, a constant

A = (d− T •)/σε, i.e., the difference between d and the target value in standard deviation units is

assumed equal to 3 according to the practical case we have discussed.

The Scaled Average Integrated Expected Costs SAIECc obtained with the Biased procedure

and the EWMA controllers are reported in Table 1 and plotted in Figure 6. As it can be observed,

the Biased procedures has the smallest expected cost compared to all the EWMA controllers and

the advantage reduces as λ increases, So a value λ = 0.8 was used in the next comparison. It should
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Figure 4: Trajectory of the optimal mean of the quality characteristic (mc
n) using Grubbs’ and the

Biased procedures (considering 0 and 2 decimal places) under the constant cost model (r = 6.5 and
N = 15).

Figure 5: The percentage savings in SAIECc (
SAIECc

G−SAIEC
c
B

SAIECc
G

×100) obtained by using the Biased
procedure compared to Grubbs’ rule under the constant cost function model (r = 6.5 and N = 15).
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n EWMA0.2 EWMA0.4 EWMA0.6 EWMA0.8 Grubbs Biased

2 1.227 0.532 0.234 0.119 0.092 0.080
3 0.898 0.341 0.149 0.088 0.064 0.057
4 0.689 0.245 0.112 0.076 0.051 0.046
5 0.553 0.192 0.092 0.070 0.043 0.039
6 0.461 0.158 0.080 0.067 0.037 0.034
7 0.393 0.135 0.072 0.065 0.033 0.031
8 0.342 0.118 0.066 0.063 0.030 0.028
9 0.303 0.106 0.062 0.062 0.028 0.026
10 0.271 0.096 0.058 0.061 0.026 0.024
11 0.246 0.089 0.055 0.060 0.024 0.023
12 0.225 0.082 0.053 0.059 0.023 0.022
13 0.207 0.077 0.051 0.059 0.022 0.021
14 0.193 0.072 0.050 0.058 0.021 0.020
15 0.180 0.068 0.048 0.058 0.020 0.019

Table 1: The SAIECc adopting different control rules (r = 6.5, N = 15 and A = 3).

be pointed out that much smaller values of λ are recommended in the literature (Box and Luceño,

1995), but for these values of λ the EWMA performs relatively worse.

The cost comparison between the EWMA controller with λ = 0.8 and the Biased controller is

given in Figure 7, where the percentage saving in SAIECc induced by the Biased procedure over

the EWMA is plotted. It is interesting to find that the advantage induced by the Biased procedure

is even higher as the number of parts produced increases. The reason for this behavior lies on the

long-term performance of the EWMA control rule. In fact, as n tends to infinity, the mean of the

Yn regulated by the EWMA controller approaches zero, but the variance approaches to the value

2σ2
ε/(2 − λ), which is greater than σ2

ε . This inflation in variance has been discussed by Box and

Luceño (1997) and del Castillo (2001).

For the quadratic cost function model, an analogous comparison was performed. In this case,

the expected cost reported in equation (22) can be rewritten in scaled form by manipulating the

expression as follows:

E(Cq
n) = cq1σ

2
n

{

cq2
cq1

(

µ2
n

σ2
n

+ 1

)

+

(

cq2
cq1
− 1

)[

µn
σn

φ

(

µn
σn

)

−
(

µ2
n

σ2
n

+ 1

)

Φ

(

−µn
σn

)]}

.

Considering that the variance at each step of the adjustment procedure (12) is proportional to

the variance of the error σ2
ε , the expected cost at the n

th step of the procedure is given by:

E(Cq
n)

cq1
= snσ

2
ε

{

r(δ2
n + 1) + (r − 1)

[

δnφ(δn)− (δ2
n + 1)Φ(−δn)

]}

,

where sn =

[

1 +
∑n−1

i=1 k
2
i

n−1
∏

j=i+1
(1− kj)

2

]

represents the ratio between σ2
n and σ

2
ε in equation (12),

r denotes the ratio between cq2 and c
q
1 and δn the ratio between µn and σn.
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Figure 6: Comparison of SAIECc’s determined by the EWMA controllers (with different values of
λ) and the Biased procedure under the constant cost function model (r = 6.5, N = 15 and A = 3).

Figure 7: The percentage savings in SAIECc (
SAIECc

EWMA0.8−SAIECc
B

SAIECc
EWMA0.8

× 100) obtained by using
the Biased procedure compared to the EWMA rule with λ = 0.8 under the constant cost function
model (r = 6.5, N = 15 and A = 3).
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Figure 8: Trajectory of the optimal mean of the quality characteristic (mq
n) using Grubbs’ and the

Biased procedures (considering 0 and 2 decimal places) under the quadratic cost model (r = 6.5
and N = 15).

As in the constant cost function case, the performance index considered is related to the Scaled

Average Integrated Expected Cost defined as:

SAIECq =
1

N

N
∑

n=2

E(Cq
n)

cq1
(29)

Figure 8 reports the plot of the mean of the quality characteristic obtained with Grubbs’ rule

(in which the mean is constant and equal to the steady-state target value), and the Biased rule (in

which the mean is set to mq
n and converges to the target value). Similarly as in the constant cost

model case, the mean induced by the Biased procedure is computed by considering the assumption

on the control variable resolution (in Figure 8 the theoretical behavior of one-sided convergence

of mq
n is reported with a dotted line, which was obtained by rounding m

q
n to the second decimal

place). The values of the biased coefficients bn are also shown in Table 2. As it can be observed,

when the precision of the machine is considered, the sequence {bn} adopted is basically the same as
obtained with the asymmetric constant cost model (28), but the computation of bn in the constant

cost model is much easier because of the closed form expressions. Therefore, this numerical result

permits to outline an approximated way to compute the bn that does not require the numerical

solution of equation (23).

Data on the SAIECq/σ2
ε obtained with the Grubbs’ rule, the Biased rule and the EWMA

controller are reported in Table 3. The percentage in savings from adopting the Biased proce-

dure instead of Grubbs’ rule are reported in Figure 9. Figures 10 and 11 report respectively the

SAIECq/σ2
ε obtained with the Biased procedure and the EWMA controllers and the detail on the
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n bn bn
(2 decimal precision)

1 3 3.06
2 0 0.26
3 0 0.11
4 0 0.06
5 0 0.04
6 0 0.03
7 0 0.02
8 0 0.01
9 0 0.01
10 0 0.01
11 0 0.01
12 0 0.01
13 0 0.01
14 0 0.00
15 0 0.00

Table 2: The bias coefficients bn computed under the quadratic cost function rounding to the
nearest integer or considering the second decimal place (r = 6.5 and N = 15).

n EWMA0.2 EWMA0.4 EWMA0.6 EWMA0.8 Grubbs Biased

2 25.461 14.947 8.674 5.625 4.818 4.539
3 20.721 11.046 6.545 4.851 4.158 3.970
4 17.300 8.761 5.560 4.544 3.798 3.657
5 14.829 7.452 5.028 4.391 3.566 3.451
6 13.035 6.579 4.685 4.298 3.402 3.305
7 11.635 5.974 4.457 4.237 3.280 3.195
8 10.505 5.543 4.294 4.193 3.184 3.109
9 9.614 5.219 4.172 4.160 3.107 3.039
10 8.889 4.958 4.077 4.135 3.043 2.982
11 8.287 4.749 4.001 4.114 2.990 2.933
12 7.794 4.579 3.939 4.098 2.944 2.892
13 7.370 4.436 3.887 4.084 2.904 2.856
14 7.011 4.316 3.843 4.072 2.869 2.824
15 6.696 4.213 3.805 4.062 2.838 2.796

Table 3: The SAIECq/σ2
ε adopting different control rules (r = 6.5, N = 15 and A = 3)
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Figure 9: The percentage savings in SAIECq (
SAIEC

q
G−SAIEC

q
B

SAIEC
q
G

×100) obtained by using the Biased
procedure compared to Grubbs’ rule under the quadratic cost function model (r = 6.5 and N = 15).

Figure 10: Comparison of SAIECq/σ2
ε ’s determined by the EWMA controllers (with different

values of λ) and the Biased procedure under the quadratic cost function model (r = 6.5, N = 15
and A = 3).
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Figure 11: The percentage savings in SAIECq (
SAIEC

q
EWMA0.8

−SAIECq
B

SAIEC
q
EWMA0.8

× 100) obtained by using
the Biased procedure compared to the EWMA rule with λ = 0.8 under the quadratic cost function
model (r = 6.5, N = 15 and A = 3).

percentage savings obtained over the EWMA controller with λ = 0.8.

The comparisons between the Biased control rule, Grubbs’ procedure and the EWMA indicate

the same conclusions as for the constant asymmetric cost model, but quantitatively, the magnitude

of the percentage advantage obtained with the Biased rule is greater when adopting the constant

cost model.

6 Sensitivity Analysis

A numerical comparison of the performance obtained with the Biased procedure, Grubbs’ rule

and the EWMA controllers was conducted to characterize situations in which the adoption of the

feedback adjustment could be more profitable. The comparison has been carried out first for the

Biased procedure versus Grubbs’ rule, since the performance in this case does not depend on the

initial offset. The variables affecting the results in this case are the coefficient r, representing the

asymmetry of the cost function, and N , the number of parts processed in each lot. The value of r

was varied from 1 to 11 as in Ladany (1995). We point out that two real cases of asymmetric cost

functions considered in Wu and Tang (1998) and Moorhead and Wu (1998) have r to be 4 and 6,

respectively, and they are inside the range examined. The number of parts in the lot, N, was varied

from 1 to 40.

Figures 12 and 13 present the savings in cost obtained with the Biased procedure over Grubbs’

rule for the constant and quadratic cost models, respectively. As it can be observed, the Biased

procedure has an advantage especially on the first parts produced (this suggests the adoption of the
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Figure 12: Sensitivity analysis: the percentage saving in SAIECc (
SAIECc

G−SAIECc
B

SAIECc
G

×100) obtained
by using the Biased procedure compared to Grubbs’ procedure under the constant cost function
model, when the asymmetry ratio is varied.

Biased rule when parts are produced in small lots) and this advantage increases as the asymmetry

in the function becomes more evident (i.e., as r increases).

Since the performance of the EWMA controllers depend on the initial offset d, standardized by

the constant A = (d−T •)/σε, the comparison between the Biased rule and the EWMA controller has

been performed by considering A ranging from −4 to 4. Figures 14 and 15 report the difference in
the Scaled Average Integrated Expected costs obtained with the EWMA and the Biased controller,

under the constant and the quadratic cost models, respectively. In particular, the difference is

reported for the two extreme values of λ (i.e., λ = 0.2 and λ = 0.8) and the lot size (i.e., N = 5

and N = 40).

Depending on the initial offset, the advantage of using the Biased procedure varies dramatically.

Considering the case in which λ = 0.2, when A is greater than 1 the performance of the Biased

procedure dominates that of the EWMA controller, but the difference between the two procedures

is almost negligible as A is close to zero. Furthermore, the advantage is asymmetric too. In

particular, if A is positive, i.e. the offset d arises from the side in which non-conforming items are

more expensive, the advantage of adopting the Biased procedure is significantly greater, compared

with the case in which the initial shift has the same magnitude but different sign. As the number of

parts processed in the lot increases, the difference between the two procedures maintains the same
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Figure 13: Sensitivity analysis: the percentage saving in SAIECq (
SAIEC

q
G−SAIEC

q
B

SAIEC
q
G

×100) obtained
by using the Biased procedure compared to Grubbs’ rule under the quadratic cost function model,
when the asymmetry ratio is varied.

behavior while reducing in magnitude (both approaches tend to reach their asymptotic performance,

which are different only with respect to the variance σ2
n of the quality characteristic).

In the case when λ = 0.8 is used in the EWMA control rule, the advantage determined by

the Biased approach is reduced but is always greater than zero, regardless of the direction of the

initial offset. Also in this case, the effect of A becomes even less significant when N increases. The

problem with the EWMA controller, of course, is that it is not clear how to choose λ.

7 Conclusions

The problem of designing an adjustment rule to correct a process start-up error has recently received

a renewed attention in the literature. This attention is related to two tendencies that are shown in

modern manufacturing. The first one is the adoption of small lot sizes, which leads to an increase

in the number of setups required on the machine. The second one is the growing frequency in

changing product specifications, which increases the chance of systematic errors at the start-up

of a manufacturing process. Therefore, applying feedback adjustments for process start-up errors

becomes an effective way to reduce the number of non-conforming parts. Up to now, previous

approaches to setup adjustment problems have only considered symmetric cost functions. This

paper presented a feedback adjustment rule that can be adopted when an asymmetric cost model
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Figure 14: Sensitivity analysis: the difference in SAIECc (SAIECc
EWMA − SAIECc

B) obtained
by using the EWMA controller and the Biased rule under the constant cost model, when r, A and
N are varied. a)λ = 0.2 and N = 5; b) λ = 0.8 and N = 5; c) λ = 0.2 and N = 40; d) λ = 0.8 and
N = 40.
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Figure 15: Sensitivity analysis: the difference in SAIECq/σ2
ε (

SAIEC
q
EWMA

−SAIECq
B

σ2
ε

) obtained by

using the EWMA controller and the Biased under the quadratic cost model, when r, A and N are
varied. a)λ = 0.2 and N = 5; b) λ = 0.8 and N = 5; c) λ = 0.2 and N = 40; d) λ = 0.8 and
N = 40.
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can better represent the process quality losses entailed. In particular, two asymmetric cost functions

that are often encountered in manufacturing have been considered. In the first case, the cost of a

non-conforming item is assumed constant but changes depending whether the quality characteristic

is below the Lower or above the Upper Specification Limit. In the second case, costs are supposed

to be proportional to the square of the distance of the quality characteristic from the nominal value,

but the proportional constant is allowed to change with the sign of this difference.

Starting from the general form of a linear controller, the biased feedback adjustment rule has

been derived by minimizing all the costs incurred during the transient phase in which the quality

characteristic converges to its steady-state target. A numerical comparison of the cost incurred by

the adjustment rule proposed and other rules assessed in the literature showed that the proposed

procedure is effective, especially when the asymmetry in the cost function or the initial process offset

are significant. Compared to Grubbs’ rule, the proposed Biased adjustment rule is recommended

especially for manufacturing expensive parts which usually are produced in small lots (e.g., in the

aerospace industry).

Besides the two specific cost functions studied herein, the proposed approach can be easily

extended to deal with different production situations in which the cost function is asymmetric,

such as a piece-wise linear function used in filling processes (Misiorek and Barnett, 2000).
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Appendix A.1: Equivalence between the minimization of AIEC•

and the minimization of the expected cost E(C•
n)

Consider the minimization problem

minµ AIEC•

where µ = {µn, n = 1, ..., N} is the N × 1 vector of the means of the quality characteristic and
AIEC• is given by (5). The assumption of linear feedback adjustment rule induces an affine relation

among the means of the response variable, which can be generally expressed as µ = Rµ+s, where
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R is a N × N matrix and s is a N × 1 vector. In particular the mean at the nth step µn can be
derived as:

µn =
N
∑

i=1

rniµi + sn (30)

where rni is the entry in row n and column i of the matrix R and sn is the n
th component of s.

In particular, the mean at each step is a function only of the previous ones, therefore rni = 0 for

i ≥ n.

To minimize AIEC• the first order condition consists in equating to zero all the components

of the gradient vector, i.e.:

∇AIEC• = 0 ,

where 0 is a N × 1 vector of zeros. Considering the expression of AIEC• given by (5), the ith

component of the gradient can be rewritten as:

∂AIEC•

∂µi
=
1

N

N
∑

n=1

∂E(C•
n)

∂µi
=
1

N

N
∑

n=1

∂E(C•
n)

∂µn

∂µn
∂µi

=
1

N

N
∑

n=1

∂E(C•
n)

∂µn
rni .

Therefore, the first order condition is satisfied when

∂E(C•
n)

∂µn
= 0 , n = 1, 2, ..., N . (31)

The second order condition can be determined by considering two theorems, derived by extend-

ing to strictly convex functions results reported in (Bazaraa et al., 1993) for convex functions.

Theorem 1

Let f1, f2, ..., fk : En → E1 be strictly convex functions. Then, the function f defined as f(x)=
∑k

j=1 αjfj(x), where αj > 0 for j = 1, ..., k is strictly convex.

Theorem 2

Let g : Em → E1 be a strictly convex function and let h: En → Em be an affine function of the

form h(x) = Ax+ b, where A is an m× n matrix and b is an m× 1 vector. Then, the composite
function f : En → E1, defined as f(x)= g [h(x)], is strictly convex.

Considering expression (5), AIEC• can be seen as a linear combination of E(C•
n) with weights

1/N . Therefore the first theorem allows to assert that AIEC• is strictly convex when each com-

ponent E(C•
n) is also a strictly convex function of the vector of means µ. On the other hand,

the expected cost at time n, E(C•
n), is a composite function, since it is directly related only to

one component of the vector, namely µn, which in turn depends on the whole vector µ through

an affine relation (given by equation 30). Therefore, considering the second theorem, the strictly

convexity of E(C•
n) as a function of the whole vector µ, is proved once it is showed that E(C

•
n) is a

strictly convex function of the scalar µn. Merging the results from the first and second theorems,

the second order condition can be stated as:

∂2E(C•
n)

∂2µn
> 0 . (32)
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This condition implies that AIEC• is a strictly convex function, thus characterized by a unique

and global minimum. Considering both the first and the second order conditions, given respectively

by (31) and (32), the minimization of AIEC• considered can be replaced by the following set of

minimization problems:

minµn E(C•
n) , n = 1, 2, ..., N .

Appendix A.2: Minimization of the expected costs E(C c
n) for the

asymmetric constant cost function

In the case of the constant cost function

E(Cc
n) = cc1Φ

(

LSL− µn
σn

)

+ cc2

[

1− Φ
(

USL− µn
σn

)]

,

taking the first derivative with respect to µn and equating it to zero, we get

∂

∂µn
E(Cc

n) = −
cc1
σn

φ

(

LSL− µn
σn

)

+
cc2
σn

φ

(

USL− µn
σn

)

= 0 .

Therefore, the condition for the optimal target at time n, mc
n, is given by

φ
(

USL−mc
n

σn

)

φ
(

LSL−mc
n

σn

) =
cc1
cc2

. (33)

Considering the analytical expression of the normal density φ(·), equation (33) can be rewritten
as:

1√
2π
exp

[

−1
2

(

USL−mc
n

σn

)2
]

1√
2π
exp

[

−1
2

(

LSL−mc
n

σn

)2
] = exp

{

−1
2

[

(

USL−mc
n

σn

)2

−
(

LSL−mc
n

σn

)2
]}

=
cc1
cc2

(34)

By taking the logarithm on both sides of equation (34), the closed form expression of the optimal

target mc
n can be obtained as follows:

USL2 +mc 2
n − 2 USL mc

n − LSL2 −mc 2
n + 2 LSL mc

n

σ2
n

= −2 ln
(

cc1
cc2

)

USL2 − LSL2 − 2(USL− LSL)mc
n = −2σ2

n ln

(

cc1
cc2

)

mc
n =

2σ2
n ln(

cc1
cc2
) + USL2 − LSL2

2(USL− LSL)
=

σ2
n ln(

cc1
cc2
)

(USL− LSL)
+
1

2
(USL+ LSL) . (35)
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In order to evaluate if the optimal meanmc
n obtained determines a minimum of the cost function,

the second order derivative has to be considered:

∂2

∂µ2
n

E(Cc
n) =

∂

∂µ

[

− cc1
σn

φ

(

LSL− µn
σn

)

+
cc2
σn

φ

(

USL− µn
σn

)]

=
cc1
σ3
n

(µn − LSL)φ

(

LSL− µn
σn

)

+
cc2
σ3
n

(USL− µn)φ

(

USL− µn
σn

)

. (36)

As it can be observed, this is always greater than zero as long as the condition LSL < µn < USL

is satisfied.

Appendix A.3: The Expected Costs E(Cq
n) for the asymmetric quadratic

cost function

Consider the expected cost at time n given by:

E(Cq
n) = cq1

0
∫

−∞

y2
nfN (yn;µn, σ

2
n)dyn + cq2

∞
∫

0

y2
nfN (yn;µn, σ

2
n)dyn . (37)

Since cq1 and c
q
2 are constants, the expression of the expected value of cost at time n is completely

defined by solving the generic integral:

b
∫

a

y2fN (y;µ, σ
2)dy =

1√
2πσ

b
∫

a

y2 exp

[

−(y − µ)2

2σ2

]

dy . (38)

Let z = y−µ
σ
, thus y = µ + σz → dy = σdz, y = a → z = a−µ

σ
= c and y = b → z = b−µ

σ
= d.

Hence, the integral in (38) can be rewritten as:

1√
2πσ

d
∫

c

(µ+ σz)2 exp

(

−z
2

2

)

σdz =

1√
2π







µ2

d
∫

c

exp

(

−z
2

2

)

dz + σ2

d
∫

c

z2 exp

(

−z
2

2

)

dz + 2µσ

d
∫

c

z exp

(

−z
2

2

)

dz







. (39)

The first term on the right hand side of (39) can be simply calculated as:

µ2

√
2π

d
∫

c

exp

(

−z
2

2

)

dz = µ2 [Φ(d)− Φ(c)] ,

where Φ(·) represents the cumulative standard normal distribution function. The second term can
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be evaluated integrating by parts as follows:

σ2

√
2π

d
∫

c

z2 exp

(

−z
2

2

)

dz = − σ2

√
2π

d
∫

c

z(−z) exp
(

−z
2

2

)

dz

= − σ2

√
2π

d
∫

c

z

[

d

dz
exp

(

−z
2

2

)]

dz

= − σ2

√
2π

[

z exp

(

−z
2

2

)]d

c

+
σ2

√
2π

d
∫

c

exp

(

−z
2

2

)

dz

= − σ2

√
2π

[

d exp

(

−d
2

2

)

− c exp

(

−c
2

2

)

] + σ2 [Φ(d)− Φ(c)] .

Finally, the third term in (39) can be computed as follows:

2µσ√
2π

d
∫

c

z exp

(

−z
2

2

)

dz = − 2µσ√
2π

d
∫

c

(−z) exp
(

−z
2

2

)

dz

= − 2µσ√
2π

d
∫

c

[

d

dz
exp

(

−z
2

2

)]

dz

= − 2µσ√
2π

[

exp

(

−z
2

2

)]d

c

= − 2µσ√
2π

[

exp

(

−d
2

2

)

− exp
(

−c
2

2

)]

= −2µσ [φ(d)− φ(c)] .

Therefore:

b
∫

a

y2fN (y;µ, σ
2)dy = (µ2 + σ2) [Φ(d)− Φ(c)] + (40)

− σ2

√
2π

[

d exp

(

−d
2

2

)

− c exp

(

−c
2

2

)]

+−2µσ [φ(d)− φ(c)] ,

where a−µ
σ
= c and b−µ

σ
= d. With this result, the first integral in (37) can be computed by

evaluating (40) when c→ −∞ and d = −µ
σ
. We have that:

0
∫

−∞

y2
nfN (yn;µn, σ

2
n)dyn = (µ2

n + σ2
n)Φ

(

−µn
σn

)

+

− σ2
n√
2π

[

−µn
σn
exp

(

− µ2
n

2σ2
n

)

− lim
c→−∞

c exp

(

−c
2

2

)]

− 2µnσnφ
(

µn
σn

)

and, by using De L’Hospital’s rule:

lim
c→−∞

c exp

(

−c
2

2

)

= lim
c→−∞

c

exp
(

c2

2

) = lim
c→−∞

1

c exp
(

c2

2

) = 0 .
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Hence,
0
∫

−∞

y2
nfN (yn;µn, σ

2
n)dyn = (µ

2
n + σ2

n)Φ

(

−µn
σn

)

− σnµnφ

(

µn
σn

)

.

The second integral in (37) can be analogously computed, considering that in this case c = − µ
σ

and d→∞. This is given by:
∞
∫

0

y2
nfN (yn;µn, σ

2
n)dyn = (µ

2
n + σ2

n)

[

1− Φ
(

−µn
σn

)]

+ σnµnφ

(

µn
σn

)

.

Therefore, the expected costs in equation (37) can be rewritten as:

E(Cq
n) = cq2(µ

2
n + σ2

n) + (c
q
2 − cq1)

[

σnµnφ

(

µn
σn

)

− (µ2
n + σ2

n)Φ

(

−µn
σn

)]

. (41)

Appendix A.4: The minimization of the E(Cq
n) for the asymmetric

quadratic cost function

In order to minimize E(Cq
n), given by expression (41), the first and the second order derivatives

with respect to µn are given by:

∂

∂µn
E(Cq

n) = 2cq2µn + (c
q
2 − cq1)

[

σnφ

(

µn
σn

)

+ σnµn
∂

∂µn
φ

(

µn
σn

)

+ (42)

−2µnΦ
(

−µn
σn

)

−
(

µ2
n + σ2

n

) ∂

∂µn
Φ

(

−µn
σn

)]

= 0 ,

∂2

∂µ2
n

E(Cq
n) = 2cq2 + (c

q
2 − cq1)

[

2σn
∂

∂µn
φ

(

µn
σn

)

+ σnµn
∂2

∂µ2
n

φ

(

µn
σn

)

+ (43)

−2Φ
(

−µn
σn

)

− 4µn
∂

∂µn
Φ

(

−µn
σn

)

− (µ2
n + σ2

n)
∂2

∂µ2
n

Φ

(

−µn
σn

)]

.

Equations (42) and (43) can be computed from the first and second order derivatives of φ
(

µn
σn

)

and Φ
(

−µn
σn

)

. With respect to φ
(

µn
σn

)

, given by

φ

(

µn
σn

)

=
1√
2π
exp

(

−1
2

µ2
n

σ2
n

)

,

these are:
∂

∂µn
φ

(

µn
σn

)

=
1√
2π

(

−µn
σ2
n

)

exp

(

−1
2

µ2
n

σ2
n

)

= −µn
σ2
n

φ

(

µn
σn

)

∂2

∂µ2
n

φ

(

µn
σn

)

= − 1
σ2
n

φ

(

µn
σn

)

+
µ2
n

σ4
n

φ

(

µn
σn

)

.
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While considering Φ(−µn
σn
), given by:

Φ(−µn
σn
) =

∫ −µn
σn

−∞

1√
2π
exp

(

−1
2

µ2
n

σ2
n

)

,

the derivatives are obtained as follows:

∂

∂µn
Φ

(

−µn
σn

)

= − 1
σn

φ

(

−µn
σn

)

and
∂2

∂µ2
n

Φ

(

−µn
σn

)

=
µn
σ3
n

φ

(

−µn
σn

)

.

Therefore, the first derivative of the expected costs is:

∂

∂µn
E(Cq

n) = 2cq2µn + (c
q
2 − cq1)

[

σnφ

(

µn
σn

)

− µ2
n

σn
φ

(

µn
σn

)

+ (44)

−2µnΦ
(

−µn
σn

)

+
µ2
n

σn
φ

(

µn
σn

)

+ σnφ

(

µn
σn

)]

= 2cq2µn + 2(c
q
2 − cq1)

[

σnφ

(

µn
σn

)

− µnΦ

(

−µn
σn

)]

,

while the second order optimality condition is given by:

∂2

∂µ2
n

E(Cq
n) = 2cq2 + (c

q
2 − cq1)

[

−2µn
σn

φ

(

µn
σn

)

− µn
σn

φ

(

µn
σn

)

+
µ3
n

σ3
n

φ

(

µn
σn

)

+ (45)

−2Φ
(

−µn
σn

)

+
4µn
σn

φ

(

µn
σn

)

− µ3
n

σ3
n

φ

(

µn
σn

)

− µn
σn

φ

(

µn
σn

)]

= 2cq2 + (c
q
2 − cq1)

[

−2Φ
(

−µn
σn

)]

= 2cq2

[

1− Φ
(

−µn
σn

)]

+ 2cq1

[

Φ

(

−µn
σn

)]

> 0 .
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