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Abstract

Conventional process identification techniques of a open-loop pro-
cess use the cross-correlation function between historical values of the
process input and of the process output. If the process is operated
under a linear feedback controller, however, the cross-correlation func-
tion has no information on the process transfer function because of the
linear dependency of the process input on the output. In this paper,
several circumstances where a closed-loop system can be identified by
the autocorrelation function of the output are discussed. It is assumed
that a Proportional Integral (PI) controller with known parameters is
acting on the process while the output data were collected. The dis-
turbance is assumed to be a member of a simple yet useful family of
stochastic models, which is able to represent drift. It is shown that,
with these general assumptions, it is possible to identify some dynamic
process models commonly encountered in manufacturing. After identi-
fication, our approach suggests to tune the controller to a near-optimal
setting according to a well-known performance criterion.
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1 Introduction

Many manufacturing processes are carried out under repeated feedback ad-

justments. Frequently, the adjustment rule, or controller, is not optimal

in any sense, but is sufficient to operate the process in a safe and stable

condition that at least allows the manufacturing process to achieve positive

economic returns. To tune a feedback controller in order to provide better

performance, good transfer function and disturbance models are necessary.

Identifying a process in open loop (i.e., when no adjustments take place)

may result in low yields or unsafe manufacturing conditions, particularly if

disturbances are nonstationary. Therefore, identifying, estimating and opti-

mizing a manufacturing process under closed-loop feedback adjustments is

of practical importance. In this paper, identification methods for processes

operated under EWMA (Exponential Weighted Moving Average) and PI

(Proportional Integral) control are proposed. These methods allow to tune

optimally the feedback controller in use.

Conventional process identification techniques use the cross-correlation

function between historical values of the process input, the controllable factor

{ut}
N
t=1, and of the process output, the observed deviations from target of

the quality characteristics {et}
N
t=1. Effectiveness of this type of identification

depends on the fact that the input is independent of the process disturbance

[1]. In a process operating under a linear feedback controller, however, it

is evident that the input depends on the output. This causes the cross-

correlation to have no information on the process transfer function. The

closed-loop identification method proposed by Box and MacGregor [2,3] is

based on breaking the dependency between controlled input and output by

adding a ”dither” signal.

In this paper, several circumstances where a closed-loop system can be

identified by the autocorrelation function of the output will be discussed.

It is assumed that a Proportional Integral (PI) controller with known pa-

rameters is acting on the process while the output data were collected. This
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includes the case of the so-called EWMA (exponential weighted moving aver-

age) controller, popular in semiconductor manufacturing [4]. The disturbance

is assumed to be a member of a simple yet useful family of stochastic models,

which is able to represent drift [5]. As pointed out by Box and MacGregor

[2], if nothing is known about the transfer function or about the disturbance

model, closed loop identification from the autocorrelation of the output is

not possible.

In the next section, the general models under our consideration are pre-

sented. The closed-loop descriptions of output deviations are then derived

and their identification methods are discussed. The asymptotic mean square

deviation (AMSD) of the output is used as a measure of the controller’s

performance and it will be minimized by tuning some parameters in the con-

troller after the process transfer function has been identified. One simulated

process is used to illustrate the procedure. It is shown that even when the

process is partly mis-identified, the controller can still be tuned to a near

optimal state.

2 Assumed Process and Disturbance Dynam-

ics

Following Box et al. [1] modeling approach, it is assumed that an observed

output deviation from target, et, consists of two components – a process

“signal”, St, and disturbance, Nt. That is, the signal generated by the un-

derlying manufacturing mechanism can only be observed under the presence

of a disturbance as follows:

et = St +Nt

More specifically, the process transfer function that generates St is written

as a rational transfer function, and the disturbance Nt is modeled by an

ARIMA (Autoregressive Integrated Moving Average) process. The assumed
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process is then

et = α +
(β0 + β1B + · · ·+ βsB

s)

(1− φ1B − · · · − φrBr)
Bbut +Nt (1)

and

Nt = δ +Nt−1 − θεt−1 + εt, |θ| ≤ 1 (2)

where B is the backshift operator (defined as Bet = et−1), and α is a constant

(not necessarily zero) representing the expected deviation from target when

the input is set at a value of zero.

According to the Box-Jenkins taxonomy, the process is an (r,s,b) order

transfer function plus an IMA(1,1) with drift disturbance. In practice, r, s

and b are rarely larger than 2. The disturbance model contains a useful family

of models. Depending on the different values δ and θ take, the disturbance

is one of the processes listed on Table 1. Note that we allow θ to be equal to

one; then the disturbance model is either a deterministic trend disturbance,

which is useful to model wearing-off of a tool in a variety of manufacturing

processes, or a white noise process in case δ = 0.

δ θ Disturbance
0 0 Random Walk
6= 0 0 Random Walk with Drift
0 6= 0 IMA(1,1)
6= 0 6= 0 IMA(1,1) with Drift
6= 0 1 Deterministic Trend
0 1 White Noise

Table 1: Disturbance models described by Equation (2)
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3 Process Identification

3.1 ARMAmodeling of output deviations et from closed-
loop data

Suppose that for a manufacturing process operating in closed-loop, no first

principle knowledge of the process dynamic mechanism is available. There-

fore, it is necessary to identify an empirical transfer function model that best

describes the process behaviour. On the other hand, the feedback controller

functioning on the input data is intently designed and installed by control

engineers, so its adjustment scheme is assumed to be known. When the con-

troller is not optimal in the sense of not minimizing the mean square error

of the process output, the output deviations will exhibit certain autocorre-

lation patterns that are useful for process identification. In this section, we

will derive the ARMA models that describe the output deviations for some

processes that are commonly encountered in manufacturing and show how to

use some advanced statistical techniques to identify them. Here, we assume

that one of two types of controller - either an EWMA or a PI controller - is

in use in the closed-loop while the data were collected.

The EWMA controller has attracted considerable attention in recent

years, especially for the run-to-run control of batch productions in semicon-

ductor manufacturing (see references [6,7,8]). In such a closed-loop system,

the effect of the process adjustments will be fully observed at the next output

value, i.e., the process can be described by the following model:

et = α + βut−1 +Nt, (3)

where α is the process offset, and β is the process gain. This is a particular

case of model (1) with a (r,s,b)=(0,0,1) transfer function. In the EWMA

controller, the process gain, β, is estimated by off-line experiments and is

represented by b, and the initial estimate of α is a0. The control scheme is

as follows:

ut = −
at
b
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and

at = λ(et − but−1) + (1− λ)at−1 (0 ≤ λ ≤ 1)

where λ is a parameter that can be adjusted to achieve a desired behavior.

The EWMA controller updates at in order to reduce the estimation error of

the process offset, α. In fact, it is easy to show that the adjustment at each

step is proportional to the present output deviation, that is,

∇ut = −
∇at
b
= −

λ(et − but−1) + (1− λ)at−1 − at−1

b
= −

λet
b
. (4)

One can compare this controller with a PI controller, a widely used indus-

trial controller, which is a combination of two control schemes - proportional

control and integral control:

ut = kP et + kI
t

∑

i=1

ei (5)

where kP and kI are the proportional and integral control constants respec-

tively. An equivalent form of equation (5) would make the input adjustment

depend linearly on the last two output deviations:

∇ut = c1et + c2et−1 (6)

where c1 = kP + kI and c2 = −kP . As one can see from Equation (4), the

EWMA controller is actually a special PI controller, i.e., a pure I controller

with c1 = kI = −
λ
b
.

To derive the “closed-loop description” of the output deviations, we take

first-order differences on the process and disturbance equations, then sub-

stitute the controller and disturbance functions into the process equation to

obtain an ARMA model of the deviation. For instance, by taking first-order

differences on process equation (3) and disturbance function (2), we have

∇et = β∇ut−1 +∇Nt, (7)

and

∇Nt = δ + (1− θB)εt. (8)

6



Substituting Equations (8) and (4) into (7), we get

(1− (1− λξ)B)et = δ + (1− θB)εt (9)

where, ξ = β

b
, is a measure of the bias in the gain estimate. Therefore, under

the adjustment of an EWMA controller, the sequence of deviations from this

closed-loop system is an ARMA(1,1) process with an asymptotic mean value

of δ
λξ
. This result was reported in del Castillo [5].

Equation (3) describes a simple manufacturing process where the process

output is fully determined by the most recent value of the controllable factor.

In some more complicated processes, the delay between the input adjustment

and output observation could be longer than one time period and also the

effect of adjustments could extend to several subsequent time periods. There-

fore, it is important to study all possible ARMA models that describe the

output deviations for a class of transfer functions. Commonly found process

transfer functions include one-time or two-time delay and first-order dynamic

models. The ARMA models that describe the output deviations can be de-

rived by using the same procedure as we did for the transfer function of order

(0,0,1). For brevity, our results for EWMA and PI controllers are summa-

rized on Tables 2 and 3 respectively. On these tables, a transfer function is

given first, followed by the ARMA model of the deviations from target and

by the asymptotic process mean. Note that the order of the ARMA models

does not exceed two for an EWMA controller and three for a PI controller.

This implies that to identify a closed-loop process under these controllers,

we should focus on searching a low order ARMA pattern from the process

output data.

3.2 Stationarity of ARMA(2,q) process

Identifying a closed-loop process only based on the ARMA model of the

output deviations could be ambiguous, because, as found in Table 2, there

exist more than one transfer function corresponding to ARMA models of the
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EWMA Controller

Transfer function r=0, s=0, b=1 et = α + βut−1

Output deviation
from target ARMA(1,1) (1− (1− λξ)B)et = δ + (1− θB)εt
Process mean µe =

δ
λξ

Transfer function r=1, s=0, b=1 (1− φB)et = α+ βut−1

Output deviation ARMA(2,2) (1− (1 + φ− λξ)B − (−φ)B2)et =
(1− φ)δ + (1− (θ + φ)B − (−θφ)B2)εt

Process mean µe =
(1−φ)δ
λξ

Transfer function r=0, s=1, b=1 et = α + β1ut−1 + β2ut−2

Output deviation ARMA(2,1) (1− (1− λξ1)B − (−λξ2)B
2)et =

δ + (1− θB)εt
Process mean µe =

δ
λ(ξ1+ξ2)

Transfer function r=0, s=0, b=2 et = α + βut−2

Output deviation ARMA(2,1) (1− B − (−λξ)B2)et = δ + (1− θB)εt
Process mean µe =

δ
λξ

Transfer function r=1, s=0, b=2 (1− φB)et = α+ βut−2

Output deviation ARMA(2,2) (1− (1 + φ)B − (−λξ − φ)B2)et =
(1− φ)δ + (1− (θ + φ)B − (−θφ)B2)εt

Process mean µe =
(1−φ)δ
λξ

Table 2: ARMA models describing the deviations from target from different
EWMA controlled processes. In all cases, the disturbance is Nt = δ +Nt −
θεt−1 + εt.
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PI Controller

Transfer function r=0, s=0, b=1 et = α + βut−1

Output deviation
from target ARMA(2,1) (1− (1 + c1β)B − c2βB

2)et = δ + (1− θB)εt
Process mean µe =

δ
(c1+c2)β

Transfer function r=1, s=0, b=1 (1− φB)et = α+ βut−1

Output deviation ARMA(2,2) (1− (1 + φ+ c1β)B − (c2β − φ)B2)et =
(1− φ)δ + (1− (θ + φ)B − (−θφ)B2)εt

Process mean µe =
(1−φ)δ

(c1+c2)β

Transfer function r=0, s=1, b=1 et = α + β1ut−1 + β2ut−2

Output deviation ARMA(3,1) (1− (1 + c1β1)B − (c2β1 + c1β2)B
2 − c2β2B

3)et =
δ + (1− θB)εt

Process mean µe =
δ

(c1+c2)(β1+β2)

Transfer function r=0, s=0, b=2 et = α + βut−2

Output deviation ARMA(3,1) (1− B − c1βB
2 − c2βB

3)et = δ + (1− θB)εt
Process mean µe =

δ
(c1+c2)β

Transfer function r=1, s=0, b=2 (1− φB)et = α+ βut−2

Output deviation ARMA(3,2) (1− (1 + φ)B − (c1β − φ)B2 − c2βB
3)et =

(1− φ)δ + (1− (θ + φ)B − (−θφ)B2)εt
Process mean µe =

(1−φ)δ
(c1+c2)β

Table 3: ARMA models describing the deviations from target of different PI
controlled processes. In all cases, the disturbance model is Nt = δ + Nt −
θεt−1 + εt
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same order, like in the case of an ARMA(2,1) or an ARMA(2,2). Carefully

comparing the estimated values of parameters in these models may help

to distinguish different processes if reliable parameter estimates are avail-

able. Since it is assumed that the closed-loop process has been stabilized by

the adjustments of a suboptimal controller, the stationarity conditions of an

ARMA(2,q) provide some additional constraints for the process parameters

that are useful for identification purposes.

As it is well-known, a stationary ARMA(2,q) process (1−a1B−a2B
2)zt =

Θ(B)εt must satisfy the following conditions:

a1 + a2 < 1 a2 − a1 < 1 |a2| < 1.

Applying these conditions to the two ARMA(2,2) processes listed on Table

2, for the transfer function of order (1,0,1), we get

0 < λξ < 2(1 + φ) − 1 < φ < 1.

For the transfer function of order (1,0,2), we have

0 < λξ 2(1 + φ) < λξ − 1− φ < λξ < 1− φ.

The feasible regions of φ and λξ for these two processes are shown in Fig-

ure 1. These two regions nicely separate from each other, which indicates that

one would be able to select a correct transfer function after comparing the es-

timated process parameters with their feasible regions. For example, if φ and

λξ estimated from an ARMA(2,2) process are 0.5 and 1 in an EWMA con-

trolled process, then the transfer function of order (1,0,1) is the only one that

should be accepted. Similarly, the feasible regions for the two ARMA(2,1)

models on Table 2 are drawn in Figure 2. Again, there is little difficulty in

identifying these two processes from their parameter estimates, because one

process has the coefficient of B equal to one unit and the other does not.

Insert Figure 1 here.
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Insert Figure 2 here.

As shown in Table 3, a process controlled by a PI controller may have a

closed-loop description equal to an ARMA process of order as high as 3. It is

difficult to draw the feasible parameter regions for ARMA(3,q), since there

are three parameters involved. But one can see that for the two ARMA(3,1)

processes, one has the coefficient of B equal to one and the other does not.

Therefore, distinguishing between these alternatives based on the parameter

estimates is possible in principle.

In practice, when the manufacturing process is exposed to substantial

random noise, precise estimation of parameters in ARMA models is unreal-

istic. In addition, an accurate form of the model is not guaranteed and there

is the possibility of model bias. However, as long as the model is a reason-

able approximation of the true process, closed-loop identification will provide

useful information for tuning the controller and improving performance as

desired.

3.3 Techniques for identification of ARMA processes

Identifying an ARMA model from the sequence of output deviations is an

essential procedure for obtaining a good process model. However, it is fre-

quently difficult to identify a mixed ARMA process. The traditional ap-

proach of model identification utilizes the autocorrelation and partial au-

tocorrelation functions of the process data and compares them with some

theoretical patterns. This approach is only effective when dealing with pure

AR or MA processes; but it is very difficult to determine a mixed ARMA

model this way. Since the late 1980’s, more identification techniques have

been developed to handle this problem (see references [9,10,11,12]). Most

of them compare the process data with a series of tentative models and se-

lect the one that fits best. The extended sample autocorrelation function

(ESACF) and smallest canonical correlation (SCAN) proposed by Tsay and
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Tiao [11,12] are two identification techniques that have been implemented

in some statistical analysis program, such as SAS. They will be used for

closed-loop identification purposes.

In the ESACF method, data are filtered through an AR model, whose au-

tocorrelation coefficients are determined by a candidate ARMA model. The

residuals of this filter are called the extended samples. It has been shown

that the autocorrelation of these extended samples follows an MA(q) model

if the true model is an ARMA(p,q), and the ARMA candidate we entertain

has a MA polynomial of order higher or equal to q. More specifically, Tsay

and Tiao had shown how to arrange the different condidate information in a

table. The ESACF table will exhibit a triangular pattern of zeros when the

candidate ARMA model has higher order than the true ARMA model. The

SCAN method is based on some consistency properties of suitably normal-

ized second-order sample moment equations and make use of the method of

canonical correlation in standard multivariate analysis. The zeroes pattern

on a SCAN table will be rectangular for any candidate model having higher

order than the true model. These methods will be illustrated in Section 5.

4 Tuning the controller

After the process transfer function has been identified and its parameters

have been estimated, it is possible to tune the controller to a near-optimal

control state. By tuning a closed-loop process, it is meant to adjust the

parameters of the controller to improve its performance. Usually, a controller

has some parameters that can be reset by process engineers, such as λ in

an EWMA controller or (c1, c2) in a PI controller. The performance of

the controller can be evaluated by the asymptotic mean square deviation

(AMSD) of the process outputs. This criterion is valid when there is little

cost associated with changing the controllable factor; otherwise, the variance

of the controllable factor needs to be taken into consideration. Furthermore,
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process control is often required to react to output errors rapidly. For such

reason, in order to tune a controller, the transient effect of the control scheme

needs to be studied.

In this section, the AMSD is used as the controller performance criterion.

The variance of the controllable factor will be discussed in Section 5. It is

well known that the AMSD of a process consists of two parts: the variance

of output deviations and the square of the bias. The calculation formula for

the variance of an ARMA(2,q) process is given in the Appendix. The goal of

tuning a closed-loop system is to minimize the AMSD subject to the process

stationarity condition, that is,

Min AMSD(et) = V ar(et) +Bias(et)
2

s.t. stationarity conditions.

By consulting the formula in the Appendix, exact AMSD expressions of

many closed-loop processes can be obtained. For instance, for a process with

the transfer function of order (1,0,1) being operated under an EWMA con-

troller, its output deviations follow an ARMA(2,2) process with asymptotic

mean value of (1− φ)δ/λξ. Therefore, its AMSD is

AMSD(et) =
(1 + φ)(1− φ)2(1− θ)2 + 2φλξ(1− θ)2 + 2θλξ(1− φ2 + φλξ)

λξ(1− φ)(2 + 2φ− λξ)
σ2
ε

+(
δ(1− φ)

λξ
)2. (10)

If instead the process has a transfer function (1,0,2), the output deviations

relate to another ARMA(2,2) model with different parameters and its AMSD

is

AMSD(et) =
(1 + φ)(1− φ)2(1− θ)2 + λξ(1 + θ2)(1 + φ2)− 2θφλξ(2φ+ λξ)

λξ(1− φ− λξ)(2 + 2φ+ λξ)
σ2
ε

+(
δ(1− φ)

λξ
)2. (11)
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In a previous section, it was shown that in principle, process transfer

functions can be identified correctly even when more than one closed-loop

process follow an ARMA model of the same order. However, this strongly

depends on the quality of our parameter estimates. Therefore, it is of interest

to investigate the possibility of improving the controller’s performance when

the transfer function has been mis-identified. In the following example, we

will show that a controller can be tuned to a near-optimal state as long as

the estimated model is a reasonable approximation of the true one.

5 Example: a simulated process control with

real disturbance data

Boyles [14] recently reported an uncontrolled process in which the fill weight

deviation from target for a powdered food product was recorded with the

controller turned off. He mentioned that the process was unstable and

autocorrelated, because powder density was affected by several uncontrol-

lable variables, such as batch-to-batch variations, and he also suggested that

an integral-type controller should be used. In this section, those data of

fill weight deviations are regarded as disturbance, to which a non-optimal

EWMA controller (or I controller) is applied. We then apply the closed-

loop identification and tuning methodology described in previous sections

and optimize the controller.

First, the data set reported by Boyles is identified as an IMA(1,2) pro-

cess, which is ∇Nt = (1− 0.61
(0.07)

B − 0.26
(0.07)

B2)εt , where the numbers in

paranthesis below the coefficients of B and B2 are the corresponding stan-

dard errors. The white noise sequence, {εt}, has an estimated variance of

207.5. This model will be used as the true disturbance in a simulated man-

ufacturing process. Suppose the true process is repeatedly adjusted by an

EWMA controller (I controller) with control parameter λ = 0.4. The ad-

justing action may be thought as twisting a valve that directly determines
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the powder volume per time unit, hence, the powder weight. Normally, the

effect of this type of adjustment can be realized only partially during one

time interval [1]. This results in a first order process transfer function with

a one time delay. So the transfer function is characterized by the equation,

(1− φB)et = βut−1. Here, let us assume that φ = 0.4, β = 1 and b = 0.8 (b

is the off-line estimate of β), so ξ = β

b
= 1.25. By adding the same distur-

bance sequence as that in the open-loop process, we reconstruct a controlled

process of fill weight deviation data as shown in Figure 3. It is evident that

the process has been stabilized with mean value around 0. The estimated

process variance is 292.2. We now illustrate our closed-loop identification

methodology assuming the true model description is unknown.

Insert Figure 3 here.

SCAN and ESACF methods are applied to the simulated process output

data to identify an ARMA model from which we can identify the process.

The SCAN and ESACF tables are shown in Figure 4. One can see from the

SCAN table that the pattern of rectangular zeroes starts from the AR(2) row

and MA(1) column. This means that any ARMA process with order higher

or equal to an ARMA(2,1) could be a candidate. The ESACF table does

not shows a clear triangular pattern at low AR or MA order. Based on the

parsimony principle, it is reasonable to guess that the closed-loop description

of the process is ARMA(2,1). By fitting an ARMA(2,1) model to the out-

put deviations from target, we have that the maximum likelihood estimators

of the AR and MA parameters are â1 = 0.688(0.179), â2 = −0.338(0.131)

and b̂1 = 0.808(0.189), where the standard errors of these estimates appear

in parenthesis. All of these estimates are significant by t-test. Therefore,

the identified ARMA model is (1− 0.69B + 0.34B2)et = (1− 0.8B)εt. After

consulting the list of EWMA closed-loop descriptions in Table 2, we spec-

ulate that the process transfer function is either et = β1ut−1 + β2ut−2 or

et = α + βut−2. However, since for the latter alternative a1 must be equal
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to 1 and our estimate â1 indicates this is not true, we conclude the process

transfer function is et = β1ut−1 + β2ut−2. Note that this model is a reason-

able approximation of the true model, since the complete true parametric

model is (1− 0.9B+ 0.4B2)et = (1−B− 0.02B
2 − 0.10B3)εt if the controller

and disturbance functions are substituted into the assumed process transfer

function. Of course, the real process is never known to process engineers.

Insert Figure 4 here.

From the ARMA(2,1) model parameter estimates, the parameters in the

identified transfer function and disturbance models are estimated as ξ̂1 =

0.775 (because, 1−λξ̂1 = 0.69), ξ̂2 = 0.85 (because, −λξ̂2 = −0.34), θ̂ = 0.8,

and δ̂ = 0. Substituting them into the process equation, we can optimize the

AMSD(et) subject to the process stationarity conditions, that is,

Min AMSD(et) =
1.64(1 + 0.85λ)− 1.6(1− 0.775λ)

1.625λ(1− 0.85λ)(2− 0.075λ)

s.t. 0 < λ < 1.

Solution to this problem yields an optimal solution of λ equal to 0.12. By

resetting λ in the EWMA controller and running the process with the same

190 disturbance data in Boyles under the re-tuned EWMA controller, we find

that the estimated variance of the process output is reduced to 231.4. Note

that this value is very close to the minimum variance one can achieve for the

output of this process, namely, σ̂2
e = 228.0, but the minimum variance can

only be obtained when the correct ARMA model is identified and estimated

perfectly.

5.1 Including the cost of adjustments

Sometimes the cost of adjustments cannot be ignored, so the objective func-

tion of the optimization model should be changed to a combination of both
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ρ λ J AMSD
σ2

ε

V ar(∇ut)
σ2

ε

0 0.12175 1.0122 1.0122 0.0234
0.1 0.11934 1.0145 1.0122 0.0225
0.5 0.11154 1.0229 1.0130 0.0198
1 0.10441 1.0321 1.0148 0.0173
2 0.09460 1.0477 1.0192 0.0143
5 0.07886 1.0831 1.0329 0.0100

Table 4: Optimal solutions to problem (12) in the example

output errors and adjustment efforts as proposed by Box and Luceño [13]:

Min J =
AMSD(et)

σ2
ε

+ ρ
V ar(∇ut)

σ2
ε

(12)

For this example, Table 4 lists the optimal λ, the associated cost functions,

the AMSD, and the adjustment variance for different values of ρ (which is

a quantity defined by the user). Suppose from the table the value λ = 0.08

is chosen. If the process is again re-run with such EWMA controller and

the same disturbance data as in Boyles [14], we find that ˆAMSD(et)/σ
2
ε =

1.0001, and ˆV ar(∇Ut)/σ
2
ε = 0.0100, which closely agree with the table.

6 Conclusion

In this paper, a method for identifying a process operating under the actions

of a feedback controller was proposed. This method works for processes

regulated with PI or EWMA (I) controllers under the assumption that the

disturbance is IMA(1,1) with drift. We show that when the disturbance

function is one from the proposed disturbance family, it is possible to iden-

tify some dynamic process models commonly encountered in manufacturing.

ARMA models of the output deviations from these processes are provided.

After identification, our approach suggests to tune the controller to a near-

optimal setting according to a well-known performance criterion, which is

either the asymptotic mean square deviation (AMSD) of the process output,
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or a weighted sum of AMSD of the output and variance of the adjustments.

Appendix. Variance of an ARMA(2,q) Pro-

cess, q ≤ 2.

For an ARMA(2,1) process such as

(1− a1B − a2B
2)zt = (1− b1B)εt, (13)

its autocovariance is computed by multiplying both sides of the above equa-

tion by zt−k and taking expectation:

(1− a1B − a2B
2)γk = γzε(k)− b1γzε(k − 1)

where γk is the autocorrelation coefficient of z, and γzε is the cross-correlation

coefficient of z and ε.

When k = 0, we have that

γ0 = a1γ1 + a2γ2 + σ2
ε − b1γzε(−1).

When k = 1,

γ1 = a1γ0 + a2γ1 − b1σ
2
ε

and when k ≥ 2,

γk = a1γk−1 + a2γk−2.

Also, multiplying both sides of equation (13) by εt−1 and taking expectation,

we get

γzε(−1) = (a1 − b1)σ
2
ε .

Therefore, variance of zt is

γ0 =
(1− a2)(1 + b21)− 2b1a1

(1 + a2)(1− a1 − a2)(1 + a1 − a2)
σ2
ε . (14)

Following a similar derivation, the variance of an ARMA(2,2) process

(1− a1B − a2B
2)zt = (1− b1B − b1B

2)εt can be shown equal to
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ARMA(2,1) model a1B a2B
2

b = 1, r = 0, s = 1 1− λξ1 −λξ2
b = 2, r = 0, s = 0 1 λξ
ARMA(2,2) model a1B a2B

2

b = 1, r = 1, s = 0 1 + φ− λξ −φ
b = 2, r = 1, s = 0 1 + φ −λξ − φ

Table 5: Parameters of four ARMA models

γ0 =
(1− a2)(1 + b21 + b22)− 2b1(1− b2)a1 − 2b2a2 − 2b2(a

2
1 − a2

2)

(1 + a2)(1− a1 − a2)(1 + a1 − a2)
σ2
ε . (15)

As one can see from Table 2, each closed-loop process has a different

expression for the coefficients of B and B2 in its ARMA model of the output

deviations. The coefficients are listed in Table 5.
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Figure 1: Stability region of two ARMA(2,2) processes. a) Transfer function
is (1,0,1); b) transfer function is (1,0,2).
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Figure 2: Stability region of two ARMA(2,1) processes. a) Transfer function
is (0,0,1). Here, ξi = βi/bi. b) Transfer function is (0,0,2).
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Figure 3: A controlled closed-loop process
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Figure 4: SCAN and ESACF tables of the simulated example
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