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Abstract

When a manufacturing process is subject to random shocks, detecting the changes
in the process and adjusting an out-of-target process are two essential functions of pro-
cess quality control. Traditional SPC techniques emphasize process change detection,
but do not provide an explicit process adjustment method. This paper discusses a gen-
eral sequential adjustment procedure based on Stochastic Approximation techniques
and combines it with several commonly used control charts. The performance of these
methods depends on the sensitivity of the control chart to detect shifts in the process
mean, on the accuracy of the initial estimate of shift size, and on the number of sequen-
tial adjustments that are made. It is shown that sequential adjustments are superior
to single adjustment strategies for almost all types of process shifts and magnitudes
considered. A combined CUSUM chart used in conjunction with our sequential ad-
justment approach can improve the average squared deviations, the performance index
considered herein, more than any other combined scheme unless the shift size is very
large. The proposed integrated approach is compared to always applying a standard
integral (EWMA) controller with no monitoring component. The number of adjust-
ments in the proposed approach is justified by comparing the cost and the benefit of
the adjustment. We show that this strategy – combining control charts and sequential
adjustments – is recommended for monitoring and adjusting a process when random
shocks occur infrequently in time.

1 Introduction

In traditional statistical process control (SPC) it is frequently assumed that an initially

in-control process is subject to random shocks, which may shift the process mean to an

off-target value. Different types of control charts are then employed to detect such shifts
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in mean, since the time of the shift is not predictable. However, SPC techniques do not

provide an explicit process adjustment method. Process adjustment is usually regarded

a function pertaining to engineering process control (EPC) or automatic process control

(APC), areas that traditionally have belonged to process engineers rather than to quality

engineers. The lack of adjustments that exists in the SPC applications may cause a large

quality off-target cost – a problem of particular concern in a short-run manufacturing process.

Therefore, it is important to explore some on-line adjustment methods that are able to keep

the process quality characteristic on target with relatively little effort. Integrating EPC

and SPC techniques for process quality control has been discussed by several authors in the

recent literature, e.g., Box and Kramer [3], MacGregor [18], Montgomery et al. [19], Tsung

et al. [29], Tucker et al. [30].

This paper focuses on studying methods for sequential process adjustment based on

Stochastic Approximation (SA) techniques for the purpose of quality control. Corresponding

to the conditions prevalent in short-run manufacturing systems, small-sample properties of

different sequential adjustment techniques will be investigated. We assume a univariate

process that consists of a measurable quality characteristic y and a single controllable factor

x. The process mean is defined as the expectation of y. The process is initially in a stationary

and uncorrelated state, but random shocks could shift the process mean off-target. A control

chart is in use to monitor this process and the chart is applied to individual samples because

it is assumed the production lot size is small. Whenever the control chart signals an “out-

of-control” alarm, we suspect that a mean shift has occurred and proceed with sequentially

adjusting the process.

Let µt be the process mean at sample or part t and let {εt} be a sequence of iid random

errors that models both process inherent variation and measurement error. Then the process

model is given by the following difference equation:

yt = xt−1 + µt + εt (1)

where εt ∼ (0, σ2). In the simulation presented later, normality of the errors is assumed.
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Without loss of generality, the target of yt is assumed to be zero, thus y can be understood

as a deviation from target. The process starts in the in-control state which is assumed to be

such that the mean of the process equals the target, i.e., µ1 = 0 and

µt = µt−1 + δ(t), for t = 2, 3, ... (2)

with

δ(t) =

{

0 if t < t0,
δ ∼ N(µs, σ

2
s) if t ≥ t0, where t0 = shift time.

Figure 1: Step-type disturbance on the process mean

Here, t0, δ, µs and σ2
s are assumed all unknown, see Figure 1. In this simple model

one can see that the random shift in the process mean can be compensated by varying

the controllable factor x after the shift is detected. In recent work (see, e.g, Chen and

Elsayed [6], Crowder and Eshleman [7], Yashchin [34]), there is considerable emphasis on

estimating a time-varying process mean instead of adjusting for such variability. Because

the true process mean is not observable directly, adjustments based only on one estimate are

almost always biased. This paper discusses a general sequential adjustment procedure and

combines it with several commonly used control charts. In order to simplify the set-up of

the control chart, the process variance is assumed known in advance. It will be shown that

this strategy – combining control charts and sequential adjustments – is good at monitoring

and adjusting a process under infrequent random shocks and it also simplifies estimating the

current process mean.
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In the following sections, some commonly used control charts will be reviewed and their

properties on estimating shift sizes will be discussed. A sequential method for process ad-

justment is then proposed. The performance of various combinations of this adjustment

method and different control charts is then evaluated.

2 Control charts and shift size estimates

Shewhart control charts with ±3σ control limits are the most common type of process

monitoring scheme in industry. In this type of chart, sub-group (sample) means or individual

observations of the quality characteristic are plotted and any point that is out of the control

limits indicates strong evidence that a change in the process mean has occurred. But it is well

known that the Shewhart chart is insensitive to small or moderate mean shifts (Montgomery

[20]). In order to detect small shifts more quickly, CUSUM (cumulative sum) and EWMA

(exponentially weighted moving average) charts are recommended instead.

In particular, a CUSUM chart can be shown to be the generalized likelihood ratio test

for the hypothesis H0 : µ = 0 versus H1 : µ = µ0 where µ0 is a predetermined out of control

mean (Lorden [16]). The test statistics for two-sided tabular CUSUM chart are

c+t = max{0, yt −K + c+t−1}

and

c−t = max{0,−yt −K + c−t−1} (3)

where K = s
2
σ and s is the shift size that one wishes to detect (Woodall and Adams [33]).

The control limit of the CUSUM statistics is defined as H = hσ, where h is another design

parameter. Whenever c+ or c− exceeds H, an out-of-control alarm is signaled.

EWMA charts use the EWMA smoothing method to predict the process mean. This

utilizes not only the current measurement but the discounted historical data as well. The

EWMA statistic is defined as

zt = λyt + (1− λ)zt−1, 0 < λ < 1, (4)
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where λ is the smoothing parameter or weight. The EWMA chart control limits are ±L

σ
√

λ
(2−λ)

[1− (1− λ)2t].

A control chart can be used not only to detect the time of the mean shift, but also to

estimate the magnitude of the shift. For instance, the EWMA statistic is widely used as the

estimate of the current process mean when an EWMA chart detects a shift. In addition, the

following equation is used for the CUSUM estimate of the mean:

µ̂ =







K +
c+t
N+ if c+t > H

−K − c−t
N−

if c−t > H
(5)

where N+ and N− are the number of periods in which a run of non zero values of c+ or c−,

respectively, were observed (Montgomery [20]). Shift detection and shift size estimation are

valuable for process adjustment purposes. If the shift size is precisely known, it is obvious

that by letting xt+1 = −µt the process will be reset back to its target in view of equation

(1). Nevertheless, due to the process disturbances {εt}, the process mean is not directly

observable.

Several process adjustment methods for quality improvement purposes have been pro-

posed in the literature. Taguchi [27] emphasized the importance of adjustments and rec-

ommended adjusting by the opposite deviation (−yt) whenever yt exceeds the control limit

of a Shewhart chart. This means that the process mean at the time of the out-of-control

is estimated by the last observed data point. This estimate always gives a large shift size,

thus is significantly biased when the actual shift size is small. Adams and Woodall [1] also

showed that the optimal control parameters and loss functions given by Taguchi are severely

misleading in many situations. An alternative feedback adjustment method recommended

by Luceño [17] is to use an EWMA statistic of the past data collected from the process. It

has been shown that if the disturbance is an integrated moving average (IMA(1,1)) process

with parameter θ, the EWMA statistic is optimal in the sense of mean square error when

its smoothing parameter λ is equal to (1− θ). Kelton et al. [14] suggested that continuously

observing (without adjustment) several data after receiving the first “out-of-control” alarm

will benefit the process mean estimation. For instance, they suggest that the average of 10

5



deviations yt after an alarm occurs is a good estimate of a shift size of 1.5σ. Delaying the

mean estimation was also recommended by Ruhhal et al. [22], although they dealt with a

generalized IMA process model. Evidently, this method is only acceptable for a manufactur-

ing process with high process capabilities and long production runs. For a short-run process,

this approach may produce a high scrap rate.

Wiklund [31, 32] proposed a maximum likelihood estimation (MLE) method based on

a truncated normal probability density function. His argument relies on the fact that the

estimation of the process mean is made on the condition that one finds a point exceeding the

control limit of Shewhart chart. He also discusses other estimation methods based on using

CUSUM and EWMA control charts. Table 1 provides results of the estimated shift size

by different methods computed from partial results in Wiklund’s simulation study, where

the standard errors of the estimates appear in parenthesis. In Wiklund’s study, he assumes

µs > 0 but σs = 0. One can see that Taguchi’s method is very misleading on small to

moderate shifts, that the EWMA is not a sensitive estimator of the shift sizes, and that the

MLE and CUSUM perform comparatively better, but they are still inefficient when the shift

size becomes large.

µs Taguchi’s method Wiklund’s MLE method CUSUM (h = 5, k = 0.5) EWMA (λ = 0.25, L = 3)

0 0 (3.30) 0 (1.38) 0 (2.39) 0 (1.22)
0.5σ 3.1 (1.28) 1.1 (1.11) 1.0 (0.67) 1.24 (0.14)
1σ 3.3 (0.71) 1.3 (1.10) 1.3 (0.54) 1.27 (0.14)
1.5σ 3.4 (0.54) 1.5 (1.22) 1.6 (0.55) 1.31 (0.14)
2σ 3.5 (0.50) 1.8 (1.33) 1.9 (0.67) 1.36 (0.17)
3σ 3.8 (0.60) 2.5 (1.50) 2.6 (0.77) 1.44 (0.26)
4σ 4.3 (0.78) 3.5 (1.60) 3.2 (0.82) 1.55 (0.32)

Table 1: Shift size estimates (and their standard errors) obtained using different methods

More accurate estimation methods of the process mean has appeared in recent research.

Chen and Elsayed [6] provide a Bayesian estimation method for detecting the shift size and

estimating the time of the shift (t0). Crowder and Eshleman [7] applied a Bayesian method

to the short-run process control. They assumed that the process mean is subject to small
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frequent changes that result in serial autocorrelation, so the hypothesis test of whether a

major shift in the mean occurred is not relevant. Yashchin [34] proposed an adaptive EWMA

estimator of the process mean, and he showed that his estimator is good at detecting abrupt

mean changes. However, this method require extensive computational effort for estimating

the process mean at each step and is unsuitable for on-line process control.

3 Sequential adjustments

Since Taguchi’s single observation estimation method is inaccurate in most of the cases,

conducting only one adjustment is insufficient to bring the shifted quality characteristic back

to the target. A better adjustment scheme can be derived from Stochastic Approximation

techniques. The basic idea is that it is better to adjust the off-target process sequentially

and estimate the current process mean simultaneously over several time periods.

Suppose a shift occurs at time t0, and the input variable xt for t > t0 is varied according

to the following equation:

xt = xt−1 − atyt (6)

where xt0 = 0 and {at} is a series such that
∑∞

t=t0
at = ∞ and

∑∞
t=t0

a2
t < ∞. Then, xt

will converge in mean square to the value x∗ such that E[yt|xt = x∗] = 0 (Robbins and

Monro [21]). For a process model as simple as equation (1), at = 1/(t − t0) provides the

fastest convergence rate (Ruppert [23]). In reality, the time t0 is unobservable, so it is

replaced by t′, the time when the shift is detected by the control chart. The setting xt can

be viewed as the negative estimate of the process mean at time t; therefore, −xt′ is the first

estimate of the shift size and it is recursively updated using equation (6). The actual shift

size will be eventually compensated for if adjustments of any size are allowed. However,

this is not realistic for the purpose of controlling a short-run manufacturing process. Given

the resolution of a machine and the smallest magnitude of the feasible adjustment, one can

assign the number of sequential adjustments in advance.

Sequential adjustments applied on machining were first proposed by Grubbs [12] and

7



recently discussed by Trietsch [28]. They dealt with a machine setup error problem as

follows: due to a bad setup operation, the output quality characteristic of the machine has

an offset value d (unknown) from its target. Suppose the error can be adjusted directly,

then the solution which minimizes the variance of the estimate of the offset d̂ is obtained by

equation (6) with at = 1/t, which constitutes a harmonic sequence. Clearly, this solution

is exactly the same as the sequential adjustment solution of a mean shift except that the

shift time is precisely known (t0 = 0). The relation between Grubbs’ rule and stochastic

approximation was recognized recently by del Castillo and Pan [11]. Their results also show

that the harmonic rule performs better for a wide range of shift sizes compared to other rules

derived from Kalman filter theory, but it may be inferior to an integral control rule (i.e., an

EWMA controller) if the shift size is small.

The EWMA controller is a very popular adjustment device used in the semiconductor

industry, but one difficulty in applying this type of controller is selecting a proper control

parameter, especially when the manufacturing process is subject to random shocks. To deal

with this, Guo et al. [13] proposed a dynamic EWMA control scheme, in which the EWMA

control parameter is switched to a sequence similar to the harmonic rule when the shock is

detected. Guo’s method will be discussed in more detail in the next section.

In this paper, the performance of an adjustment scheme is evaluated by the scaled Average

Integrated Squared Deviation (AISD) of the process output, which is defined as

AISD(n)

σ2
=

1

nσ2

n
∑

t=1

y2
t . (7)

For a process having m sequential adjustments after the shift is detected, with adjust-

ments following equation (6) with at = 1/t, the expectation of this index after the shift

detection of the shift equals

E

[

AISD(m)

σ2

]

=
µ2
s

mσ2
+
1

m

[

m
∑

t=2

t

t− 1 + 1
]

. (8)

To derive expression (8) from the process equation (1), assume that a shift occurs at time

t0, i.e., µt = δ for t ≥ t0, δ ∼ N(µs, σ
2
s). Let Kt =

1
t−t0
, so the sequential adjustment scheme
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is of the form:

xt = xt−1 −Ktyt,

with xt0 = 0 and the adjustments start at time t0 + 1. After some algebraic manipulations,

we can get:

yt0 = δ + εt0

and for t > t0

yt = −
1

t− t0

t−1
∑

i=t0

εi + εt.

Therefore,

E[yt] =

{

µs for t = t0,
0 for t > t0

and

V ar(yt) =

{

σ2 + σ2
s for t = t0,

t−t0+1
t−t0

σ2 for t > t0 .

Without loss of generality, we let t0 be 1. If the magnitude of the shift size is assumed to be

a constant, i.e., σs = 0, by substituting the previous expressions into the expectation of (7),

equation (8) is obtained.

The performance of the different sequential adjustment rules depends on the number of

adjustments and on the precision and accuracy of the initial estimate of the shift size. Tables

2 and 3 give the expected scaled AISD of a shifted process without any adjustment and with

several adjustments, respectively, if only one shift occurred. As it can be seen, when the shift

size is smaller than or equal to 0.5σ and only a few (less than 10) adjustments are allowed,

there is no adjustment scheme which can reduce the AISD of the process.

µs 0 0.5σ 1σ 1.5σ 2σ 3σ 4σ
E[AISD(m)]/σ2 1 1.25 2 3.25 5 10 17

Table 2: E[AISD] of a shifted process without adjustments
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E[AISD(m)]/σ2 µs = 0 1σ 2σ 3σ
No. of adj. m=5 1.42 1.62 2.22 3.22

10 1.28 1.38 1.68 2.18
20 1.18 1.23 1.38 1.63

Table 3: E[AISD] of a shifted process with sequential adjustments

4 Integration of EPC and SPC

The proposed integrated process monitoring and adjustment scheme consists of three steps:

monitor the process using a control chart, estimate the shift size when a shift in the process

mean is detected, and finally apply the sequential adjustment procedure to bring the process

mean back to target. To compare the performance of various combinations of control charts

and adjustment methods, we first simulate a manufacturing process (1) for a total of 50

observations, and monitor and adjust it using one of the six methods listed on Table 4.

Method Shift detection Shift size estimation Adjustment

1 Shewhart chart for Last observation one adjustment after
individuals (3σ limits) (Taguchi’s method) an out-of-control alarm

2 Shewhart chart for Maximum Likelihood Estimate one adjustment according
individuals (3σ limits) (Wiklund’s method) to the MLE value

3 CUSUM chart for CUSUM estimate one adjustment according
individuals (k=0.5 h=5) (equation (5)) to the CUSUM estimate

4 Shewhart chart for last observation 5 sequential adjustments
individuals (3σ) (Taguchi’s method) following (6) with at = 1/(t− t′)

5 Shewhart chart for MLE 5 sequential adjustments
individuals (3σ) (Wiklund’s method) following (6) with at = 1/(t− t′)

6 CUSUM chart for CUSUM estimate 5 sequential adjustments
individuals (k=0.5 h=5) (equation (5)) following (6) with at = 1/(t− t′)

Table 4: Six methods of integrating control charts and sequential adjustments

We assume that a shift in the mean occurs after the fifth run and adjustments are con-

ducted immediately after the shift is detected. The mean value of 10,000 simulation results

are illustrated in Figure 2. The y axis in the figure represents the percentage improvement

in the AISD of using some adjustment method compared to the AISD without adjustment,

i.e.,
AISDno adjust−AISDmethod i

AISDno adjust

× 100, so this is a “larger the better” value. This value is

plotted with respect to the actual shift size which was varied from 0 to 4σ. Here the shift
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sizes are constant (i.e., σs = 0). One can see that the sequential adjustment methods (4 to

6) are superior to the one-step adjustment methods (1 to 3) for almost all shift sizes. More

specifically, using a CUSUM chart and sequential adjustments (Method 6) has significant

advantage over other methods when the shift size is small or moderate, and using a Shewhart

chart and sequential adjustments (Method 4) is better for large shifts. Moreover, one-step

adjustment methods, especially the Taguchi’s method, may dramatically deteriorate a pro-

cess when the shift size is small. No method can improve AISD when the shift size is very

small, but comparatively Method 6 is still better than others.

Figure 2: Performance of six integrated methods of control charts and adjustments (the
process mean was shifted after the 5th observation)

To study a general shifting process, the mean shift in the following simulation is changed

to a stochastic process in which shifts occur randomly in time according to a geometric

distribution. Specifically, the occurrence of a shift at each run is a Bernoulli trial with

probability p = 0.05 and the shift size is normally distributed as N(µs, σ
2
s) = N(µs, 1).

Besides the previous six methods, an integral control scheme (i.e., an EWMA controller)
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was studied for comparison purposes. The convergence of EWMA schemes with a small

control parameter for adjusting a step type disturbance has been shown by Sachs et al.

[24]. The EWMA control scheme takes the same form as equation (6) except that the

sequence {at} is a constant λ; here, we set this control parameter at 0.2. There is no process

monitoring needed for the integral control scheme because the controller is always in action.

The simulations were repeated 10,000 times.

Figure 3: Performance of EPC and SPC integration for a more general shift model (the shift
occurs with probability p = 0.05 at each observation)

For this general shift model, it can be seen from Figure 3 that sequential adjustment

methods still out-perform any one-step adjustment method. Evidently, the EWMA controller

performs better than any other sequential method when the shift size mean is small, which

explains the popularity of EWMA controllers. However, one main advantage of the proposed

SPC/EPC integrated methods is that they detect process changes using common SPC charts

whereas the EWMA controller alone does not have this SPC function, in other words, there

is no possibility for process improvement through correction of assignable causes if only an
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EWMA controller is utilized. Process improvement through human intervention is facilitated

by having a monitoring (SPC) mechanism that triggers the adjustment procedure and keeps

a time-based record of alarms useful for process diagnostics.

The step-type random shift model considered in this paper is similar to Barnard’s model

(Barnard, [2]). When the shift occurs more and more frequently, it approaches an IMA

(integrated moving average) disturbance. As it is well-known, the EWMA controller is

the minimum variance controller for a responsive process with IMA disturbance (Box and

Luceño, [5]). This explains why the EWMA chontroller works better when shifts occur more

frequently (larger p) than less frequently (smaller p). However, since this scheme conducts

adjustments at every process run, it cannot be suitable for a process where adjustment costs

must be considered. The economic consideration of adjustments will be discussed in the next

section.

Another drawback of the EWMA controller is that one has to decide what value of the

control parameter λ to use. It is recommended that this parameter should be small in order

to maintain the stability of the process (Sachs et al. [24]), but small parameter values may

not be optimal from an AISD point of view, especially when the mean shift size is large.

Moreover, the high performance of the EWMA scheme comes from the frequent random

shifts modeled in the previous simulation study (an average of 2.5 shifts per 50 runs). If the

chance of shifts decreases, the inflation of variance which is caused by adjusting an on-target

process will deteriorate the effectiveness of this scheme. The inflation in variance for discrete

integral (EWMA) controllers has been studied by Box and Luceño [5] and del Castillo [10]

who provided asymptotic results. The small-sample properties of the variance provided by

EWMA and harmonic adjusting rules are given by del Castillo and Pan [11].

In Figure 4, the probability of random shifts p was decreased to 0.01 and the same

simulation as in Figure 3 was conducted. Under these conditions, the EWMA method

cannot compete well with the sequential adjustment methods combined with CUSUM or

Shewhart chart monitoring. More simulation results for different probabilities of shifts p are
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listed in Table 5. It is found that the EWMA adjustment method is better for small shifts

and Method 4 is better for large shifts when p is large; as p gets smaller (p < 0.02), i.e., the

process is subject to infrequent random shocks, Method 6 gets harder to beat. Therefore,

the proposed SPC/EPC integrated methods work better when p is small, which is relevant

in the microelectronics industry where process upsets occur very rarely.

Figure 4: Performance of EPC and SPC integration for the general shift model, less frequent
shifts (p=0.01).

The performance of the different SPC/EPC integration methods studied herein depends

on 1) their ability to detect a shift and 2) their ability to estimate the process mean. When

a process is in the in-control state, an out-of-control alarm signaled by the control chart is

called a false alarm. Adjustments triggered by false alarms will inflate the variance of the

in-control process, although the inflation will converge to zero when sequential adjustments

are used. On the other hand, if the control chart cannot signal an alarm quickly after a real

shift has occurred, it will also impede a quick recovery through adjustment.

Since the detection properties of a CUSUM chart can be tuned by modifying its design
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Mean of shift size
% improvement on AISD 0 1σ 2σ 3σ 4σ
p=0.05 Method 4 11.20 36.05 62.27 74.93 81.04

(0.30) (0.38) (0.36) (0.31) (0.29)
Method 6 18.89 41.50 64.07 73.90 78.73

(0.28) (0.35) (0.33) (0.30) (0.29)
EWMA controller 24.91 43.11 60.47 67.76 70.71

(λ = 0.1) (0.27) (0.32) (0.30) (0.28) (0.28)
EWMA controller 24.51 45.32 65.26 73.31 76.68

(λ = 0.2) (0.30) (0.36) (0.33) (0.31) (0.30)
EWMA controller 21.16 44.02 65.59 74.21 78.38

(λ = 0.3) (0.33) (0.39) (0.36) (0.33) (0.32)

p=0.035 Method 4 6.65 24.31 47.76 62.41 68.85

(0.26) (0.37) (0.40) (0.39) (0.38)
Method 6 13.80 30.35 50.56 61.91 66.68

(0.25) (0.33) (0.36) (0.36) (0.36)
EWMA controller 18.31 32.18 48.68 56.01 59.58

(λ = 0.1) (0.25) (0.32) (0.34) (0.34) (0.34)
EWMA controller 16.82 32.81 51.21 61.09 64.35

(λ = 0.2) (0.29) (0.36) (0.39) (0.38) (0.39)
EWMA controller 13.13 30.33 51.76 60.82 65.48

(λ = 0.3) (0.32) (0.40) (0.41) (0.41) (0.42)

p=0.02 Method 4 1.48 11.85 28.86 41.60 48.34

(0.24) (0.32) (0.39) (0.43) (0.45)
Method 6 8.07 17.52 32.53 41.94 47.20

(0.21) (0.29) (0.36) (0.39) (0.41)
EWMA controller 10.37 18.86 30.68 38.05 41.06

(λ = 0.1) (0.22) (0.29) (0.35) (0.38) (0.39)
EWMA controller 7.35 17.09 31.40 39.49 43.57

(λ = 0.2) (0.26) (0.33) (0.40) (0.43) (0.45)
EWMA controller 2.16 13.03 28.90 38.19 42.28

(λ = 0.3) (0.28) (0.37) (0.44) (0.47) (0.49)

p=0.005 Method 4 -3.36 -1.02 3.64 9.02 12.57
(0.18) (0.21) (0.28) (0.34) (0.37)

Method 6 1.32 3.60 7.88 11.77 14.37

(0.12) (0.16) (0.23) (0.28) (0.32)
EWMA controller -0.36 1.55 5.53 7.72 9.95

(λ = 0.1) (0.13) (0.17) (0.24) (0.27) (0.30)
EWMA controller -5.55 -2.91 1.42 4.89 7.19

(λ = 0.2) (0.16) (0.21) (0.27) (0.32) (0.35)
EWMA controller -11.25 -8.47 -2.94 0.42 3.15

(λ = 0.3) (0.18) (0.23) (0.31) (0.36) (0.39)

Table 5: Performance of SPC/EPC integrated adjustment schemes and EWMA scheme when
varying the probability of a shift. The numbers are the mean values and standard errors
(in parenthesis) of the percentage improvement on AISD (compared to the process without
adjustment) computed from 10,000 simulations. Bold numbers are largest improvement for
each p and mean shift size combination.
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Figure 5: Performance of Method 6 with different parameters in the CUSUM chart (the
process mean was shifted after the 5th observation)

parameters h and k, it is of interest to study Method 6 with different CUSUM chart pa-

rameters. In Figure 5, several different values of h were tried while fixing k at 0.5 to make

the chart sensitive to small shifts. It was found that when h is small, the process will suffer

from a large number of false alarms generated by the control chart; when h is large, the

improvement in AISD will be limited for large shift sizes due to the lack of sensitivity that

the CUSUM chart has to large shifts. A CUSUM chart with h = 5 seems to be the best

choice since it gives fewer false alarms for a normal process and has comparatively short

ARLs for large shift sizes.

In order to improve further the performance of Method 6 for large frequent shifts, we

propose a hybrid monitoring scheme combined with a sequential adjustment scheme. A

combined CUSUM-Shewhart chart is used, where the parameters on the CUSUM are k = 0.5

and h = 5 and the control limits on the Shewhart chart are set at ±3.5σ. Whenever the

combined chart signals an alarm, the initial estimate of the shift size will be given by the

CUSUM estimate if it is smaller than 1.5σ; otherwise, it will be the negative value of yt

(Taguchi’s method). The average run lengths of this combined monitoring approach are
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Figure 6: Performance of a hybrid monitoring and adjusting method (the process mean was
shifted after the 5th observation)

Shift size
ARL 0 1σ 2σ 3σ 4σ

CUSUM (h=3) 59 6.36 2.56 1.59 1.15
CUSUM (h=4) 169 8.34 3.22 1.98 1.44
CUSUM (h=5) 469 10.34 3.89 2.39 1.72
CUSUM-Shewhart 391 10.20 3.77 2.10 1.34
Shewhart (3σ) 370 43.96 6.30 2.00 1.19

Table 6: ARLs of CUSUM and CUSUM-Shewhart charts. The value k = 0.5 was used in
the CUSUM charts and k = 0.5, h = 5 and c = 3.5(Shewhart control limit) were used in the
CUSUM-Shewhart chart. The ARLs of CUSUM charts are approximated using equations
given by Siegmund [25] and the ARLs of CUSUM-Shewhart chart are from Montgomery [20].
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contrasted with those of a CUSUM chart in Table 6. Comparing this new method to Methods

4 and 6 (see Figure 6), one can see that the new method makes a considerable improvement

on the large shift size while sacrificing a little for small shift sizes. This trade-off cannot be

avoided due to the nature of this hybrid monitoring method.

We finally point out in this section that a method for sequentially adjusting the parame-

ter of an EWMA controller was recently proposed by Guo et al. [13]. They use two EWMA

control charts for detecting moderate (2σ) and large (3σ) shifts. After detection, a har-

monic adjustment sequence is triggered when either chart signals an alarm. In Figure 7, the

two-EWMA method with the suggested chart parameters by Guo et al. is compared with

Method 4, Method 6 and with the hybrid monitoring method proposed before by using the

general shift model with the shift probability p equals 0.05. Clearly, the two-EWMA method

performs worse than other methods, especially on large shift sizes. This can be explained by

the insensitivity of EWMA chart on estimating a general shift size (Table 1).

Figure 7: Comparing the two-EWMA method with other SPC/EPC integrated schemes.
λ1 = 0.6, L1 = 3.285 and λ2 = 0.33, L2 = 3.25 were used for the two EWMA charts. Shifts
occur with p = 0.05.
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5 Cost justification

In quality control, the cost of adjusting a process usually can not be ignored, because the

adjustment is a set of decisions and actions such as stopping the process, investigating the

causes of out-of-control and resetting the process. In the simulations shown in the previous

section, the number of sequential adjustments was arbitrarily selected as five. The economic

consideration of the number of adjustments will be discussed in this section.

When the harmonic adjustment rule is applied on a shifted process with shift size µs,

(xt + µs) is asymptotically normally distributed [23], that is

(xt + µs)→D N(0, σ2/t).

Therefore, xt will be likely in the interval of ±3σ/
√
t around −µs and the effect of an

adjustment will decrease rapidly when the number of adjustments grows. Figure 8 presents

the results of the simulation studies where different numbers of adjustments are applied. The

process was assumed to have a mean shift after the 5th run and the simulation was repeated

1,000 times. It was found that after four or five adjustments the AISDs of the process can

not be further improved significantly. In Figure 9, a 3-D plot of the AISD improvement

function of Method 6 (integrated CUSUM chart and sequential adjustments) is shown as a

function of the mean shift size (µs) and the number of adjustments. The AISD improvement

function is very flat on the adjustment number axis, compared to on the shift size axis, so it

is not worth to do many adjustments.

The optimal number of adjustments can be obtained if the cost elements of the off-target

process and cost of adjustments are known. By marginal analysis, adjustments should be

conducted as long as the adjustment cost is lower than the savings obtained from decreasing

the AISD by adjusting the process one more time. Suppose a process is going to be run for

N observations or parts, and it will be adjusted sequentially for the first n parts. Then the

expected AISD is defined as:
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Figure 8: Improvements on AISDs when the adjustment number increases (a general shift
model with p=0.05, µs = 2 and σs = 1 was used.)

Figure 9: A 3-D view of the AISD improvements from Method 6 when both shift size and
adjustment number change (σs = 1)
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E[AISD(n,N)] =
nE[AISD(n)] + (N − n)(V ar(yn+1) + E[yn+1]

2)

N
(9)

So the adjustment is only profitable when ΩN{E[AISD(n,N)]−E[AISD(n+1, N)]} >

M , where Ω is the unit off-target cost and M is the adjustment cost. By using equations

(8) and (9), we get

n <

√

(M + Ωσ2)2 + 4(N − 1)MΩσ2 − (M + Ωσ2)

2M
(10)

For example, with N = 50 and σ = 1, the optimal number of adjustments computed by

equation (10) is given in Table 7.

M/Ω 1 2 5 10
n 6 4 2 1

Table 7: Optimal number of adjustments

6 Conclusions and future work

In this paper, several combinations of process monitoring and adjusting methods were stud-

ied. The performance of these methods depends on the sensitivity of the control chart to

detect shifts in the process mean, the accuracy of the initial estimate of the shift size, and

the number of sequential adjustments. Sequential adjustments are superior to single ad-

justment strategies for almost all types of process shifts and magnitudes considered, and

a CUSUM chart used together with a simple sequential adjustment scheme can reduce the

average squared deviations of a shifted process more than any other combined scheme when

the shift size is not very large. We further propose a hybrid monitoring method, which, when

coupled with a sequential adjustment scheme, has a more competitive performance on both

small and large shift sizes.

Unlike some commonly used automatic process control methods, the integrated SPC/EPC

schemes that we proposed do not require continuous adjustments on the process. Therefore,

these methods are suitable for process control when the process is subject to infrequent
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random shocks. The number of adjustments can be justified by comparing the cost and

the benefit of the adjustment. Since sequential adjustments are applied, the effect of the

initial estimate of the process mean is not as critical as in the single adjustment method,

so this method requires much less computation effort and is easy to be implemented on the

manufacturing floor.

In this study, the process was assumed to be stable and to have no autocorrelation,

and only a simple step-type change was investigated. The effectiveness of the integrated

SPC/EPC schemes on autocorrelated processes and on other types of changes needs to be

studied further. With respect to process monitoring, English et al. [8] showed that for an

AR (autoregressive) time series process, the EWMA chart is preferred over a Shewhart chart

in detecting mean shifts and changes in AR parameters. With respect to automatic control,

Box and Luceño [5], Luceño [17] and Srivastava [26] examined the impact of control actions

on IMA (integrate moving average) time series process and proposed optimal control limits

if the adjustment cost is not trivial. The adjustment strategy recommended in the literature

is either single adjustment based on the one-step estimate of the process change or consistent

adjustment like the EWMA rule. As demonstrated in this paper, integrating control charts

and sequential adjustments, which combines monitoring, estimation and adjustment, can be

a better alternative for controlling a process with infrequent sudden changes, and it is worth

to be explored for more general process models and types of changes.
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Why this paper is important

In this paper, we present a novel way of integrating process monitoring (SPC) and process

adjustment (EPC) for controlling shifts in the mean value of the quality characteristic in a

process.

It is known that traditional SPC techniques emphasize process change detection, but do

not provide an explicit process adjustment method. The adjustment strategy recommended

in the literature is either to perform a single adjustment based on the a single estimate of

the process mean at an alarm time or to use continuous adjustments like in an EWMA (or

integral) controller. This paper discusses a general sequential adjustment procedure based

on Stochastic Approximation techniques and combines it with several commonly used

control charts. The performance of these combinations are compared with the performance

of the single adjustment method and with an EWMA controller through simulation studies.

We show that sequential adjustments are superior to single adjustment strategies for almost

all types of process shifts and magnitudes considered. A standard CUSUM chart used in

conjunction with a sequential adjustment technique can reduce the squared deviations of a

shifted process more than any other combined scheme when the shift size is not very large.

Furthermore, a hybrid monitoring method coupled with sequential adjustment is proposed,

which has a balanced performance on small and large shift sizes.

Unlike some commonly used automatic process control methods, the integrated SPC/EPC

scheme that we proposed does not require continuous adjustments on the process, and allows

for process improvement by generating SPC alarms when shifts occur. These methods are

suitable when the process is subject to infrequent random shocks, as often encountered in

the microelectronics industry.

The proposed SPC/EPC methods are easy to use on the manufacturing floor since 1)

they are based on standard SPC charts, and 2) the adjustment rule is extremely simple,

allowing even for manual implementation.


