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Abstract

The usual approach to solving the Multiple Criteria Decision Making (MCDM)
problem is by either using a weighted objective function based on each individual
objective or by optimizing one objective while setting constraints on the others. These
approaches try to find a point on the efficient frontier or the Pareto optimal set based
on the preferences of the decision maker. Here, a new algorithm is proposed to solve
a MCDM problem based on a Bayesian methodology. At a first stage, it is assumed
that there are process responses that are functions of certain controllable factors or
regressors. At a second stage, the responses in turn influence the utility function
of one or more decision makers. Both stages are modelled with Bayesian regression
techniques. The advantages of using the Bayesian approach as opposed to traditional
methods are highlighted. The methodology is applied to engineering design problems,
providing a rigorous formulation to popular “Design for Six Sigma” approaches.

KEYWORDS: Regression, Quality Control, Multivariate Statistics, Multiple Criteria

Analysis, Response Surface Methodology.

1 Introduction

In practice, decision-making problems typically involve the consideration of two or more

criteria that are often conflicting. These are referred to as Multiple Criteria Decision Making

(MCDM) problems, where one has to take into account trade-offs between the conflicting

criteria. An example from the manufacturing industry is in automobile design. For instance,

the suspension in a sports car has to be designed considering trade-offs between a “sporty”

feel for the driver and a ride that may be too bumpy. In the MCDM problem we consider, it
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is of interest to maximize the utility of the customer, which is an unknown function u of the

future outcomes or responses, y = (y1...yq). It is assumed that these responses are in turn

functions of variables x = (x1...xp) that are under the control of the decision-maker and can

be set by him/her to desired values subject to given constraints.

This paper proposes a new algorithm to solve MCDM problems based on a Bayesian

methodology that adopts a probabilistic approach to solving the MCDM problem. This

paper is organized as follows: section 2 introduces some useful results behind the Bayesian

methodology, section 3 presents MCDM methodology for the case of a single decision maker.

This section discusses the application of the methodology to “design for six sigma” problems”.

Section 4 then extends the methodology to the case of multiple decision makers. Examples

are provided in both section 3 and 4. A summary of the approach is discussed in section 5.

1.1 Merits of the Bayesian Methodology

In the traditional sense of optimization, response models are first fit to the data as functions

of the controllable factors (independent variables), and then the models are optimized to

find the setting of the factors that give the desired values of the responses. However, this

optimal setting does not allow us to predict what fraction of future responses will fall within

the specifications as these equations give only the “mean models” (i.e., they give only point-

estimate values for the mean and the variance of the responses). In other words, there can

be no inference made about the conformance to specifications. A natural way to circumvent

this problem is to maximize the probability of conformance of the predicted responses to

their specification limits [8]. This can be achieved using a Bayesian predictive methodology.

The benefits of using this methodology are that (a) the posterior predictive density of the

responses can be used to make inferences on their future values, thus giving us a means to

calculate the probability of conformance of the future responses, (b) the methodology takes

into account the mean and the variance of the responses including their correlation structure,

and (c) the methodology takes into account uncertainty in the model parameters.

Although both approaches are probabilistic, the Bayesian approach to MCDM differs

from Stochastic programming methods in that the former uses information or data collected

about the system in the analysis of solutions while the latter uses only a priori information

about the random variables in the analysis (see [11]). Other non-Bayesian MCDM approaches

that use data collected on the system, typically fit expected value models that are in turn

used to obtain the efficient frontier or Pareto set [10]. Information collected from the decision

maker is then used to identify the operating point on the efficient frontier. More recently,

there have been developments in the application of Bayesian methods to certain MCDM

problems. Hahn [4] uses Bayesian inferencing to derive priorities in the Analytic Hierarchy
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Process (AHP).

2 Useful results in Bayesian and Bayesian Predictive

Inference

This section contains some preliminary results useful in the Bayesian MCDM methodology

of later sections.

2.1 Bayes’ Theorem

Suppose y is a vector of n observations of a response whose joint distribution p(y|θ) depends

on the value of k parameters θ. Suppose that θ has a prior probability distribution p(θ).

Then, given the observed data y, the conditional distribution of θ is given by Bayes’ theorem

[1]:

p(θ|y) =
l(θ|y)p(θ)

p(y)
, (1)

where l(θ|y) is the likelihood function of θ for given y. Thus, Bayes’ theorem says that

the distribution of θ posterior to observing the data y is proportional to the product of the

likelihood for θ given y and the distribution of θ prior to observing the data.

2.2 Bayesian Predictive Density

Consider a single response of interest y that depends on k controllable factors, x1...xk. As-

sume that we have data from an experiment with n runs from which we can fit the following

model to the response:

y = x′β + ε, (2)

where x is the (p × 1) vector of regressors that are functions of the k controllable factors

(i.e., x is in model form), β is the (p× 1) vector of model parameters and ε is the error term

which is assumed to be normally distributed, N(0, σ2). Denote the design matrix from the

experiment by the (n×p) matrix X and the vector of observed responses from the experiment

by the (n× 1) vector y.

The posterior predictive density of a future response vector, y∗, at a given setting of the

model regressors, x∗, for the given data, y, is defined as (see [9]):

p(y∗|x∗,y) =

∫

σ2

∫

β
p(y∗|x∗,y,β, σ2)p(β, σ2|y) dβ dσ2, (3)

where p(y∗|x∗,y, β, σ2) is the likelihood function, and p(β, σ2|y) is the posterior distribution

of the model parameters. It is noted that the uncertainty in the model parameters is naturally
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accounted for by considering β and σ2 to be random variables and evaluating their posterior

distributions using Bayes’ theorem as follows:

p(β, σ2|y) ∝ p(y|β, σ2)p(β, σ2), (4)

where p(y|β, σ2) is the likelihood function, and p(β, σ2) is the joint prior distribution of the

model parameters. For the system described earlier, under a diffuse prior given by,

p(β) ∝ constant, (5)

p(σ2) ∝ 1

σ2
, (6)

and,

p(β, σ2) = p(β)p(σ2), (7)

the posterior predictive density is given by a t-distribution (see [9]). That is,

y∗|x∗,y ∼ tν(x
∗′β̂, σ̂

√
1 + x∗′(X′X)−1x∗), (8)

where ν = n− p,

β̂ = (X′X)−1X′y, (9)

and,

σ̂2 =
(y −Xβ)′(y −Xβ)

n− p
. (10)

From equation (8), if [l, u] is the desired specification for the response it is possible to

compute the posterior probability of conformance, p(y∗ ∈ [l, u]|x∗), by using the c.d.f. of the

t-distribution. The posterior mean of the response at x∗ is given by

E(y∗|x∗,y) = µy∗ = x∗′β̂, (11)

and the posterior variance of the response at x∗ is given by

V ar(y∗|x∗,y) =
ν

ν − 2
σ2

y∗ =
ν

ν − 2
σ̂2

(
1 + x∗′(X′X)−1x∗

)
. (12)

2.2.1 Multiple Responses

For multiple responses, it is of interest to maximize the posterior probability of conformance,

p(y∗ ∈ A), where A is a region of interest defined by the individual specifications, [li, ui], on

each response. Here, each of the q responses is modelled as

yi = x′iβi + εi. (13)
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If the error term, εi is uncorrelated between the responses, then the responses can be modelled

independently. In this case, the joint posterior probability of conformance for the q responses

is simply the product of the marginal posterior probabilities of conformance of the individual

responses. Thus, given the data Y,

p(y∗ ∈ A|x∗1...x∗k,Y) ≡ p(y∗1 ∈ [l1, u1], y
∗
2 ∈ [l2, u2]...y

∗
q ∈ [lq, uq]|x∗1...x∗k,Y) (14)

=

q∏
i=1

p(y∗i ∈ [li, ui]|x∗1...x∗k,Y), (15)

where each of the marginal posteriors is given by the t-distribution shown in equation (8).

If the error terms are correlated, then the responses can be modelled as either a Standard

Multivariate Regression (SMR) or a Seemingly Unrelated Regression (SUR) model, where

the former assumes that all the response models have the same set of regressors and the

latter assumes that each response model may have different regressors. For the SMR case,

the joint posterior probability distribution under a diffuse prior is given by a multivariate

T-distribution [9]. That is, given the (n×p) design matrix X, and the (n× q) response data

matrix Y, the posterior density at a future set of observations given by (p× 1) vector x∗ is

y∗|x∗,Y ∼ T q
ν (B′x∗,H−1), (16)

where ν = n− p− q + 1,

B = (X′X)−1X′Y, (17)

H =
νS−1

1 + x∗′(X′X)−1x∗
, (18)

and

S = (Y −XB)′(Y −XB). (19)

For the SUR case, the posterior predictive density has no closed form but can be computed

numerically. In particular, Percy [6] shows how a the posterior predictive distribution of a

new observation y∗ can be approximated using Gibbs sampling.

3 Bayesian Method for MCDM

Suppose that there are q responses (y1...yq), that depend on k controllable factors, x1...xk.

It is assumed that data from an experiment with n runs is available from which we can fit

a model to the responses of the form,

yj = x′jβj + εj, ∀j ∈ {1, ..., q} (20)
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where for each response yj, xj is the (pj × 1) vector of regressors that are functions of the k

controllable factors, βj is the (p × 1) vector of model parameters and εj is the error term.

Depending on the model used for the multiple responses, it is possible to sample from the

posterior distribution of the response as discussed in the previous section.

Suppose initially that there is a single customer whose utility function u depends on the

q responses (y1...yq). It is assumed that data from a survey with m questions is available,

where each question is a different combination of values of the q responses, and each answer

is a score given by the customer on a numerical scale (e.g. 0 to 10) that indicates his/her

preference to that combination. Based on the survey, it is now possible to fit a model:

u = y′fγ + ε, (21)

where u is the customer’s score or utility, yf is the (pf × 1) vector of regressors where each

regressor is a function of the q responses (y1...yq) (i.e., yf is written in model form, thus

its subscript is used to distinguish this from the data vector y of section 2.2), γ is the

(pf × 1) vector of model parameters, and ε is the error term, assumed N(0, σ2
f ). Note that

the responses (y1...yq) are treated as regressors in (21). The combinations of the responses

in the survey can be chosen based on DOE (design of experiments) techniques in order to

get a good fit for the statistical model shown in equation (21). If Yf is the (m× pf ) design

matrix of the survey, and u is the vector of answers from the survey, then for a diffuse prior

on the model parameters in equation (21) given by,

p(γ) ∝ constant, (22)

p(σ2
f ) ∝

1

σ2
f

, (23)

and,

p(γ, σ2
f ) = p(γ)p(σ2

f ), (24)

the posterior distribution of the customer’s utility u∗ at a given value of the responses (y∗1...y
∗
q )

can be obtained from equation (8) and is given by:

u∗|y∗f ,u ∼ tνf
(µu∗ , σ

2
u∗), (25)

where νf = m− pf , µu∗ = y∗f
′γ̂, and σ2

u∗ = σ̂2
f (1 + y∗f

′(Y′
fYf )

−1y∗f ). Here,

γ̂ = (Y′
fYf )

−1Y′
fu, (26)

and,

σ̂2
f =

(u−Yfγ)′(u−Yfγ)

m− pf

. (27)
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Figure 1: Block diagram of the proposed Bayesian MCDM method

Note that the posterior mean of u∗ at y∗f is given by,

E(u∗|y∗f ,u) = µu∗ = y∗f
′γ̂, (28)

and the posterior variance of u∗ at y∗f is given by

V ar(u∗|y∗f ,u) =
νf

νf − 2
σ2

u∗ =
νf

νf − 2
σ̂f

2
(
1 + y∗f

′(Y′
fYf )

−1y∗f
)
. (29)

Thus, as it can be seen, the proposed Bayesian MCDM approach consists of linking two

levels or stages, with each stage modelled via Bayesian regression (see figure 1).

3.1 Optimization

It is assumed that the objective of the MCDM problem is to find the values of the controllable

factors (x∗1...x
∗
k) that maximizes the probability that the customer’s utility is at least lu. In

mathematical notations, the objective function is written as

max
x∗1...x∗k

p(u∗ ≥ lu|x∗1...x∗k,u,Y)

=

∫

y∗=(y∗1 ...y∗q )

[p(u∗ ≥ lu|y∗,u)p(y∗|x∗1...x∗k,Y)] dy∗

= Ey∗ [p(u∗ ≥ lu|y∗,u)] .
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It is noted that for any given setting (x∗1...x
∗
k), the outcome of the responses (y∗1...y

∗
q ) follows

one of the distributions discussed earlier, based on the model used for the multiple responses.

For each possible outcome of the responses, the distribution of the customer’s utility u follows

the distribution shown in equation (25). Thus given (x∗1...x
∗
k), the probability that u∗ > lu

at this setting is determined by taking the expected value over the distribution of (y∗1...y
∗
q )

at that setting. The expected value in the objective function can be found by Monte Carlo

simulation as shown in the steps below:

1. Set count = 1

2. Generate y∗(count) = {y∗1(count)...y∗q (count)} by sampling from the posterior distri-

bution of the responses.

3. Compute p(u∗ ≥ lu|y∗(count),u) for the sample using the c.d.f. (cumulative distribu-

tion function) of the distribution given in equation (25).

4. Set count = count + 1. Repeat from step 2 until count > N .

5. Estimate the expected value using the Weak Law of Large Numbers (WLLN), that is

lim
N→∞

1

N

N∑
i=1

[p(u∗ ≥ lu|y∗(count),u)] = Ey∗ [p(u∗ ≥ lu|y∗,u)] . (30)

The optimization problem can be solved with any constraints imposed on the feasible region

of (x∗1...x
∗
k) using nonlinear search algorithms. The example below illustrates the proposed

methodology.

3.2 Application to Six Sigma Manufacturing

Six Sigma methodologies are gaining popularity in industries for managing quality [2]. A six

sigma quality level performance corresponds to about 3.4 defects per million for a normally

distributed process that is off-target by 1.5σ, where σ is the standard deviation of the process.

The Design for Six Sigma (DFSS) approach is used to achieve six sigma quality levels for the

customer from the ground up by adjusting the manufacturing variables or control variables in

the process. For example, in the manufacturing of light bulbs, the DFSS approach would be

to adjust the manufacturing variables, say melting point of the filament and refractive index

of the glass, so that the distribution of the lifetime of the bulb meets customer satisfaction

at the six sigma quality level. These measures are often termed “CTQ’s” in industry, that is

Critical-To-Quality metrics. Thus in the light bulb example, the DFSS approach is to adjust

the manufacturing variables (melting point of the filament and refractive index of the glass)
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so that the distribution of the system CTQ’s (lifetime of the bulb) meets the customer CTQ

(customer satisfaction or utility) at the six sigma quality level.

The conventional non-Bayesian approach to this problem is to fit a customer-utility model

to the customer CTQ’s as functions of the system CTQ’s and to fit a process model to

the system CTQ’s as functions of the manufacturing variables. Using the customer-utility

model, the desired values of the system CTQ’s that maximize the expected value of the the

customer CTQ are identified. The process model is then used to identify the values of the

manufacturing variables such that the expected value of the system CTQ’s from the model

is equal to the desired value of the system CTQ’s obtained using the customer-utility model.

The reliability is measured using process capability indices that, however, do not give a

probability of conformance and do not account for the uncertainty in the parameters of the

models. In other words, the distribution of the products meeting the customer’s utility score

is not known.

In the proposed Bayesian approach, it is also true that customer-utility models are fit

to the customer CTQ’s as functions of the system CTQ’s, and process models are fit to the

system CTQ’s as functions of the manufacturing variables (see figure 1). However, here the

reliability is measured in terms of the probability that the customer’s satisfaction or utility

is above a given lower bound. Figure 2 shows the Bayesian approach to DFSS, where the

posterior distribution of the responses are a function of the the setting of the manufacturing

variables and the posterior distribution of the utility is a function of realized values of the

responses. The values of the manufacturing variables are identified by finding those settings

that result in the distribution (as opposed to the expected value) of the responses such that

the probability that the customer’s satisfaction or utility score is above a given lower bound.

This posterior predictive distribution implicitly models the uncertainty of the parameters.

The examples below illustrate the proposed Bayesian methodology for MCDM.

3.3 Example: CVD Process

This example uses data from Czitrom and Spagon [3] for a chemical vapor deposition (CVD)

process, an important step in the manufacture of semiconductors. The goal of the experiment

was to model the deposition layer uniformity and deposition layer stress responses. The

central composite inscribed (CCI) design that was used and the experimental data are shown

in Table 1. There are two controllable factors: Pressure measured in torr, and ratio of the

gaseous reactants H2 and WF6 (denoted by H2/WF6). The response “Uniformity” indicates

the variation in the layer being deposited on a wafer. Therefore, smaller Uniformity values

are preferred. A smaller value of the second response “Stress” is also desirable. Note that

the controllable factors are provided in the [−1, 1] coded variable range which is preferable
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Figure 2: Block diagram of the Design for Six Sigma approach

for modelling. Based on the coded data, the model obtained for the responses using the

ordinary least square estimates shown in equation (9) are given by:

ŷ1 = 5.8661− 1.9097x1 − 0.2241x2 + 1.6862x1x2 + 0.1337x2
1 + 0.0337x2

2, (31)

ŷ2 = 7.7900 + 0.7359x1 + 0.4969x2 + 0.0694x1x2 − 0.5287x2
1 − 0.1187x2

2. (32)

Table 2 gives the results from the survey based on different combinations of the responses.

Each combination of the responses, y1 and y2, in the survey is based on runs from a central

composite design as can be seen in the coded variables. The coding is based on setting the

smallest observed value of the response in table 1 as -1, and the largest observed value as

1. Table 2 shows sample results from 4 different surveys, which would typically be filled

out by the plant engineer. More desirable responses correspond to higher ui values. It is of

interest to observe how the optimization results vary according to the answers to the survey

by comparing the results between the different surveys.

For each survey, i, a quadratic model of the form shown in equation (21) is fitted to the

utility ui from the data:

û1 = 6.00− 2.61y1 − 1.58y2 + 0.25y1y2 − 0.25y2
1 − 0.50y2

2, (33)

û2 = 4.00− 2.36y1 − 0.72y2 + 0.25y1y2 + 0.37y2
1 + 0.12y2

2, (34)

û3 = 2.00− 0.85y1 − 2.81y2 + 0.87y2
1 + 1.87y2

2, (35)

û4 = 2.00− 0.42y1 − 3.51y2 + 1.06y2
1 + 1.31y2

2. (36)
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Run Pressure, x1 H2/WF6, x2 coded x1 coded x2 Uniformity, y1 Stress, y2

1 80 6 1 0 4.6 8.04
2 42 6 0 0 6.2 7.78
3 68.87 3.17 0.71 -0.71 3.4 7.58
4 15.13 8.83 -0.71 0.71 6.9 7.27
5 4 6 -1 0 7.3 6.49
6 42 6 0 0 6.4 7.69
7 15.13 3.17 -0.71 -0.71 8.6 6.66
8 42 2 0 -1 6.3 7.16
9 68.87 8.83 0.71 0.71 5.1 8.33

10 42 10 0 1 5.4 8.19
11 42 6 0 0 5 7.9

Table 1: Data for CVD process example [3]

combination y1 y2 coded y1 coded y2 Survey 1, u1 Survey 2, u2 Survey 3, u3 Survey 4, u4

1 3.40 6.49 -1 -1 10 8 9 8
2 8.60 6.49 1 -1 4 3 7 7
3 3.40 8.33 -1 1 6 6 2 1
4 8.60 8.33 1 1 1 2 0 0
5 2.32 7.41 -1.4142 0 9 8 5 5
6 9.68 7.41 1.4142 0 2 1 3 4
7 6.00 6.11 0 -1.4142 7 5 9 10
8 6.00 8.71 0 1.4142 3 3 3 0
9 6.00 7.41 0 0 6 4 2 2

Table 2: Data for 4 different surveys for CVD example
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Figure 3: Surface plot of p(u∗ ≥ 8) for different values of x∗ for CVD example

where the yj are in coded form. For the optimization, suppose that it is desired to find the

settings of Pressure and H2/WF6, that maximize the probability that the customer’s (in this

case, the plant engineer’s) utility is at least 8 on a 0 − 10 scale. Figure 3 shows the value

of the probability p(u∗ ≥ 8|x∗1, x∗2,u,Y) over all the values of Pressure and H2/WF6 shown

in coded variables for each survey. Note that the profile of the surface is different based

on each survey. The optimization results are shown in table 3. Thus, if the plant engineer

had filled out the survey as given in survey 1 or 2, then the best setting of the controllable

factors is a pressure of 80 torr and H2/WF6 ratio of 2. If instead the plant engineer had filled

out the survey as given in survey 3 or 4, then the best setting of the controllable factors is

pressure of 4 torr and H2/WF6 ratio of 2. Note that the maximum value of the probability

p(u∗ ≥ 8|x∗1, x∗2,u,Y) is also different for each survey.

3.4 Example: HPLC Process

The data for this example is taken from [7] and is presented in table 4. There are four

responses in the high performance liquid chromatography (HPLC) system namely, the critical
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Optimization Results
p(u∗ > 8) coded x∗1 coded x∗2 Pressure H2/WF6

Survey 1 0.7102 1 -1 80 2
Survey 2 0.4436 1 -1 80 2
Survey 3 0.7271 -1 -1 4 2
Survey 4 0.8828 -1 -1 4 2

Table 3: Optimization results for the 4 surveys

resolution (Rs), total run time, signal-to-noise ratio of the last peak and the tailing factor of

the major peak. There are three controllable factors: %IPA, temperature and pH. Here, we

assume that the model is of the SMR form, i.e., all the responses have the same regressors

and the error terms are correlated between the responses. The vector of regressors used for

the process model is (1, x1, x2, x3, x
2
1, x

2
2, x

2
3, x1x2)

′. The parameter estimates are obtained

using equations (17 - 19). As the model is SMR, the joint posterior distribution of the

responses is given by a multivariate T-distribution as shown in equation (16), from which

the responses are sampled in step 3 of the optimization process described in section 3.1.

Table 5 gives data from a single sample survey based on different combinations of the

responses. Each combination of the responses (y1, y2, y3, y4) in the survey is based on runs

from a small composite design as can be seen in the coded variables. As in the previous

example, the coding is based on setting the smallest observed value of the response in table 4

as -1, and the largest observed value as 1. It is noted here that the utility in the survey is a

score in the range 0-20. Based on the survey data, the model fitted to the utility is given by,

û = 14 + y1 − 4.25y2 + 6.50y3 + 0.75y4 − y2y3 − 2.75y2
1 + 1.25y2

2 − 0.25y2
3 − 6.25y2

4. (37)

Figure 4 shows the scatter plot of the posterior probability p(u∗ ≥ 15|x∗1, x∗2, x∗3,u,Y)

over all combinations of the control factors x∗, plotted on a grid 0.4 apart in the space

{x∗1 ∈ [−1, 1], x∗2 ∈ [−1, 1], x∗3 ∈ [−1, 1]}. In the plot, the larger and darker circles in-

dicate a higher value of this posterior probability. In this example, the posterior prob-

ability p(u∗ ≥ 15|x∗1, x∗2, x∗3,u,Y) is maximized at a value of 0.787 at the setting x∗ =

[−0.015, 0.653,−0.366]. In the original (uncoded) units, this corresponds to setting %IPA at

69.9, temperature at 46.5 and pH at 0.129.
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combination y1 y2 y3 y4 coded y1 coded y2 coded y3 coded y4 Survey, u

1 1.73 16 291 0.805 -1 0 0 0 8
2 2.61 16 291 0.805 1 0 0 0 12
3 2.17 10 291 0.805 0 -1 0 0 17
4 2.17 22 291 0.805 0 1 0 0 11
5 2.17 16 172 0.805 0 0 -1 0 7
6 2.17 16 410 0.805 0 0 1 0 18
7 2.17 16 291 0.73 0 0 0 -1 5
8 2.17 16 291 0.88 0 0 0 1 8
9 2.17 16 291 0.805 0 0 0 0 14

10 1.95 13 231.5 0.7675 -0.5 -0.5 -0.5 -0.5 12
11 2.39 13 231.5 0.8425 0.5 -0.5 -0.5 0.5 12
12 1.95 19 231.5 0.8425 -0.5 0.5 -0.5 0.5 7
13 2.39 19 231.5 0.7675 0.5 0.5 -0.5 -0.5 7
14 1.95 13 350.5 0.8425 -0.5 -0.5 0.5 0.5 20
15 2.39 13 350.5 0.7675 0.5 -0.5 0.5 -0.5 20
16 1.95 19 350.5 0.7675 -0.5 0.5 0.5 -0.5 14
1 2.39 19 350.5 0.8425 0.5 0.5 0.5 0.5 14

Table 5: Data for 4 different surveys for HPLC example

4 Extension to Multiple Decision Makers

In the previous sections, the discussion of the proposed methodology was restricted to the

case of a single customer or decision maker (DM). In this section, the methodology is ex-

tended to cases where there are two or more DM’s. Here, each of the d DM’s fills out a

survey, and the optimization is carried out in order to maximize the probability that the

utility of the ith DM is at least equal to lui
.

Once again, it is assumed that there are k controllable factors, which can be set to

desired values, and that there are q responses that depend on these controllable factors. It

is assumed that data from an experiment with n runs is available and the responses can be

modelled independently using linear regression as functions of the controllable factors if the

error terms are correlated, or using SMR or SUR if the error terms are correlated. Based

on the chosen model, it is possible to obtain a sample y∗ from the corresponding posterior

predictive density of the responses, as described in section 3. As in the case with a single

DM, it is assumed that data from a survey with m questions is available, where each question

presents a different combination of values of the q responses to the DM’s who give a score on

a numerical scale (e.g. 0-10) giving his/her preferences to that combination. Assuming that

the error terms in the models of the utility function are uncorrelated between the DM’s, it

is now possible to model the utility of each of the DM’s based on the survey as functions of

the q responses as shown in equation (21). The model for the utility function of the ith DM
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Figure 4: Surface plot of p(u∗ ≥ 15) for different values of x∗ for HPLC example

is given by:

ui = y′fi
γi + εi, (38)

where ui is the customer’s score or utility, yfi
is the (pfi

× 1) vector of regressors where

each regressor is a function of the q responses (y1...yq), γi is the (pfi
× 1) vector of model

parameters, and εi is the error term, assumed N(0, σ2
fi
). Suppose Yfi

is the (m× pfi
) design

matrix of the survey for the ith DM, and ui is the corresponding vector of answers from

the survey. Following the assumption that the error terms εi are uncorrelated for all i, for

a diffuse prior on the model parameters in equation (21) for all i ∈ {1...d} as shown in

equations (5-7), the posterior predictive density of the ith DM follows a t-distribution, i.e.,

u∗i |y∗fi
,ui ∼ tνfi

(µu∗i , σ
2
u∗i

), (39)

where νfi
= m− pfi

, µu∗i = y∗fi

′γ̂i, and σ2
u∗i

= σ̂2
fi
(1 + y∗fi

′(Y′
fi
Yfi

)−1y∗fi
). Here,

γ̂i = (Y′
fi
Yfi

)−1Y′
fi
ui, (40)

and,

σ̂2
fi

=
(ui −Yfi

γi)
′(ui −Yfi

γi)

m− pfi

. (41)

Therefore, the joint posterior probability that the utility of the ith DM is at least lui
is simply

the product of the marginals, i.e.,

p(u∗1 ≥ lu1 , u
∗
2 ≥ lu2 ...u

∗
d ≥ lud

|y∗f1...y
∗
fd,u1...ud) =

d∏
i=1

p(u∗i ≥ lui
|y∗fi

,ui). (42)
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4.1 Optimization

In the case of multiple DM’s, a reasonable objective in the MCDM problem is to find the

values of the controllable factors (x∗1...x
∗
k) that maximize the probability that the utility of

the ith DM is at least lui
for all i = {1...d}. The objective function is written as

max
x∗1...x∗k

d∏
i=1

p(u∗i ≥ lui
|x∗1...x∗k,y∗fi

,ui)

=

∫

y∗=(y∗1 ...y∗q )

[
d∏

i=1

p(u∗i ≥ lui
|y∗fi

,ui)p(y∗|x∗1...x∗k,Y)

]
dy∗

= Ey∗

[
d∏

i=1

p(u∗i ≥ lui
|y∗fi

,ui)

]
.

Here, for each possible outcome of the responses, the distribution of the ith DM’s utility ui

follows the distribution shown in equation (39). Thus given (x∗1...x
∗
k), the probability that

u∗i > lui
∀ i at this setting is determined by taking the expected value over the distribution

of (y∗1...y
∗
q ) at that setting. The expected value in the objective function can be found by

Montecarlo simulation as shown in the steps below:

1. Set count = 1

2. Generate y∗(count) = {y∗1(count)...y∗q (count)} by sampling from the posterior distribu-

tion of the responses. Note that regressors y∗fi
(count) can be obtained from the sample

for all i.

3. Compute
∏d

i=1 p(u∗i ≥ lui
|y∗(count),ui) for the sample using the c.d.f. (cumulative

distribution function) of the distribution given in equation (39).

4. Set count = count + 1. Repeat from step 2 until count > N .

5. Estimate the expected value using the Weak Law of Large Numbers (WLLN),

lim
N→∞

1

N

N∑
i=1

[
d∏

i=1

p(u∗i ≥ lui
|y∗(count),ui)

]
= Ey∗

[
d∏

i=1

p(u∗i ≥ lui
|y∗,ui)

]
. (43)

The optimization problem can be solved with any constraints imposed on the feasible region

of (x∗1...x
∗
k) using a nonlinear search algorithm. The example below illustrates the proposed

methodology.
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Figure 5: Surface plot of p(u∗ ≥ 8) for different values of coded Pressure and H2/WF6

4.2 Example: Multiple DM’s

To illustrate the method for multiple DM’s, consider the data from the example in section 3.3.

In that section, the MCDM problem was solved for each DM individually. Therefore, for

each survey shown in table 2, the optimization problem gives a different solution as shown in

table 3. Here, we consider the same data as shown in tables 1 and 2. However, we consider

all the 4 surveys simultaneously. The models for the responses and the utility are the same

as in section 3.3 as given by equations (31-32) and (33-36).

Figure 5 shows the surface plot of the joint posterior predictive density of the 4 DM’s

utility as functions of the manufacturing variables. The figure shows two cases, the first one

where p(u∗i ≥ 8|x∗1, x∗2,ui,Y)∀ i and the second where p(u∗i ≥ 5|x∗1, x∗2,ui,Y)∀ i. In both

cases the posterior probability is maximized at the setting x∗ = [1,−1], where the value of

p(u∗i ≥ 8|x∗1, x∗2,ui,Y) ∀ i = 0.07, and the value of p(u∗i ≥ 5|x∗1, x∗2,ui,Y) ∀ i = 0.28.

5 Discussion

A new algorithm to solve the MCDM problem was presented. The methodology maximizes

the probability that the DM’s utility function is greater than some user-defined value. As op-

posed to traditional methods that use expected value models for optimization, the Bayesian

methodology takes into account the uncertainties in the model parameters. The examples

provided demonstrate how the solution to the MCDM varies with differences in the pref-

erences of the decision maker. The methodology was also extended to the case of multiple

decision makers.

In the examples shown, the survey was designed by coding the maximum observed value

of the responses at 1 and the minimum at -1, and using a central composite design. It should
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be noted that other designs such as space-filling or D-optimal designs could also be used de-

pending on the type of the customer utility model. In the examples, the regressors for both

the process and the customer models essentially included main effects, two-way interactions

and quadratic effects. For a general case, it is recommended to choose the regressors based

on any prior knowledge of the response surface, especially for the customer utility model. It

should be pointed out that diffuse or non-informative priors were used throughout, thus the

resulting approach can be classified as “objective-Bayesian”.
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