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Abstract

Feedback control methods have been proposed in recent literature to regulate the
quality characteristic of parts or products in a manufacturing process. Depending on
the costs involved, adjustments may not be needed at each time instant (i.e., for every
part or product). This paper presents scheduling methods to determine the optimal
time instants for adjusting a process. The focus is on the setup adjustment problem, in
which it is necessary to adjust in order to compensate for an initial offset that occurs
due to an incorrect setup operation. The performance of three scheduling methods are
compared in terms of the expected manufacturing cost and computational effort of each
method. The adjustment methods considered are based on estimates of the process
variance and the size of the offset. The robustness of these methods with respect to
biased estimates of the process variance and of the setup error or offset are discussed.
One simple method, a backward implementation of the Silver-Meal heuristic used for
inventory control is recommended based on a performance analysis.

1 Introduction: the setup adjustment problem

In discrete-part manufacturing, the quality of parts produced in batches depends to a great

extent on correctly setting-up a machine. A setup error refers to a machine offset that occurs

during the startup or maintenance operations. This error or offset may result in quality

problems for the whole lot of parts produced after setting up the machine. Although a setup

error can be speculated from observing an off-target value of the quality characteristic soon

after starting production, the setup error cannot be measured directly due to the inherent

variation in the process. In this paper, a sequential adjustment method that uses the sample

average value of quality measurements over time to estimate the magnitude of the setup error

is presented. A question addressed in this paper is to determine when to adjust using this

method. We compare several methods for selecting an optimal or close-to-optimal adjustment

schedule and provide some practical recommendations for setup adjustment in a short-run

manufacturing process. By a sequential adjustment rule we will imply a procedure by which

an operator makes successive adjustments to a machine. One adjustment is made every time

a part is produced, and this can continue for several parts. As discussed below, some parts

or time instants may go unadjusted, i.e., it might be beneficial to skip some adjustments in

the sequence.

In order to remove a setup error, it will be assumed a controllable variable exists which

correlates with the value of the quality characteristic by a gain factor. In traditional manu-

facturing, e.g., machining operations, such controllable factor is the machine setpoint or the

“aimed at” value of a particular dimension. The gain is usually assumed to be one unit in

discrete part manufacturing processes and we will follow this assumption. A trivial example

of this is in a machining process, where a unit change in the setpoint will correspond to a
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value very close to an unit change in the machine dimension. The case where the adjust-

ments are imprecise is not considered in this paper (see Trietsch, 1998, for such case). In the

presence of uncertainty in the magnitude of the setup error, it is wise to be cautious when

performing setup adjustments. The measurements of the quality characteristic collected af-

ter each adjustment can be used to determine adjustments later on in time in case they

are necessary. Grubbs (1954, 1983) first studied this problem and proposed two sequential

adjustment procedures, which we will refer to as Grubbs’ harmonic and extended rules.

Recently, sequential adjustment rules have been investigated by Triestch (1998, 2000) and

Del Castillo, Pan, and Colosimo (2002a). Triestch (2000) showed that the adjustments can

be conducted in a series of arbitrary discrete points of time, i.e., they need not be carried out

one following another successively but some adjustment instants may be “skipped”. When a

certain criterion related to the manufacturing and adjustment costs is considered, an optimal

adjustment schedule can be designed. Del Castillo, Pan, and Colosimo (2002b) compared

the small-sample performance of Grubbs’ harmonic rule and other popular adjustment rules

existing in the control engineering literature. They showed that the harmonic rule is very

robust in the sense that the process off-target quality cost does not increase too much when

the initial estimate of setup error is severely biased compared to the theoretical case when a

perfect offset estimate is available.

One should notice that although the sequential adjustment methods discussed herein

were introduced for the setup adjustment problem, they can be readily applied for adjusting

when shifts and upsets occur within a run. To initiate adjustments, within-run upsets should

be detected by a statistical process control (SPC) scheme. Integrating sequential adjustment

methods with SPC monitoring schemes was discussed in Pan and Del Castillo (2002).

Using a feedback control scheme for controlling the quality of products has been widely

discussed in the quality engineering literature (see, e.g., Vander Weil et al. 1992, Tucker

et al. 1993, etc.). For instance, the “machine tool problem” consists in designing the

optimal adjustment time of an autocorrelated process (an IMA(1,1)) based on some economic

considerations (Box and Jenkins, 1963). Adams and Woodall (1989) and Box and Kramer

(1992) used several types of adjustment and measurement cost models for this problem.

Crowder (1992) derived the control limits for adjustments to minimize the total cost for

a finite horizon (short-run) manufacturing process. Single-step adjustment methods (i.e.,

adjusting only once when the process is deemed out-of-control) were used in these papers. An

optimal adjustment strategy for the setup error problem was discussed by Sullo and Vandeven

(1999). Contrary to the sequential adjustment approach we follow herein, they considered

a single adjustment method with a 0-1 type quality cost for conforming or nonconforming

manufactured items.
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In this paper, a special sequential adjustment strategy is described in which adjustments

are scheduled to be carried out at some particular points in time along the time span of the

manufacturing process. The cost function associated with the deviations from target will be

assumed quadratic, and the adjustment cost will be assumed to be fixed. In the following

sections, we first introduce a sample-average adjustment procedure, and show its equivalency

to Grubbs’ extended rule. Three scheduling methods for sample-average adjustments are

then presented. Their performance and robustness on a short-run manufacturing process

is studied numerically. Finally, some recommendations and conclusions about the different

scheduling adjustment methods are provided.

2 Sample-average adjustment procedure

The model for the setup adjustment problem can be formulated as follows:

Yt = d + Xt−1 + εt.

In this model, {εt ∼ (0, σ2
ε)} is a white noise sequence that models uncontrollable process

noise; d is the unknown (constant) value of the setup error; and Yt is the value of the process

quality characteristic measured at discrete time t, with target assumed to be 0 without loss

of generality. Xt is the level of the controllable factor (or setpoint) that adjusts the process.

The problem is to find a series {Xt} such that it removes the unknown offset d and drives

Yt to its target. Clearly, for such simple process, Xt should be set as −d̂t, where d̂t is the

“best” estimate of d available at the current time.

The model above can be easily formulated in state-space and d̂t can then be obtained

using a Kalman Filter technique (Del Castillo et al., 2002a). The Kalman Filter estimate of

dt is

d̂t = d̂t−1 +
1

σ2
ε/P0 + t

Yt, (1)

where d̂0 is the initial (a priori) estimation of d and P0 is a measure of confidence on this

initial estimator. The Kalman Filter estimator is the minimum mean square error linear

estimator (Duncan and Horn, 1972), so the “controller” Xt = −d̂t is optimal in this sense.

This adjustment procedure requires adjustments at every time period, an adjustment

policy that may be undesirable if the cost of the adjustments is significant. This implies that

it is possible to design an adjustment schedule which skips some time periods between two

successive adjustments and maintains the cost optimality of the whole procedure (Triestch,

1998). The idea is rather simple: if there are no adjustments between time i and j, then Ȳij,

the average of Yi+1...Yj, is the unbiased MLE (maximum likelihood estimate) of (d + Xi);
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therefore, it is intuitive to change the estimate of d to the following equation when the simple

adjustment rule, Xj = −d̂j, is applied:

d̂j = d̂i +
1

σ2
ε/P0 + j

j∑
t=i+1

Yt. (2)

In the remaining of this section, we will show that the adjustment procedure based on

equation (2) provides the same general expression for Yj+1 as a function of the adjustments

as given by the procedure based on equation (1). The performance of this adjustment rule

will then be studied in subsequent sections.

Suppose Yi, the value of the quality characteristic at time i, is known. Then, from (1)

we have that Xi, which is a function of Yi, is also known. We first use the procedure based

on (1) to derive the function of Yj+1. From the process model and adjustment function, we

have

Yi+1 = d + Xi + εi+1,

Xi+1 = Xi −Ki+1Yi+1,

where Ki+1 = 1/(σ2
ε/P0 + i + 1). So,

Yi+2 = d + Xi+1 + εi+2 = (1−Ki+1)(d + Xi)−Ki+1εi+1 + εi+2.

By substituting Xi+2, Xi+3, ... into Yi+3, Yt+4, ..., we find after some algebra that

Yj+1 = (d + Xi)

j∏
l=i+1

(1−Kl)−
j∑

l=i+1

Klεl

j∏
r=l+1

(1−Kr) + εj+1.

This can be simplified to:

Yj+1 =
i + σ2

ε/P0

j + σ2
ε/P0

(d + Xi)−
1

j + σ2
ε/P0

j∑
l=i+1

εl + εj+1. (3)

Now consider using the estimation procedure based on (2) to derive a general expression

for Yj+1. We have that

Yl = d + Xi + εl,

for l = i + 1, i + 2, ..., j. So, the sum of Yi+1...Yj is

j∑
l=i+1

Yl = (j − i)(d + Xi) +

j∑
l=i+1

εl.
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Substituting this last result into (2) and taking the result back into Yj+1 = d + Xj + εj+1 =

d− d̂j + εj+1, we have that

Yj+1 = d + Xi −
j − i

j + σ2
ε/P0

(
d + Xi +

1

j − i

j∑
l=i+1

εl

)
+ εj+1.

One can see that this simplifies and equals to (3). Notice that equation (2) can be written

as

d̂j = d̂i +
j − i

σ2
ε/P0 + j

Ȳij

where Ȳij is the arithmetic average of Yi+1...Yj.

In practice, an operator will set the controllable factor at time (or part number) j, Xj,

equal to −d̂j. Thus, we call this adjustment method a “sample-average adjustment”. We

now address the question about on which periods j shall the operator utilize this strategy.

3 Algorithmic and heuristic methods for optimal ad-

justment schedule

The sample-average adjustment procedure provides the opportunity of avoiding adjustment

actions between two arbitrary adjusting times. This is especially useful when there are large

fixed adjustment costs independent of the magnitude of the adjustments. In this section, we

wish to find the best adjustment epochs or time instants such that they minimize the total

manufacturing cost which is assumed to include the following components:

– expected off-target quality cost, Cq. This is the expectation of the sum of a quadratic

function of Yt around its target, i.e., Cq =
∑n

t=1 E[Ω(Yt − T )2], where n is the number of

parts that need to be manufactured in the lot and Ω is the quadratic cost per unit. There

exists an opportunity for adjusting the controllable factor for each of the n parts.

– adjustment cost, Ca. This is assumed to be fixed and independent of the magnitude of

the adjustment, i.e., Ca = M × (
∑n

t=1 δ(t)), where δ(t) equals to 0 when no adjustment is

scheduled and is 1 otherwise.

– measurement cost, Cm. This is assumed to be proportional to the number of adjustments,

i.e., Cm = G × m, where m is the time of the last adjustment. Obviously, when the last

adjustment has been executed and no more adjustments are needed till the end of production,

measurements on the following runs are not necessary.

The goal is to find an optimal adjustment schedule that minimizes the total cost when n

is given and all of the cost parameters are known. The optimal schedule can be obtained by

using dynamic programming. The formulation is analogous to what in the inventory control

6



Figure 1: The graphical representation of an adjustment schedule

literature is the well-known Wagner-Whitin (W-W) algorithm (Wagner and Whitin, 1958).

In Figure 1, we represent the starting time of manufacturing each part as a node on the

production timeline, so the optimal schedule is equivalent to a minimal cost path from node

1 to node n.

As before, the target of Yt is assumed to be zero, so Cq = Ω
∑n

t=1(E
2[Yt] + V ar(Yt)).

From (3), it is easy to derive that

E[Yt]

σε

=
d− d̂0

P0/σ2
ε(t− 1) + 1

and
V ar(Yt)

σ2
ε

= 1 +
t− 1

(σ2
ε/P0 + t− 1)2

.

If d̂0 is an unbiased estimation of d (recall that d is an unknown constant), then E[Yt] = 0,

i.e., Yt is also unbiased. Define Cij to be the cost from node i + 1 to node j. Then, we have

that

Cij = M + Ω(j − i)

[
1 +

i

(σ2
ε/P0 + i)2

]
σ2

ε + (j − i)G. (4)

The last item on the right hand side of the equation is dropped when j = n. The W-W

algorithm requires computation of the cost between pairs of nodes according to the recursion:

CW−W (j) = min{Cij + CW−W (i), j = i + 1, i + 2, ..., n} for i = n− 1, n− 2, ..., 1,

and

CW−W (n) = 0,

where CW−W (i) is the minimum cost from node i to j.

The computational effort of the W-W algorithm consists of at least n(n + 1)/2 calcula-

tions for the Cij’s and n(n − 1)/2 comparisons. Therefore, it has a 2nd-order polynomial

complexity. Many heuristic methods have been proposed in the inventory control literature

to overcome some of the difficulties of the W-W method (Silver, Pyke and Peterson, 1998).
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For example, a simpler method, based on the Silver-Meal (S-M) heuristic which has been

proved to have close to optimal performance in inventory control applications (Silver and

Meal, 1973, Simpson, 2001), can be applied to this problem. This method searches for the

minimum unit cost, Cij/(j − i) by fixing period i and increasing period j until a local min-

imum is obtained. Obviously, in equation (4), if i is fixed and j increased, the unit cost

will decrease consistently, that is, no adjustment is scheduled except for the first period.

This result is rather uninteresting. So we work out the procedure in the backward direction:

we fix j and decrease i to find the minimum unit cost. We call this searching method the

backward S-M method. It has a 1st-order polynomial computational complexity.

Illustration of the backward S-M adjustment scheduling method

To illustrate the backward S-M method, consider the case where 20 parts are to be produced,

the measurement cost is negligible, and the per unit off-target cost is twice the adjustment

cost. Thus we have that n = 20, G = 0, and let us use Ω = 1 and M = 0.5. Furthermore,

assume the process variance is known to be σε = 1 and let us assume we have a moderate

confidence in an initial offset-free setup, so we set P0 = 1. Substituting these values into

equation (4), setting j = 20 and decreasing i from 19 to 1, it is easy to find that Cij/(j − i)

is minimized to 1.1319 when i = 11. Then setting j = 11 and decreasing i from 10 to 1, it

is found that Cij/(j − i) is minimized to 1.2222 when i = 5. Finally, after letting j = 5 and

recalculating Cij/(j− i) for i < j, the minimal value is found at i = 1. Thus, the adjustment

steps given by this method are 1, 5 and 11, instants at we the operator should set Xj = −d̂j.

Thus only three adjustments should be performed according to the schedule.

Trietsch (2000) proposed an approximate method for the optimal adjustment schedule, in

which the time of the adjustments, t, is treated as a continuous number and the results need

to be rounded to the closest integers. To use this method, one needs to solve two complicated

equations numerically when the procedure starts and also needs to solve another equation

numerically at every subsequent iteration, so the computation effort greatly depends on the

initial values selected for these equations. Furthermore, a improper selection of initial values

used in this method can cause incorrect results.

4 Comparison of numerical results

In this section, adjustment schedules with different total production runs and different cost

coefficients of measurement and adjustment are studied. Notice that the total cost is a

linear combination of three components, so we can assume without loss of generality that
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the off-target quality cost parameter, Ω, is one unit. In this section, we assume that the

first adjustment, if it is needed, is always applied at time 1, i.e., before the start of the

manufacturing process, based on our previous knowledge of a possible setup error (d is

usually assumed to be 0, so in this case no adjustment is needed before manufacturing

starts). It is also assumed that the initial estimate of the mean of d, d̂0, is unbiased, so the

first adjustment will bring the process to target on average. More importantly, the inherent

process variance σ2
ε is assumed to be known in this section. Sections 4.1 and 4.2 show further

analysis where some of these assumptions are removed.

In Table 1, we contrast results from the three methods mentioned in the last section. The

number of production runs varies from 20 to 500, the costs of measurement and adjustment

vary from 0 to 2 units and from 0.5 to 2 units, respectively. For those cases in the table,

σε = P0 = 1. The W-W algorithm provides the optimal adjustment schedule for each case,

but the computation effort of this algorithm is much greater than that of the other methods,

especially when the total number of production runs, n, is large. By comparing the S-M and

Trietsch’s methods with the W-W method, we can make the following remarks.

Remark 1. The cost of measurement and adjustment will greatly affect the total number

of adjustments. Generally, when these costs increase, the number of adjustments decreases,

and the measurement cost only affects the time of the last adjustment. This occurs because

after the last adjustment no more measurements are needed, whereas before that time mea-

surements should be conducted at every period (or part). Therefore, when the production

runs are short and significant measurement or adjustment costs exist, it is optimal to adjust

just once.

Remark 2. The distance between adjacent adjustments increases steadily in the sequence

of adjustments. This can be explained as follows: when the process has been adjusted

close but not exactly to target, we need stronger evidence from the process to demonstrate

that there is still an offset remaining. Such evidence is only obtained with longer runs of

observations between adjustments.

Remark 3. Comparing the backward S-M and Trietsch’s methods, the backward S-M

method always give fewer or equal number of adjustments than Trietsch’s method, and the

schedule from S-M is usually closer to the one given by W-W. Thus the backward S-M

method is a better heuristic in terms of minimizing total cost.

Remark 4. The S-M method has the advantage of reducing computing effort significantly

comparing to the W-W algorithm and its computing time is consistently less than that of

the Trietsch’s method. In fact, this method can be easily implemented by using a handheld

calculator or a spreadsheet software to support on-line process adjustment decisions.
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n G M method cost time(sec.) adjustments n G M method cost time(sec.) adjustments
20 0 0.5 WW 22.92 ∼ 0 1-7 100 0 0.5 WW 106.22 0.32 1-7-18-43

SM 23.02 ∼ 0 1-5-11 SM 106.52 ∼ 0 1-5-10-18-33
-58

Trietsch’s 23.36 0.21 1-3-6-11 Trietsch’s 106.89 0.33 1-3-7-14-27
-42-65

1 WW 23.92 ∼ 0 1-7 1 WW 108.06 0.32 1-10-33
SM 24.62 ∼ 0 1-3-9 SM 108.82 0.02 1-4-10-23-49
Trietsch’s 25.36 0.22 1-3-6-11 Trietsch’s 109.60 0.28 1-3-8-19-33-58

2 WW 25.75 ∼ 0 1 2 WW 111.06 0.32 1-10-33
SM 25.92 ∼ 0 1-7 SM 112.28 ∼ 0 1-5-15-40
Trietsch’s 27.78 0.14 1-2-7 Trietsch’s 114.12 0.23 1-2-6-16-40

1 0.5 WW 24.25 0.02 1 1 0.5 WW 117.67 0.32 1-7
SM 24.25 ∼ 0 1 SM 117.92 ∼ 0 1-3-7
Trietsch’s 25.69 0.13 1-3 Trietsch’s 118.02 0.17 1-3-8

1 WW 24.75 ∼ 0 1 1 WW 118.67 0.32 1-7
SM 24.75 ∼ 0 1 SM 118.67 ∼ 0 1-7
Trietsch’s 26.25 0.1 1-2 Trietsch’s 119.67 0.13 1-2-8

2 WW 25.75 ∼ 0 1 2 WW 120.67 0.32 1-7
SM 25.75 ∼ 0 1 SM 120.67 ∼ 0 1-7
Trietsch’s 28.25 0.1 1-2 Trietsch’s 122.67 0.13 1-2-8

2 0.5 WW 24.25 0.02 1 2 0.5 WW 122.11 0.32 1-4
SM 24.25 ∼ 0 1 SM 122.11 ∼ 0 1-4
Trietsch’s 26.25 0.11 1-2 Trietsch’s 123.15 0.11 1-2-6

1 WW 24.75 ∼ 0 1 1 WW 123.11 0.32 1-4
SM 24.75 ∼ 0 1 SM 123.11 ∼ 0 1-4
Trietsch’s 27.25 0.1 1-2 Trietsch’s 124.65 0.13 1-2-6

2 WW 25.75 ∼ 0 1 2 WW 125.11 0.32 1-4
SM 25.75 ∼ 0 1 SM 125.11 ∼ 0 1-4
Trietsch’s 29.25 0.11 1-2 Trietsch’s 127.65 0.13 1-2-6

50 0 0.5 WW 54.78 0.09 1-7-20 500 0 0.5 WW 509.65 7.93 1-7-18-43-99
-223

SM 55.08 ∼ 0 1-4-8-16 SM 510.12 0.08 1-5-10-18-33-57
-28 99-170-29

Trietsch’s 55.46 0.29 1-3-7-14 Trietsch’s 510.18 0.4 1-3-7-15-31-54
-22-33 -95-166-288

1 WW 56.28 0.09 1-7-20 1 WW 512.37 7.92 1-8-25-70-188
SM 56.86 ∼ 0 1-4-11-24 SM 513.20 0.07 1-5-13-29-60

123-249
Trietsch’s 57.62 0.26 1-3-7-14 Trietsch’s 514.03 0.36 1-3-8-19-44-99

-27 -170-292
2 WW 58.45 0.08 1-12 2 WW 516.62 7.93 1-11-42-147

SM 59.29 ∼ 0 1-7-19 SM 518.80 0.06 1-4-13-34-84
-206

Trietsch’s 61.15 0.18 1-2-7-19 Trietsch’s 520.64 0.29 1-2-7-22-63
-126-251

1 0.5 WW 61.11 0.08 1-4 1 0.5 WW 544.16 7.92 1-7-19
SM 61.11 ∼ 0 1-4 SM 544.29 0.04 1-5-10-19
Trietsch’s 61.63 0.17 1-3-5 Trietsch’s 544.39 0.21 1-3-8-20

1 WW 62.11 0.08 1-4 1 WW 545.66 7.99 1-7-19
SM 62.11 ∼ 0 1-4 SM 546.37 0.04 1-3-8-19
Trietsch’s 62.25 0.13 1-5 Trietsch’s 546.55 0.16 1-2-7-20

2 WW 63.25 0.08 1 2 WW 548.28 7.94 1-18
SM 64.11 ∼ 0 1-4 SM 548.66 0.03 1-7-18
Trietsch’s 64.11 0.1 1-4 Trietsch’s 549.35 0.14 1-3-19

2 0.5 WW 61.75 0.09 1 2 0.5 WW 558.91 7.93 1-6-13
SM 61.75 ∼ 0 1 SM 559.21 0.04 1-3-7-13
Trietsch’s 64.11 0.13 1-4 Trietsch’s 559.26 0.18 1-3-7-14

1 WW 62.25 0.08 1 1 WW 560.30 7.93 1-13
SM 62.25 ∼ 0 1 SM 560.41 0.04 1-5-13
Trietsch’s 65.11 0.13 1-4 Trietsch’s 560.49 0.15 1-5-14

2 WW 63.25 0.08 1 2 WW 562.30 7.92 1-13
SM 63.25 ∼ 0 1 SM 563.49 0.03 1-4-13
Trietsch’s 66.31 0.1 1-3 Trietsch’s 563.80 0.13 1-3-14

Table 1: Comparison of costs, time and adjustment schedules of 3 schedule design methods.
The numbers in the columns G and M can be viewed as the ratios of the per unit measurement
cost to the off-target quality cost (G/Ω), and of the unit adjustment cost to the off-target
quality cost (M/Ω).
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Figure 2: Case when σε is over-estimated (σε = 0.8, σ̂ε = 1). All of the cases presented in
Table 1 are investigated and compared.

4.1 The case when the process variance (σε) is unknown

In the following discussion, we vary the true value of σε from 1.0 to 0.8 and 1.2, that is,

the estimate σ̂ε, which was assumed to be 1 in the previous discussion and was used in the

three methods to obtain the optimal or near-optimal adjustment schedules is now an over- or

under-estimate, respectively, of the true σε. The minimum cost and the optimal adjustment

schedule can be obtained by introducing the true value of σε into the W-W algorithm. This

was used as a benchmark to compare cost increments due to a poorly estimated σε. The

cost increments induced by over- or under-estimating σε are investigated and presented in

Figures 2 and 3.

Remark 5. When the production run, n, is large (n = 100, or 500), the cost increments

by introducing over- or under-estimated σε of using the three methods are very small and

can be ignored.

Remark 6. The backward S-M method generally performs better than Trietsch’s method,

except in some particular cases if σε is over-estimated (see, e.g., in Figure 2, when n =

50, G = 2, M = 0.5, 1 and 2). The W-W method still performs well when G = 0 (no
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Figure 3: Case when σε is under-estimated (σε = 1.2, σ̂ε = 1) .
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measurement cost). But when measurement costs are considered, the W-W method is not

better than the backward S-M method in general.

Remark 7. Under-estimating σε (σε = 1.2) will induce larger increases in cost than when

over-estimating σε for all rules. Normally when the true value of σε is larger than expected,

longer runs of parts between adjustments are needed since these provide more measurements

for estimating the setup error magnitude; therefore, the total number of adjustments will

decrease. Since Trietsch’s method always provides more adjustments than the other two

methods, it will incur in a higher cost. Conversely, when σε is over-estimated, we find that

Trietsch’s method has an advantage in three cases: n = 50, G = 2, and M = 0.5, 1 and 2.

4.2 The case when a biased initial estimate of the offset is used

In the previous calculations, we assume the initial estimate, d̂0, equals to d. This assumption

is hardly realistic since if d were exactly known, a one-step adjustment (or calibration) would

be enough for removing the offset. A biased initial estimation of d will lead to an increase in

cost in the adjustment schedule calculated by each method. Similarly as in Section 4.1, the

robustness of the three methods under such situation are compared and presented in Figures

4 and 5. We varied |d− d̂0| from zero to 1 and 2.

Remark 8. Similarly as in remark 5, when the production run is large, the cost increments

caused by the biased initial estimate of d are insignificant.

Remark 9. When n is small, Trietsch’s method is generally the best one and the W-W

method is worst. We observe in some cases when d̂0 is close to d the backward S-M method

can out-perform the Trietsch’s method, e.g., see the cases of |d − d̂0| = 1σε, n = 50 and

G = 0. But when d̂0 is strongly biased from d or when the measurement cost is high, the

S-M method may lead to a high cost increase, e.g., see the cases of |d̂0 − d| = 2σε, n = 50

and G = 2.

Remark 10. When |d − d̂0| is large, the cost increments are more severe and Trietsch’s

method is more robust compared to other methods since it adjusts more often than the other

two methods.

It was found that when |d − d̂0| 6= 0, more adjustments are required by the optimal

schedule, especially in the first few periods. Since Trietsch’s method happens to provide

more adjustments, it results in the lowest cost increments.

To enhance the performance of the backward S-M method when |d− d̂0| 6= 0, we suggest

to add one more adjustment at the beginning of the production run. The comparison of

small-sample (n = 20 and n = 50) performance of the modified S-M heuristic and other

methods is presented in Figure 6 for some inaccurate initial estimate of the offset. Our

results show that the adjustment schedule given by this heuristic method has a similar cost
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Figure 4: Case when |d− d̂0| = 1σε.
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Figure 5: Case when |d− d̂0| = 2σε.
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Figure 6: Comparison of performance of the modified S-M heuristic and other methods when
|d− d̂0| = 1σε or |d− d̂0| = 2σε and n = 20 or n = 50.

as that given by Trietsch’s method. However, Trietsch’s method seems to still have a slight

cost advantage but this is not enough, in our view, to justify its more complex computations

over the modified S-M method.

Illustration of the modified backward S-M heuristic

To illustrate the modified S-M heuristic, consider the case when n = 50 parts are to be

produced, with measurement cost G = 2 and adjustment cost M = 0.5 (Ω = 1). In

this case, the backward S-M method (without the proposed modification) suggests a single

adjustment at node 1. This schedule will incur in more than a 50% cost increase compared to

the minimal cost if the initial estimate of the setup error is two units from the true value, i.e.,

if |d− d̂0| = 2. The modified backward S-M method calls for inserting one more adjustment

after the first one, i.e., changing the adjustment steps to 1 and 2 in this example. In these

two time instants the operator should set Xj = −d̂j. With such schedule, the cost increment

reduces to only 14% over the minimum.
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5 Conclusion

In this paper, a simple adjustment procedure for adjusting a machine for setup errors was

introduced. Three adjustment scheduling methods were compared which can achieve op-

timal or near optimal expected total manufacturing cost: the Wagner-Whitin method, a

backward implementation of the Silver-Meal method and a method due to Trietsch (2000).

It was found that when the production runs are long (i.e., large lots of product), there is

not significant difference between the performance of three methods. For a short-run man-

ufacturing process, the proposed backward S-M method has the advantage of providing a

close-to-optimal solution with small computation effort (for example, the method can be

implemented easily in a spreadhseet software), even when the process variance estimate is

biased. A problem found with this method is that when there exists a significant bias on

the initial estimate of the setup error and when the adjustment or the measurement costs

are high, the schedule provided by the backward S-M method may incur in a much higher

cost increase than Trietsch’s method. As a solution to this drawback, it was demonstrated

that simply adding one more adjustment close to the beginning of the schedule enhances the

robustness of the backward S-M method.
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