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Abstract

Traditional approaches for process optimization start by fitting a model and then
optimizing the model to obtain optimal operating settings. These methods do not ac-
count for any uncertainty in the parameters of the model or in the form of the model.
Bayesian approaches have been proposed recently to account for the uncertainty on the
parameters of the model, assuming the model form is known [15]. This paper presents a
Bayesian predictive approach to process optimization that accounts for the uncertainty
in the model form, also accounting for the uncertainty of the parameters given each
potential model. It is proposed to optimize the model-averaged posterior predictive
density (MAP) of the response where the weighted average is taken using the model
posterior probabilities as weights. The resulting model-robust optimization is illus-
trated with two experiments from the literature, one involving a mixture experiment
and the other a small composite design.

Keywords: Response Surface Methodology, Bayesian Model Averaging, Predictive Density.

1 Introduction: Process Optimization

In the “end game” of Response Surface Methodology (RSM, see [2, 14]), optimization of

a process traditionally consists of two steps. The first step is to design the experiment,

collect data and fit a model, usually of second order or higher to allow for curvature. Once

the model is fitted, the next step is to optimize the response based on the fitted model

and obtain estimated optimal operating settings. The second step in this process strongly

depends on the assumption that the fitted model is the correct representation of this process.
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It is possible that a second different model, which arguably fits the data as well as the first

model, provides considerably different optimal operating conditions (see our example section

for cases when this occurs). A frequentist approach, common in RSM practice, is to assess

the effect of the uncertainty of the parameter estimates on the optimum by computing a

confidence region on the location of the optimum (e.g., see [17]). A more recent Bayesian

approach implicitly considers the uncertainty of the parameters given the model form [15, 13].

The technique used by these authors involves obtaining the posterior predictive density of

the response based on the assumed model, and maximizing the probability of obtaining the

predicted response to lie within certain limits or specifications.

In this paper, the Bayesian predictive approach density is taken one step further by

averaging over possible competing models. Here, no single model is assumed. Instead, as a

first step, the Bayesian posterior probabilities for all possible models (belonging to a class

(or classes) of models that are appropriate for the process) are calculated. Once the model

posteriors are determined, the next step is to determine the posterior predictive density of

the response for each of the competing models. The model-averaged posterior predictive

density (MAP) is then computed by taking the weighted average of the densities over all

competing models. The model posteriors computed earlier are used as the weights. The

MAP is then used to maximize the probability of obtaining a response value within the

given specification limits.

As the uncertainty in the model is more acute in the case where there are fewer runs,

the examples provided in the later sections will focus on smaller designs. However, the main

idea can be applied to any design where the form of the best model is in question.

In the next section, the technical details about the application of Bayesian model av-

eraging to process optimization are discussed. The predictive approach we adopt focuses

on making inferences on future values of the “observable” y [6]. For doing this, the poste-

rior predictive density of the response under a particular choice of priors and the assumed

likelihood needs to be derived. This is discussed in section 2 and the details are shown in

2



Appendix B. This is followed by two examples, one of which is a mixture experiment and

the other a small composite design.

2 Bayesian Model Averaging

We consider a process with a single response variable y which is dependent on a (p × 1)

vector of regressors x that are in turn functions of the k controllable factors. It is assumed

that a suitable experiment with n runs has been designed and carried out and the data from

the experiment is available. The vector of responses from the experiment is given by the

(n × 1) vector y. Each observation of the model is assumed to be generated from a model

linear in the parameters of the form

y = x′β + ε (1)

where, ε is the error term, and β is the vector of process parameters (i.e., x is in model form).

The particular functional form of the x′β term (a function of the k controllable factors) is

not known with certainty. In this paper, we focus on the case where ε is normally distributed.

It is assumed that the goal of the optimization is to identify the values of the controllable

factors that result in a response y such that L < y < U where L denotes a given lower

bound (or specification) and U denotes a given upper bound. The approach adopted here

maximizes the posterior predictive probability of obtaining a response y within these bounds.

In this procedure, we first list the potential models that are under consideration based on

a family or families of models. Next, the posterior probability of each of these i models

given the experimental data, P (Mi|y), is calculated. The posterior predictive density of the

response is then calculated for each model Mi as a function of the controllable variables.

This is denoted by P (y∗|Mi,x
∗,y), where y∗ is the predicted value of the response at a new

set of observed regressors x∗. In order to average the predictive density of the response

over all competing models, we take the weighted average of P (y∗|Mi,x
∗,y), using the model

posteriors, P (Mi|y), as the weights. The model-averaged posterior predictive density (MAP)
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is thus of the form of a mixture of distributions over all competing models, namely:

MAP = P (y∗|x∗,y) =
∑

i

P (y∗|x∗,y,Mi)P (Mi|y). (2)

The optimal control variables are then determined by maximizing the probability that

the predicted response lies within the target bounds, i.e.,

max
x1,...,xk

P (L ≤ Y ∗ ≤ U) =
∑

i

[∫ U

L

P (y∗|Mi,x
∗,y)dy∗

]
P (Mi|y) (3)

where the maximization is over the k control factors (x1, x2, ..., xk) that x∗ depends on.

It should be pointed out that this approach does not average the optimal levels of the

controllable factors for each model. Instead, the optimal levels of the controllable factors are

prescribed by averaging the predictive density of the response over all models. Constraints

on the controllable factors xi can be included in (3) if desired.

2.1 Calculating model posteriors

There is considerable literature on the calculation of model posterior probabilities (e.g., see

[10], [19] and the references therein). The most common approach is to assume a candidate

list of models based on a class (or classes) of models with fi out of the total k factors

present in model Mi. A useful method to determine model priors, proposed by Meyer et

al. [10, 11, 12] is to choose the model priors based on the active factors (i.e., the factors

present in each model). Denote the probability of factor j to be active as πj, j ∈ {1, ..., k}.
Assuming that the prior probabilities of active factors are independent, the model prior is

given by

P (Mi) =
∏

j∈Mi

(πj)
∏

j′ /∈Mi

(1− πj′). (4)

If πj = π, ∀j ∈ {1, ..., k}, then P (Mi) = πfi(1 − π)k−fi . Let ri be the number of terms in

model Mi and ti be the number of terms in model Mi excluding the constant term. Thus, if

the model includes a constant term, we have that ti = ri − 1, otherwise ti = ri. Let Xi be

the (n× ri) design matrix corresponding to Mi. The posterior probability of Mi is given by
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Bayes’ theorem,

P (Mi|y) =
P (y|Mi)P (Mi)∑
i P (y|Mi)P (Mi)

, (5)

where P (y|Mi) is the marginal likelihood of the model given the data. This marginal is

defined as:

P (y|Mi) =

∫

σ2

∫

βi

P (y|Mi, σ
2,βi)P (σ2,βi|Mi) dβi dσ2, (6)

where P (y|Mi, σ
2,βi) is the likelihood function. Under the assumption of normality of the

error terms, the likelihood is given by:

P (y|Mi, σ
2,βi) ∝ σ−nexp

[−1

2σ2
(y −Xiβi)

′(y −Xiβi)

]
. (7)

Let P (σ2,βi|Mi) be the joint prior of the model parameters. The parameters βi and σ2 are

assumed to be independent a priori. The priors on the parameters are chosen as

βi ∼ N(0,Σiσ
2) (8)

P (σ2) ∝ 1

σ2
(9)

P (βi, σ
2) = P (σ2)P (βi) (10)

Here, we choose Σ−1 = (X′
iXi)Vi, where Vi = 1

g

(
0 0
0 I ti

)
, and g is a parameter whose

value is to be chosen. Thus, the priors on all the βi’s except for the constant term are

assumed to be normally distributed using Zellner’s g-prior [21]. The priors on the βi for the

constant term and on log(σ2) are assumed to be non-informative. A discussion on our choice

of priors is included in section 4.

From the assumed priors and from equation (7), the integral in equation (6) can be computed

and yields (see [12], [19]):

P (y|Mi) ∝ γ−ti|Σ−1
i + X′

iXi|− 1
2 S

− (n−1)
2

i , (11)

where γ is such that

g

γ2
Vi = Σ−1. (12)
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Then, by omitting the constant denominator in equation (5), we get

P (Mi|y) ∝ πfi(1− π)k−fiγ−ti|Σ−1
i + X′

iXi|− 1
2 S

− (n−1)
2

i , (13)

where

Si = (y −Xiβ̂i)
′(y −Xiβ̂i) + β̂i

′
Σ−1

i β̂i (14)

= y′y − y′Xi(Σ
−1
i + X′

iXi)
−1X′

iy, (15)

and

β̂i = (Σ−1
i + X′

iXi)
−1X′

iy. (16)

Here, Si is the Bayesian analog to the residual sum of squares and β̂i gives the parameter

estimates for model Mi. The probabilities for each of the models computed from the above

equations are scaled by dividing each one of them by the sum of all the probabilities in order

to obtain the model posterior probabilities for the models that sum to 1.

It should be noted that not all models in the original candidate list will have significant

posterior probabilities. Hence, we choose a subset of m models from the original list based

on the calculated posteriors. Methods for choosing this subset are discussed in appendix A.

2.2 Calculating the predictive density

The predictive density for the new response y∗ at a new set of regressors x∗ for a given model

Mi is given by:

P (y∗|Mi,x
∗,y) =

∫

σ2

∫

βi

P (y∗|Mi,x
∗,y, σ2,βi)P (βi, σ

2|y,Mi) dβi dσ2, (17)

where P (y∗|Mi,x
∗,y, σ2,βi) is the likelihood function, and P (βi, σ

2|y, Mi) is the joint pos-

terior of the model parameters [18]. Based on the observed data, the probability that the

predicted response lies between the lower and upper bounds for a given model at a given set

of regressors x∗ is obtained using the cumulative posterior predictive density, that is:

P (L ≤ Y ∗ ≤ U |Mi,x
∗,y) =

∫ U

L

P (y∗|Mi,x
∗,y)dy∗. (18)
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If the model parameters log(σ2) and βi are assumed to have non-informative priors, then

it has been shown by Press [19] that the predictive density obeys a tn−ri
distribution. For

the priors assumed here, the predictive density is shown in appendix B to follow a tn−1

distribution. The cumulative posterior predictive density can thus be obtained from the

c.d.f. of a t-distribution that is very easy to compute using the incomplete beta function.

This avoids the use of any numerical methods for the integration in equation (18). The

cumulative predictive density is computed by:

P

(
y∗ − x∗′β̂i

σ̂i

√
1 + x∗′(Σ−1

i + X′
iXi)−1x∗

< t|Mi,x
∗,Y

)
=

1

2

[
1 + I t2

ν+t2

(
1

2
,
ν

2

)]
, (19)

where Iz(a, b) is the incomplete beta function, ν = n−1, and σ̂2
i = Si/(n−1). The objective

function in equation (3) is thus the cumulative model averaged posterior predictive density,

and can be calculated at a given observation x∗ using equations (13) and (19).

3 Examples

There are two hyper-parameters to be chosen in the priors, namely π and g. In both of the

examples below, we choose a value of π = 0.5, which implies equal prior chances of a factor

being active or inactive. The parameter g is chosen based on the value of γ that gives the

lowest posterior probability for the null model (model with just the constant term). This

choice is suggested by Meyer at al. [10], and we discuss it further in section 4 below. We

also study the sensitivity of the solution to the choice of priors by solving the optimization

problem for various values of these parameters.

The optimizations were carried out using MATLAB’s fmincon routine. This function

uses a sequential quadratic programming method. This is used to maximize the cumulative

MAP between the upper and lower bounds, over all feasible values of x1, ..., xk. As with most

nonlinear programming algorithms, this method requires an initial starting point x1, ..., xk.

In order to avoid local optimums, we utilized different random starting values arranged in

a latin hypercube (see [20]) to better cover the feasible region. In the two examples that
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x1 x2 x3 y

1.000 0.000 0.000 18.90
0.000 1.000 0.000 15.20
0.000 0.000 1.000 35.00
0.500 0.500 0.000 16.10
0.500 0.000 0.500 18.90
0.000 0.500 0.500 31.20
0.333 0.333 0.333 19.30
0.666 0.167 0.167 18.20
0.167 0.666 0.167 17.70
0.167 0.167 0.666 30.10
0.333 0.333 0.333 19.00

Table 1: Mixture data from [5] where the response is Glass Transition temperature

follow, convergence to the same point was always achieved, so the optimality of the solutions

obtained seems to be well established.

3.1 Example 1: Mixture Experiment

This example, taken from Frisbee et al. [5], shows a mixture experiment where the response is

glass transition temperature of films cast from poly(DL-lactide) (PLA), and the controllable

variables are amounts of non-ionic surfactants, namely, Polaxamer 188 NF ( Pluronic r©

F68), Ployoxyethylene 40 monostearate (Myrj r© 52-S) and Polyoxyethylene sorbitan fatty

acid ester NF (Tween r© 60). The authors are interested in finding the composition of the

controllable factors that minimize the glass transition temperature. The data from [5] is

given in Table 1. The authors fit a regression equation that is given by:

y = 18.50x1 + 13.88x2 + 36.06x3 − 35.21x1x3 + 19.55x2x3. (20)

Based on the fitted equation, Frisbee et al. [5] use contour plots to determine the minimal

plateau region for glass transition temperature. However, as the experiment consisted of

only 11 runs, the accuracy of the model used is suspect. There are a some other regression

models that provide a reasonable fit to the data, and each of these would result in a different
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optimal solution. Peterson [16] suggested that a different class of models, namely a Becker

model [1], also represent adequately this process. The Becker model is of the form

y = b1x1 + b2x2 + b3x3 + b4 min(x1, x2) + b5 min(x1, x3) + b6 min(x2, x3). (21)

The ordinary least square (OLS) regression statistics for the models in equation (20) and

(21), as well as for all other models belonging to these two classes of models are shown in

Table 2. Higher order terms in each model were considered only if the corresponding lower

order terms were present. In the table, each row represents a competing model and under

the columns containing the model terms (effects), a ‘1’ indicates that the term is present in

the model and a ‘0’ indicates otherwise. The OLS statistics shown in the table are based on

the sum of squares of the residuals (SSE), the total sum of squares (SST ), and the standard

error (S.E.). We note that since the mixture models are fitted without the constant term,

the SSE/SST ratio is greater than 1 for some models. This means that the model y = ȳ,

where ȳ is the mean of the observed responses, fits the data better than the models for which

the SSE/SST ratio is greater than 1. Even based on the OLS statistics, there are many

possible models that can be used to represent the process.
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In order to perform Bayesian model-robust optimization, the first step was to define

the prior parameters required for model averaging. Using the method proposed by Meyer

et al. [10], a value of γ = 10 was chosen. The parameter π was then set at 0.5 for all

the factors. The sensitivity of the optimal solution with respect to the chosen parameters

is discussed later. Model posteriors were calculated for all models discussed earlier. The

resulting posterior probabilities are shown in the last column of Table 2 for each model.

Since there are no constant terms in the mixture models considered, we use Zellner’s

g-prior for all the βi, i.e., Σ−1
i = (1/g)(X′

iXi) in equation (8). In this case, the cumulative

posterior predictive density is given by (see appendix B),

P

(
y∗ − x∗′β̂i

σ̂i

√
1 + x∗′(Σ−1

i + X′
iXi)−1x∗

< t|Mi,x
∗,Y

)
=

1

2

[
1 + I t2

ν+t2

(
1

2
,
ν

2

)]
, (22)

where Iz(a, b) is the incomplete beta function, ν = n, and σ̂2
i = Si/n.

Based on the model posteriors, only models with P (Mi|data) > 0.0279 were considered

for averaging as they accounted for 95% of the probability. Table 3 shows these models.

The model numbers correspond to the respective models in Table 2. As the objective is to

minimize the response, the lower bound L was set at ∞ and the upper bound U was set at

18 for illustration purposes. The optimization of the MAP resulted in point(0.133, 0.867, 0)

as the optimum levels of the controllable factors, where the probability of obtaining Y ∗ ∈
(−∞, 18) was 0.9388. Table 3 also shows the optimal values of the controllable factors at

which the posterior predictive densities of each individual model is maximized for Y ∗ ∈
(−∞, 18). The maximum value of the posterior predictive density is given in the column

labeled ‘z∗’. It can be seen that the optimal solution can vary drastically based on the model

chosen.

Figure 1 shows the cumulative MAP plotted on a 2-D simplex as well as a 3-D plot. The

2-D plot shows the points at which P (−∞ < Y ∗ < 18) was evaluated, with the squares

representing points where P (−∞ < Y ∗ < 18) > 0.7. The 3-D plot shows the same points

with cumulative MAP plotted on the vertical axis. Figure 2 shows P (−∞ < Y ∗ < 18|Mi),

plotted at the same points for the eight competing models with the squares representing
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ModelNo. P (Mi|data) x∗1 x∗2 x∗3 z∗

1 0.3557 0 1 0 0.9998
2 0.1430 0 1 0 0.9969
3 0.1380 0 1 0 0.8933
4 0.0910 0.2756 0.7244 0 0.9998
5 0.0803 0 1 0 0.7358
6 0.0759 0.2249 0.7751 0 0.8993
7 0.0392 0.3243 0.6757 0 0.7695
8 0.0279 0.2469 0.7531 0 0.9960

Table 3: Optimum for individual models for example 1

points where the individual predictive density is greater than 0.7. In order to better

understand the importance of maximizing the MAP, Table 4 shows the probabilities of

conformance, P (−∞ < Y ∗ < 18) for various cases of the true model and the assumed

model. The table shows the value of P (L ≤ Y ∗ ≤ U |Mi,y, x1, ..., xk) where Mi is the true

model and control factors x1, ..., xk are set at their optimal values obtained from solving from

maximizing this probability using the assumed model. Thus, for example, if the assumed

model is model 1, then the probability of conformance is maximized at the point (0, 1, 0), as

shown in table 3, yielding a probability of 0.9998. However, this is actually the probability

of conformance only if the true model is also model 1. If, for example, it so happens that

the true model is model 7, then the probability of having Y ∗ ∈ (−∞, 18) is actually 0.6584

when using the solution point (0, 1, 0), obtained with the wrong model. Similarly, the last

column on the table shows P (L ≤ Y ∗ ≤ U |Mi,y, x1, ..., xk) for the true model, evaluated at

the solution x1, ..., xk obtained from maximizing the MAP. Based on the column statistics,

it can be seen that operating at the point which maximizes the MAP has highest average

probability of conformance (and among lowest std. deviation of this probabilities) compared

to probabilities provided by solutions obtained by assuming single one of the competing

models. The MAP also has higher minimum probability of conformance, thus it improves the

worst-case scenario (worst true model). Therefore, it is seen that regardless the true process

model (within the assumed family of models), the solution obtained using the model-average
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approach provides an operating point that gives relative high probabilities of conformance.

It is in this sense that we can say the solutions obtained are robust to the uncertainty in the

form of the true model.
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Table 5 shows the sensitivity of the solution with respect to the chosen parameters γ

and π. It is seen that the sensitivity of the solution to π is dependent on γ. At the value

of γ chosen, the optimal controllable variables as well as the optimal predictive density are

insensitive to the choice of π.

3.2 Example 2: Small-composite Design

The second example uses data from Czitrom and Spagon [4] for a chemical vapor deposition

(CVD) process. The goal of the experiment was to investigate the Uniformity and Stress

responses. This example illustrates the model-averaging approach on the first response. The

central composite inscribed (CCI) design that was used and the experimental data are shown

in Table 6. There are two controllable factors: Pressure and ratio of the gaseous reactants

H2 and WF6 (denoted by H2/WF6). The goal was to minimize the response, as a smaller

value of “Uniformity” indicates a a more uniform layer being deposited on a wafer. The

models considered included combinations of main effects, two-way interactions and quadratic

effects. In all the models higher order effects were included only if the corresponding main

effect(s) is(are) present in the model. Table 7 lists these models along with their least square

regression statistics and posterior probabilities. The prior on the factors, π, was set at 0.5

and a value of γ = 2 was chosen using the method described in section 4.

Models with P (Mi|data) > 0.0254 were used for model averaging as they accounted for

95% of the probability. Based on these models and within the region {−1 ≤ x1 ≤ 1,−1 ≤
x2 ≤ 1}, the MAP was maximized for Y ∗ ∈ (−∞, 5) at the point (1.0000,−0.9198) yielding

a maximum probability of conformance of 0.8851. The optimum values of the controllable

factors obtained by maximizing the individual predictive densities, and the maximum value

of the predictive density for the individual models for Y ∈ (−∞, 5) are given in table 8. It

can be seen that for all the models the optimum value of x1 is 1, but the optimum setting

for x2 can vary anywhere from -1 to 1. Figures ?? shows the surface plot of the cumulative

posterior predictive density of the response in the region (−∞, 5) for different possible values
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γ π x∗1 x∗2 x∗3 z∗

0.5 0.25 0.6841 0.3159 0.0000 0.7213
0.5 0.50 0.6703 0.3297 0.0000 0.6993
0.5 0.75 0.7433 0.2567 0.0000 0.6891

2 0.25 0.6167 0.3833 0.0000 0.6906
2 0.50 0.5043 0.4957 0.0000 0.6759
2 0.75 0.5043 0.4957 0.0000 0.6759
5 0.25 0.3233 0.6767 0.0000 0.8252
5 0.50 0.3232 0.6768 0.0000 0.8252
5 0.75 0.3233 0.6767 0.0000 0.8252

10 0.25 0.1330 0.8670 0.0000 0.9388
10 0.50 0.1330 0.8670 0.0000 0.9388
10 0.75 0.1330 0.8670 0.0000 0.9388
30 0.25 0.0213 0.9787 0.0000 0.9856
30 0.50 0.0213 0.9787 0.0000 0.9856
30 0.75 0.0213 0.9787 0.0000 0.9856

100 0.25 0.0000 1.0000 0.0000 0.9767
100 0.50 0.0000 1.0000 0.0000 0.9825
100 0.75 0.0000 1.0000 0.0000 0.9825

Table 5: Sensitivity of solution with respect to the parameters γ and π for example 1

Coded Pressure Coded H2/WF6 Uniformity

1 0 4.6
0 0 6.2

0.71 -0.71 3.4
-0.71 0.71 6.9

-1 0 7.3
0 0 6.4

-0.71 -0.71 8.6
0 -1 6.3

0.71 0.71 5.1
0 1 5.4
0 0 5

Table 6: Design and experimental data for CVD process [4]

18



Model no. constant A B AB A2 B2 R2 R2
Adj S.E. P (Mi|data)

1 1 1 1 1 0 0 0.8703 0.8148 0.6145 0.2827
2 1 1 0 0 0 0 0.7186 0.6874 0.7982 0.2396
3 1 1 1 1 1 0 0.8715 0.7858 0.6607 0.108
4 1 1 1 1 0 1 0.8703 0.7839 0.6637 0.1053
5 1 1 0 0 1 0 0.7198 0.6498 0.8449 0.0907
6 1 1 1 0 0 0 0.7285 0.6607 0.8316 0.0671
7 1 1 1 1 1 1 0.8716 0.7431 0.7235 0.0416
8 1 1 1 0 1 0 0.7297 0.6139 0.8871 0.0254
9 1 1 1 0 0 1 0.7285 0.6122 0.8891 0.025

10 1 1 1 0 1 1 0.7298 0.5496 0.9581 0.0098
11 1 0 0 0 0 0 0 0 1.4276 0.0035
12 1 0 1 0 0 0 0.0099 -0.1001 1.4974 0.0009
13 1 0 1 0 0 1 0.0099 -0.2376 1.5882 0.0003

Table 7: Least square regression statistics and posterior probabilities for competing models
for example 2

of the control factors.

Model-robustness analysis for the competing models is given in Table 9. (Note that

models 2 and 5 are independent of the second factor, x2 (H2/WF6). In the table, for the

columns associated with these two models, the probabilities of conformance were evaluated

at the point (1, 0)). Similarly as in the previous example, it can be seen that the solution

obtained by maximizing the MAP is robust to the uncertainty in the true model of the

Model no. P (Mi|data) x∗1 x∗2 z∗

1 0.2827 1 -1 0.9665
2 0.2396 1 N/A 0.8132
3 0.1080 1 -1 0.9569
4 0.1053 1 -0.9017 0.9618
5 0.0907 1 N/A 0.7776
6 0.0671 1 1 0.8477
7 0.0416 1 -0.9018 0.9464
8 0.0254 1 1 0.8178

Table 8: Optimum for individual models for example 2

19



process.

20



A
ss

u
m

ed
M

od
el
→

1
2

3
4

5
6

7
8

M
A

P
T

ru
e

M
od

el
↓

1.
00

0.
96

65
0.

86
80

0.
96

65
0.

96
48

0.
86

80
0.

39
35

0.
96

48
0.

39
35

0.
96

51
2.

00
0.

81
32

0.
81

32
0.

81
32

0.
81

32
0.

81
32

0.
81

32
0.

81
32

0.
81

32
0.

81
32

3.
00

0.
95

69
0.

83
23

0.
95

69
0.

95
40

0.
83

23
0.

37
33

0.
95

40
0.

37
33

0.
95

46
4.

00
0.

96
12

0.
86

14
0.

96
12

0.
96

18
0.

86
14

0.
39

91
0.

96
18

0.
39

91
0.

96
18

5.
00

0.
77

76
0.

77
76

0.
77

76
0.

77
76

0.
77

76
0.

77
76

0.
77

76
0.

77
76

0.
77

76
6.

00
0.

73
79

0.
81

65
0.

73
79

0.
74

72
0.

81
65

0.
84

77
0.

74
72

0.
84

77
0.

74
55

7.
00

0.
94

56
0.

83
18

0.
94

56
0.

94
64

0.
83

18
0.

37
49

0.
94

64
0.

37
49

0.
94

63
8.

00
0.

70
43

0.
78

09
0.

70
43

0.
71

30
0.

78
09

0.
81

78
0.

71
30

0.
81

78
0.

71
14

M
in

0.
70

43
0.

77
76

0.
70

43
0.

71
30

0.
77

76
0.

37
33

0.
71

30
0.

37
33

0.
71

14
M

ax
0.

96
65

0.
86

80
0.

96
65

0.
96

48
0.

86
80

0.
84

77
0.

96
48

0.
84

77
0.

96
51

M
ea

n
0.

85
79

0.
82

27
0.

85
79

0.
85

98
0.

82
27

0.
59

96
0.

85
98

0.
59

96
0.

85
94

S
td

.
D

ev
.

0.
11

11
0.

03
30

0.
11

11
0.

10
75

0.
03

30
0.

23
02

0.
10

75
0.

23
02

0.
10

82

T
ab

le
9:

M
o
d
el

-r
ob

u
st

n
es

s
an

al
y
si

s
fo

r
ex

am
p
le

2.
T
ab

le
gi

ve
s

P
(L

≤
Y
∗
≤

U
|M

i,
y
,x

1
,.

..
,x

k
)

w
h
er

e
M

i
is

th
e

tr
u
e

m
o
d
el

,
ev

al
u
at

ed
at

th
e

se
tt

in
gs

x
1
,.

..
,x

k
ob

ta
in

ed
fr

om
m

ax
im

iz
in

g
th

e
p
ro

b
ab

il
it
y

of
co

n
fo

rm
an

ce
u
si

n
g

th
e

as
su

m
ed

m
o
d
el

.

21



Table 10 shows results of sensitivity analysis to the solution with respect to the parameters

π and γ. The sensitivity of the solution to π is dependent on the value of the γ chosen. Here,

also, it is seen that at a given value of γ, the solution is insensitive to the selection of the π

parameter.

3.2.1 Pre-Posterior Analysis

In the above example the maximum model averaged posterior probability of conformance

to the specifications (−∞, 5) was 0.8851. In practice, a process engineer may feel that such

probability of conformance is too small. There are two possible reasons for a relative low

probability of conformance. The first reason is that the data is limited, and so given the

available data, this is the highest probability of conformance that can be obtained. In this

case, running more experiments and using the additional data could give a higher value

of posterior probability of conformance, especially when the repeatability of the observed

measures is high. The second reason is that the specification limits set by the process

engineer are unrealistic. In such case there is no point in running more experiments as the

additional data will not increase the probability of conformance. These two situations can be

discerned by using a pre-posterior approach, as suggested by Peterson [15]. Table 11 shows

the posterior probability of conformance, z∗, as well as the optimal levels of the control

factors, (x∗1, x
∗
2), and the mean and standard deviation estimates of the posterior response

at (x∗1, x
∗
2) for two cases. Both cases use the same values for the hyper-parameters as before

with π = 0.5, and γ = 2. The first case (labeled “data” in table 11) uses the original data

that is shown in table 6, and the second case (labeled “data+replicate” in table 11) uses the

original data along with a replicate of the original data appended to the data. The data used

in the second case would be valid if the experimental observations are completely repeatable.

The way to mimic more data is simply based on replicating the Xi matrices and changing

the corresponding degrees of freedom in the MAP computations [15]. For each of these two

cases, the results are shown for various values of specification limits. It can be seen from the

table that for the specification limits used earlier (−∞ < Y ∗ < 5), the posterior probability
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γ π x∗1 x∗2 z∗

0.5 0.25 1 -1 0.4878
0.5 0.50 1 -1 0.5191
0.5 0.75 1 -1 0.5218

1 0.25 1 -0.9151 0.7149
1 0.50 1 -0.9154 0.7487
1 0.75 1 -0.9154 0.7621
2 0.25 1 -0.9684 0.8428
2 0.50 1 -0.9198 0.8851
2 0.75 1 -0.9198 0.9094
5 0.25 1 -0.7760 0.8438
5 0.50 1 -0.7928 0.8992
5 0.75 1 -0.7930 0.9305

10 0.25 1 -1 0.8090
10 0.50 1 -0.5696 0.8557
10 0.75 1 -0.5995 0.8967

100 0.25 1 -0.9072 0.5563
100 0.50 1 0.5146 0.7038
100 0.75 1 0.7584 0.7944

Table 10: Sensitivity of solution with respect to parameters π and γ for example 2
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data data+replicate

z∗ x∗1 x∗2 mean std. dev. z∗ x∗1 x∗2 mean std. dev.
Y ∗ < 5 0.8851 1 -0.9198 3.5792 0.9670 0.9955 1 -1 2.8083 0.7599
Y ∗ < 4 0.6494 1 -1 3.5296 0.9896 0.9338 1 -1 2.8083 0.7599
Y ∗ < 3 0.3329 1 -1 3.5296 0.9896 0.5986 1 -1 2.8083 0.7599
Y ∗ < 2 0.1057 1 -1 3.5296 0.9896 0.1499 1 -1 2.8083 0.7599

Table 11: Pre-posterior analysis for example 2

of conformance increases from 0.8851 to 0.9955 when one more replicate is used. Therefore,

this is evidence that in this case it is worth considering running additional experiments in

order to obtain a higher posterior probability of conformance given the data. However, when

the specification limits are set as (−∞ < Y ∗ < 2), the posterior probability of conformance

increases from 0.1057 to only about 0.1499. Thus, even when the repeatability of the process

is high, the highest possible posterior probability of conformance is still very low. In this

case, this is evidence that there is a need for re-designing the specification limits on the

response.

4 Choice of Priors and Hyper-parameters

The previous sections were based on the assumption of an non-informative prior for log(σ2),

a non-informative prior on the β for the constant term, and a normally distributed g-prior

for the remaining β’s. Other choices of prior that are typically considered in the literature

are the use of a non-informative prior for all the β’s, or the use of a normally distributed

g-prior for all the β’s.

A non-informative prior for all the β’s is the same as the prior we use earlier when g →∞.

The non-informative prior is convenient for the calculation of the posterior predictive density

since the resulting distribution is a t-distribution [19]. However, in the calculation of the

model posteriors, this prior tends to favor the null model (i.e., a model with just the constant

term). This can be explained based on Bayes’ factors, since the model posteriors can be used
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for model selection in a Bayesian hypothesis testing for the true model [8]. Fernandez et al.

[3] use Bayes factors to recommend using a non-informative prior just for the constant term

β rather than using the g-prior for all the β’s. They make the recommendation based on

the ease of choosing the hyper-parameters when computing the Bayes’ factors for the model

posteriors.

For the priors chosen, there are only two hyper-parameters to be chosen, namely π and

γ. In all cases here, we have assumed π = 0.5, so that the model posteriors are proportional

to the marginal likelihood of the data. To choose γ, Meyer et al. [10] recommend using

the value that minimizes the posterior probability of the null model. They use an empirical

Bayesian approach to show that this value of gamma also maximizes the posterior density,

p(γ|y). As was done in the examples of section 3, a sensitivity analysis of the solutions with

respect to variations on these two parameters should be conducted. Further justification for

(essentially equivalent) priors as used here can be found in Meyer et al. [10].

5 Conclusion

A Bayesian methodology for process optimization is proposed that prescribes operating

points that are robust to uncertainty in the response model. Analytical results have been

derived to obtain closed form expressions for the cumulative model-averaged posterior pre-

dictive density. The results have been applied to two examples that demonstrate the ad-

vantages of model-averaging using the Bayesian predictive approach. For cases where the

model-averaged posterior probability of conformance to the specifications is small, a pre-

posterior analysis is recommended. As shown in example 2, this analysis could be used to

determine if additional experiments could result in a higher probability of conformance or if

the specifications were too demanding to start with.
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A Choosing Model Subset for Averaging

It is usually not necessary to average over all m models considered originally. There are

different methods proposed in literature to choose a subset of these, either based on the

marginal likelihood P (y|Mi), or on the model posterior probabilities P (Mi|y). Madigan et

al. [9] propose an algorithm based on Occam’s window and Occam’s razor to choose the

subset of models. A simple criteria based on Occam’s razor is to choose the subset of models,

Mj, such that

maxiP (Mi|y)

P (Mj|y)
≤ c′ (A.1)

Here, c′ is a constant whose value remains to be chosen. The above criteria are useful when

the number of candidate models is very large. In the examples we discuss, there are fewer

candidate models. Also, as the focus of this paper is on process optimization, we use a

simpler criteria to choose the subset of models from the original candidate list. Here, we

order the model posteriors in descending order and include only the top m models, the sum

of whose posteriors account for at least 95% of the total probability.

B Calculation of Posterior Predictive Density

Theorem: For a single response process with k controllable factors, under the process

model of the form given in equation (1) with normally distributed error terms, and under

the priors on the factors and the parameters given by equations (4), (8), (9) and (10) with

Σ−1 = (X′
iXi)Vi, where Vi = 1

g

(
0 0
0 I ti

)
, the cumulative posterior predictive density for

the new response y∗ at a new set of regressors x∗ for a given model Mi, is given by:

P

(
y∗ − x∗′β̂i

σ̂i

√
1 + x∗′(Σ−1

i + X′
iXi)−1x∗

< t|Mi,x
∗,Y

)
=

1

2

[
1 + I t2

ν+t2

(
1

2
,
ν

2

)]
, (A.2)

where Iz(a, b) is the incomplete beta function, ν = n− 1, and σ̂2
i = Si/(n− 1).

Proof: The posterior predictive density is given by,

P (y∗|Mi,x
∗,y) =

∫

σ2

∫

βi

P (y∗|Mi,x
∗,y, σ2,βi)P (βi, σ

2|y,Mi)dβidσ2, (A.3)
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where P (y∗|Mi,x
∗,y, σ2,βi) is the likelihood function, and P (βi, σ

2|y, Mi) is the joint pos-

terior of the model parameters. Assuming normally distributed errors, the likelihood is:

P (y∗|Mi,x
∗,y, σ2,βi) ∝ σ−1exp

[−1

2σ2
(y∗ − x∗′βi)

′(y∗ − x∗′βi)

]
, (A.4)

and

P (βi, σ
2|y, Mi) ∝ P (y|Mi,βi, σ

2)P (βi|Mi, σ
2)P (σ2|Mi), (A.5)

where P (y|Mi,βi, σ
2) is the likelihood function given by equation (7). P (βi|Mi, σ

2) and

P (σ2|Mi) are the priors on the model parameters assumed to be of the form:

p(σ2|Mi) ∝ 1

σ2
, (A.6)

and,

P (βi|Mi, σ
2) ∝ γ−tiσ−tiexp

[−1

2σ2
β′iΣ

−1βi

]
, (A.7)

where,

g

γ2
Vi = Σ−1. (A.8)

Let k1,i = γ−ti . Then,

P (βi, σ
2|y,Mi) ∝ k1,i(σ

2)−
n+ti+2

2 exp

[−1

2σ2

{
(y −Xiβi)

′(y −Xiβi) + β′iΣ
−1
i βi

}]
. (A.9)

Let Ωi = (y∗ − x∗′βi)
′(y∗ − x∗′βi) + (y −Xiβi)

′(y −Xiβi) + β′iΣ
−1
i βi. This gives,

P (y∗|Mi,x
∗,y) ∝ k1,i

∫

σ2

∫

βi

(σ2)−
n+ti+3

2 exp

[
− Ωi

2σ2

]
dβidσ2. (A.10)

By making a substitution u = Ωi

2σ2 , the above equation can be rewritten as,

P (y∗|Mi,x
∗,y) ∝ k1,i

∫

βi

(
Ωi

2

)n+ti+1

2
[∫ ∞

0

u
n+ti−1

2 exp(−u)du

]
dβi. (A.11)

The inner integral inside the square brackets is a constant given by the gamma function,

Γ
(

n+ti+1
2

)
. Let k2,i = k1,iΓ

(
n+ti+1

2

)
. Then,

P (y∗|Mi,x
∗,y) ∝ k2,i

∫

βi

(
Ωi

2

)n+ti+1

2

dβi. (A.12)
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It can be shown that,

(y −Xiβi)
′(y −Xiβi) + β′iΣ

−1
i βi = Si + (βi − β̂i)

′(Σ−1
i X′

iXi)(βi − β̂i), (A.13)

where Si is defined in equation (15), and β̂i is defined in equation (16). From the above

equation, we can rewrite Ωi as,

Ωi = (y∗ − x∗′βi)
′(y∗ − x∗′βi) + Si + (βi − β̂i)

′(Σ−1
i + X′

iXi)(βi − β̂i). (A.14)

Define the (ri × 1) vector Qi and the scalar wi as,

Qi = (Σ−1
i + X′

iXi + x∗x∗′)−1(β̂i

′
(Σ−1

i + X′
iXi) + y∗x∗′)′, (A.15)

and

wi = y∗′y∗ + β̂i

′
(Σ−1

i + X′
iXi + x∗x∗′)β̂i + Si

− (β̂i

′
(Σ−1

i + X′
iXi) + y∗x∗′)(Σ−1

i + X′
iXi + x∗x∗′)−1(β̂i

′
(Σ−1

i + X′
iXi) + y∗x∗′)′. (A.16)

Then by completing the squares, we get

Ωi = wi + (βi −Qi)
′(Σ−1

i + X′
iXi + x∗x∗′)(βi −Qi). (A.17)

Thus, we have that the posterior predictive density is of the form:

P (y∗|Mi,x
∗,y) ∝ k2,i

∫

βi

dβi

[wi + (βi −Qi)′(Σ−1
i + X′

iXi + x∗x∗′)(βi −Qi)]
n+ti+1

2

. (A.18)

The integral in the above equation is a matrix T -distribution (see, e.g., [18]), and thus

integrates to a constant which is a function of y∗, x∗ and Mi. We include all the constant

terms that are independent of y∗ in constant k3,i, and rewrite the above equation by including

only the constant term that includes y∗ as,

P (y∗|Mi,x
∗,y) ∝ k3,i

w
n/2
i

. (A.19)

Using a well-known matrix identity (see [18]), we rewrite wi as

wi = Si +
(y∗ − x∗β̂i)

2

1 + x∗′(Σ−1
i + X′

iXi)−1x∗
. (A.20)
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We can integrate the joint posterior, P (βi, σ
2|y,Mi), over σ2, to obtain the marginal poste-

rior distribution of βi. This gives

βi|σ2,y,Mi ∼ N
(
β̂i, σ

2(Σ−1
i + X′

iXi)
−1

)
. (A.21)

Thus, we have that

Zi =
y∗ − x∗β̂i

σ
√

1 + x∗′(Σ−1
i + X′

iXi)−1x∗
∼ N(0, 1). (A.22)

Similarly, by integrating the joint posterior P (βi, σ
2|y,Mi) over βi, it can be shown that the

marginal posterior distribution of σ2 is given by

σ2

Si

∼ inv−χ2
n−1, (A.23)

(an inverse chi-square distribution) or in other words,

Si

σ2
∼ χ2

n−1. (A.24)

If σ̂2
i = Si/(n− 1),

Wi =
(n− 1)σ̂2

i

σ2
∼ χ2

n−1. (A.25)

Thus, if µ∗y = x∗β̂i, and σ∗y
2 = σ̂2

i

[
1 + x∗′(Σ−1

i + X′
iXi)

−1x∗
]
, then equation (A.20) can be

written as,

wi = Si

[
1 +

1

n− 1

(y∗ − µ∗y)
2

σ∗y
2

]
. (A.26)

Thus, from equation (A.19),

P (y∗|Mi,x
∗,y) ∝

[
1 +

1

n− 1

(y∗ − µ∗y)
2

σ∗y
2

]−n/2

(A.27)

The density above is a Student t with mean µ∗y, and variance σ∗y
2, with (n − 1) degrees of

freedom. That is, the posterior predictive density is

y∗|Mi,x
∗,y ∝ tn−1

(
x∗β̂i, σ̂

2
i

[
1 + x∗′(Σ−1

i + X′
iXi)

−1x∗
])

. (A.28)

31



The cumulative posterior predictive density of the response, given the model and the data,

at a given level of control factors can be computed using the c.d.f. of a tν distribution with

ν = n− 1. This can easily be computed using the following identity (see [7]):

P

(
y∗ − µ∗y

σ∗y
< t|Mi,x

∗,y
)

=
1

2

[
1 + I t2

ν+t2

(
1

2
,
ν

2

)]
. (A.29)

Corollary: For mixture models (as in example 1), or models without intercept, the models

are fitted without a constant term. In this case, we assume a Zellner’s g-prior [21] on all the

βi in the models. Thus, for a single response process with k controllable factors, under the

process model of the form given in equation (1) with normally distributed error terms, and

under the priors on the factors and the parameters given by equations (4), (8), (9) and (10)

with Σ−1 = (X′
iXi)Vi, where Vi = 1

g
I ti :

1. The posterior predictive density is

y∗|Mi,x
∗,y ∝ tn

(
x∗β̂i, σ̂

2
i

[
1 + x∗′(Σ−1

i + X′
iXi)

−1x∗
])

, (A.30)

where

σ̂2
i =

Si

n
, (A.31)

and

nσ̂2
i

σ2
=

Si

σ2
∼ χ2

n. (A.32)

2. The cumulative posterior predictive density for the new response y∗ at a new observa-

tion x∗ for a given model, Mi, is

P

(
y∗ − x∗′β̂i

σ̂i

√
1 + x∗′(Σ−1

i + X′
iXi)−1x∗

< t|Mi,x
∗,y

)
=

1

2

[
1 + I t2

ν+t2

(
1

2
,
ν

2

)]
, (A.33)

where Iz(a, b) is the incomplete beta function, ν = n, and σ̂2
i = Si/n.

Here the only difference in the computation of the cumulative posterior predictive density is

in the degrees of freedom of the t distribution.
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