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Abstract

The uncertainty of the model form is typically neglected in process optimization
studies. In addition, not taking into account the existence of noise factors and non-
normal errors may invalidate the conclusions of such studies. In this paper, a Bayesian
approach to model-robust process optimization in the presence of noise factors and
non-normal error terms is presented. Traditionally, in process optimization, methods
such as the Dual Response Surface methodology are used in the presence of noise
factors, and methods such as Robust Regression are used when the error terms are not
normally distributed. This paper extends the idea of model-robustness of [9] using the
Bayesian posterior predictive density of the process response to cases where there is
uncertainty due to noise factors and due to non-normal error terms. Two examples
taken from the literature, one based on a factorial experiment and another based on a
mixture experiment are used to illustrate the proposed approach.

1 Introduction

A natural way to optimize any process from a quality and reliability standpoint is to maxi-

mize the probability of conformance of the predicted responses to their specification limits.

This can be achieved using a Bayesian predictive approach (see [8]). The benefits of us-

ing this methodology are that, (a) the posterior predictive density of the responses can be

used to make inferences on their future values, thus providing a mechanism to calculate the
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probability of conformance of the future responses, (b) the methodology takes into account

the mean and the variance of the response, and (c) the methodology takes into account

uncertainty in the model parameters. Peterson [8] uses a Bayesian approach that involves

obtaining the posterior predictive density of the response based on an assumed model, and

maximizing the probability of obtaining the predicted response within certain limits or spec-

ifications. Miro-Quesada, Del Castillo and Peterson [6] extended this approach to include

the presence of noise factors. Rajagopal and Del Castillo [9] took this idea one step further

by using Bayesian model averaging to compute the model-averaged posterior predictive den-

sity (MAP) of the response in a single response process. The MAP is used for optimization

with respect to the control factors in order to obtain the levels of the control factors that

maximize the posterior probability of obtaining the response within some given specification

limits. The solution presented is thus robust to the uncertainty in the true process model as

well as to the model parameters for each competing model that is considered to represent

the process. It was assumed in [9] that there are no noise factors present in the system, and

that the error terms in all the competing models are normally distributed.

The presence of noise factors or non-normal errors may invalidate the conclusions obtained

with model-robust optimization methods. It is the purpose of the present paper to extend the

MAP approach of [9] to cases where there are noise factors and when errors are t-distributed.

The approach presented here thus provides robustness or resistance to uncertainty in the

model form, in the parameters of the competing models, in the noise factors and in the

distribution of the error terms.

The remainder of the paper is organized as follows. Section 2 reviews model-robust

optimization approaches based on the Bayesian model-averaging technique. In section 3 we

extend this technique to noise factors, and in section 4 to non-normal errors. Each of sections

3 and 4 contains an example that illustrates the extensions. The paper concludes with a

summary of the findings in section 5.
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2 A Review of the Model-robust Approach for Process

Optimization

In this section, we briefly review the MAP approach of [9], which will be extended to include

noise factors in section 3 and non-normal errors in section 4. The true process model in [9]

is assumed to be of the form

y = x′β + ε, (1)

where the scalar response variable y is dependent on a vector of regressors x given by a

(p × 1) vector that are in turn functions of k controllable factors (i.e., x is in model form),

ε is the error term, and β is the vector of process parameters. Given specification limits L

and U for the response, the optimization problem is formulated as

max
x1,...,xk

P (L ≤ Y ∗ ≤ U) =
∑

i

[∫ U

L

P (y∗|Mi,x
∗,y)dy∗

]
P (Mi|y), (2)

where y∗ is the predicted value of the response at a new set of observed regressors x∗ and

y is the (n × 1) vector of observed responses from the experiment. The optimization is

carried out with respect to the k control factors (x1, x2, ..., xk) that x∗ depends on, over all

competing models under consideration, each model denoted by Mi, where {i = 1, 2, 3, ...}.
P (Mi|y) is the posterior probability of model Mi given the data, and P (y∗|Mi,x

∗,y) is the

posterior predictive density of the response for the model Mi, given the data at a new set of

observed regressors, x∗. The prior on the models assumed in [9] were

P (Mi) = πfi(1− π)k−fi , (3)

where fi out of the total k factors are present in model Mi, and the probability of a factor

to be active in any of the models is π. In addition, the priors for the parameters for each

model Mi were

βi ∼ N(0, Σiσ
2), (4)

P (σ2) =
1

σ2
, (5)
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and

P (βi, σ
2) = P (σ2)P (βi). (6)

Here Σ−1 = (X′
iXi)Vi, where Vi = 1

g

(
0 0
0 I ti

)
if the model includes a constant term,

or Σ−1
i = (1/g)(X′

iXi) if the model does not have any constant term. In other words,

the parameter for the constant term is assumed to have a non-informative prior, and the

remaining parameters are assumed to have a Zellner’s g-prior [14]. The hyper-parameter g

needs to be chosen by the user. Denote by ri the number of terms in model Mi and by ti the

number of terms in model Mi excluding the constant term. Thus, if the model includes a

constant term, we have that ti = ri−1, otherwise ti = ri. Let Xi be the (n×ri) design matrix

corresponding to Mi. Using the above priors for the case where there are no noise factors

and when the errors are normally distributed, it is shown in [9] that the model posteriors

are given by

P (Mi|y) ∝ πfi(1− π)k−fiγ−ti|Σ−1
i + X′

iXi|− 1
2 S

− (n−1)
2

i , (7)

where

g

γ2
Vi = Σ−1, (8)

Si = (y −Xiβ̂i)
′(y −Xiβ̂i) + β̂i

′
Σ−1

i β̂i (9)

= y′y − y′Xi(Σ
−1
i + X′

iXi)
−1X′

iy, (10)

and

β̂i = (Σ−1
i + X′

iXi)
−1X′

iy. (11)

Here, Si is the Bayesian analog to the residual sum of squares and β̂i gives the parameter

estimates for model Mi. It is also shown that the posterior predictive density for model, Mi,

follows a t-distribution,

y∗|Mi,x
∗,y ∝ tν

(
x∗β̂i, σ̂

2
i

[
1 + x∗′(Σ−1

i + X′
iXi)

−1x∗
])

. (12)

Therefore, the cumulative posterior predictive density for model Mi is computed by

P

(
y∗ − x∗′β̂i

σ̂i

√
1 + x∗′(Σ−1

i + X′
iXi)−1x∗

< t|Mi,x
∗,y

)
=

1

2

[
1 + I t2

ν+t2

(
1

2
,
ν

2

)]
, (13)
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where Iz(a, b) is the incomplete beta function, ν = n − 1 and σ̂2
i = Si/(n − 1) for models

that include a constant term, and ν = n and σ̂2
i = Si/n otherwise. The above results were

applied to two examples in [9] that demonstrated the advantages of model-averaging using

the Bayesian predictive approach.

3 Extension to Noise Factors

In practice, there are some factors that cannot be controlled at the “customer” level (whether

this customer is the manufacturing plant or the end customer), but can be controlled under

careful experimental conditions. These are referred to as noise factors. For example, in the

production of automotive tires, the type of driver and the driving conditions might be noise

factors. The objective in process optimization then is to find a solution, given by the optimal

levels of the control factors, that is also robust to the variation in the noise factors. This is

the so-called Robust Parameter Design (RPD) problem and was first formulated by Genichi

Taguchi (see [11], [12], [13]). The traditional Taguchi experimental design involves varying

both the control and the noise factors in a crossed array, with the control factors in the inner

array and the noise factors in the outer array. More recently, the analysis of RPD problems

is performed using the Dual Response approach [1],[7]. In this approach the mean and the

variance of the response are modelled independently as functions of the control factors from

a replicated experiment. Alternatively, the data from an unreplicated experiment may be

used to fit a model of the form

ŷ(xc,xn) = bo + x′cb + x′cBxc + x′nc + x′c∆xc, (14)

to the response as a function of both the controllable and noise factors. In equation (14),

xc is the vector of control factors, xn is the vector of noise factors, and bo, b, B, c and ∆

are the estimated parameters. This model is then used to get the mean and variance models

(response surfaces) from assuming that the noise factors vary according to some known

distribution, e.g., xn ∼ N(0,Vn). Here, the mean model is given by Exn [ŷ(xc,xn)], and the
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variance model is given by V arxn [ŷ(xc,xn)] + V ar[ε], where ε is the error term. The mean

and variance models are used to formulate an optimization problem such as finding a solution

that minimizes the variance model subject to given bounds on the mean of the response [2].

However, this approach does not allow us to predict what fraction of future responses (e.g.,

proportion of products in a manufacturing process) will fall within the specifications at the

optimal setting x∗c as the dual response surfaces give only the “mean models” (i.e., they

give only point-estimate values for the mean and the variance of the response at the optimal

setting). In other words, there can be no inference made about the reliability or conformance

of the process.

Miro-Quesada, Del Castillo and Peterson [6] present a Bayesian predictive approach for

process optimization in the presence of noise factors for a multiple response process assuming

a known Standard Multivariate Regression model. Their approach addresses the uncertainty

in the parameter estimates of a given model, but does not address the uncertainty in the true

model of the process. Here, we present an extension to the Bayesian predictive approach that

also accounts for uncertainty in the true process model using the MAP approach reviewed

in section 2.

We consider a process with a single response variable y which is dependent on a vector of

regressors x that are in turn functions of k factors. We assume that kc out of the k factors

are control factors, and the rest are noise factors. It is assumed that a suitable experiment

with n runs has been designed and carried out and the data from the experiment is available.

The (n × k) design matrix used is denoted by X, that includes treatment combinations of

both the control and the noise factors. The (n× 1) vector of responses from the experiment

is denoted by y. Each of the potential process models is assumed to be of the form

y = x′β + ε, (15)

where ε is the normally distributed error term, and β is the vector of process parameters.

Let ri be the number of terms in model Mi and ti be the number of terms in the model

excluding the constant term. Let Xi be the (n × ri) design matrix corresponding to Mi.
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Here, it is noted that the terms in the models could contain functions of both the control

and the noise factors, and Xi contains a column for each of these terms. Given the data, the

posterior probability of the competing models in the presence of noise factors is also given

by equation (7).

For each model Mi it is necessary to compute the cumulative posterior predictive density

of the future value of the response y∗ at some future level of the factors x∗. In order to do

this, we partition the vector x∗ as [x∗c,x
∗
n], where x∗c is the future level of the control factors,

and x∗n is the future level of the noise factors. The cumulative posterior predictive density

P (Y ∗ < y|Mi,x
∗,y) is given by equation (13). However, because of the presence of noise

factors whose future value at the “customer” level cannot be controlled, it is of interest to

compute the expected posterior probability at a given level of the control factors x∗c with

respect to all possible values of the noise factors x∗n. Just as in the Dual Response approach,

it will be assumed that the noise factors at the “customer” level are distributed with known

p.d.f. fxn according to xn ∼ N(0,Vn). Then, the cumulative posterior predictive density is

given by,

P (L ≤ Y ∗ ≤ U |Mi,x
∗,y) =

∫

x∗n

P (L ≤ Y ∗ ≤ U |Mi,x
∗
c,x

∗
n,y)fxn(x∗n) dx∗n (16)

= Ex∗n [P (L ≤ Y ∗ ≤ U |Mi,x
∗
c,x

∗
n,y)] . (17)

The optimization problem in the presence of noise factors is then formulated as

max
x∗c

Ex∗n [P (L ≤ Y ∗ ≤ U)] = Ex∗n

[∑
i

(∫ U

L

P (y∗|Mi,x
∗,y)dy∗

)
P (Mi|y)

]
(18)

=
∑

i

Ex∗n

[(∫ U

L

P (y∗|Mi,x
∗,y)dy∗

)]
P (Mi|y). (19)

The objective function above can be computed using equations (7) and (13). The expected

value with respect to the noise factors can be computed by simulation, using the steps below:

1. Set count = 1

2. Generate a sample xn(count) from its assumed distribution N(0,Vn)
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3. Compute P (L ≤ Y ∗ ≤ U |Mi,x
∗
c,x

∗
n(count),y) for the sample using equation (13).

4. Set count = count + 1. Repeat steps 2 and 3 until count > N .

5. Estimate the expected value using the Weak Law of Large Numbers (WLLN),

lim
N→∞

1

N

N∑
i=1

[P (L ≤ Y ∗ ≤ U |Mi,x
∗
c,x

∗
n(i)y)] = Ex∗n [P (L ≤ Y ∗ ≤ U |Mi,x

∗
c,x

∗
ny)] .

(20)

The example below illustrates the proposed method.

3.1 Example

The data for this example is taken from Derringer and Suich [3], and is given in table 1. There

are three factors, x1(hydrated silica level), x2 (silane coupling agent level) and x3 (sulfur

level), and four responses, y1 (PICO Abrasion index), y2 (200% modulus), y3 (Elongation at

break), and y4 (Hardness). Here, we only consider response y3, and assume that it is desired

to obtain y3 within the specification limits [400, 600]. It is also assumed that factor x1 is a

noise factor. Using the data in table 1, and the priors mentioned earlier, we compute the

model posteriors for all subsets belonging to the model class shown in equation (14). Here,

we use hyper-parameters π = 0.5, and γ = 0.6. The choice of these hyper-parameters is

discussed in Rajagopal and Del Castillo [9]. In the models considered, higher order effects are

included only if the corresponding main effect is present. The model posterior probabilities

and Ordinary Least Square (OLS) statistics for the 20 models with the highest posteriors

are shown in table 2. In the table, each row represents a competing model and under the

columns containing the model terms (effects), a ‘1’ indicates that the term is present in the

model and a ‘0’ indicates otherwise. The OLS statistics shown in the table are the R-square,

the Adjusted R-square, and the standard error (S.E.). It can be seen based on both the

model posteriors and the OLS statistics that there are multiple competing models for the

process. For simplicity when averaging over the models, we consider model numbers 1-7

from table 2 that account for over 95% of the total probability (see [9]).
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For the optimization, it is assumed that the coded control factors are constrained to

lie in the interval [−1, 1]. It is also assumed that the coded noise factor has a N(0, 1/32)

distribution so that its corner points in the design in table 1 are set at a value equal to

3 times the standard deviation and its center point is at the mean. If all the factors are

assumed to be controllable, then the cumulative model averaged posterior predictive density

for the given specification limits computed using equations (7) and (13) is maximized at the

setting x1 = −0.7490, x2 = −0.5294 and x3 = −0.2568 giving a probability of conformance

of 0.7968.

If we instead consider x1 to be a noise factor and perform the optimization only with

respect to x2 and x3 using equation (19), then the optimal settings are x2 = −0.9876 and

x3 = −1.0000 giving a probability of conformance of 0.7275. The presence of the noise factor

affects not only the variance of the posterior predictive distribution of the response at a given

x, but also the mean because of the presence of potential models containing interaction terms

between the control and the noise factors. Thus, when we consider x1 as a noise factor in

the optimization, we notice not only a decrease in the posterior probability of conformance

but also a shift in the optimal set point of the control factors.

In this example, the expected value in equation (17) was computed within the optimiza-

tion routine by simulating over a total of 2000 runs. Ten such replicates at the optimal

setting of the control factors give an estimated posterior probability of conformance with

mean 0.7275 and standard error 0.0021.
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Run x1 x2 x3 y1 y2 y3 y4

1 -1 -1 -1 102 900 470 67.5
2 1 -1 -1 120 860 410 65
3 -1 1 -1 117 800 570 77.5
4 1 1 -1 198 2294 240 74.5
5 -1 -1 1 103 490 640 62.5
6 1 -1 1 132 1289 270 67
7 -1 1 1 132 1270 410 78
8 1 1 1 139 1090 380 70
9 -1.63 0 0 102 770 590 76

10 1.63 0 0 154 1690 260 70
11 0 -1.63 0 96 700 520 63
12 0 1.63 0 163 1540 380 75
13 0 0 -1.63 116 2184 520 65
14 0 0 1.63 153 1784 290 71
15 0 0 0 133 1300 380 70
16 0 0 0 133 1300 380 68.5
17 0 0 0 140 1145 430 68
18 0 0 0 142 1090 430 68
19 0 0 0 145 1260 390 69
20 0 0 0 142 1344 390 70

Table 1: Data for example in section 3.1 from Derringer and Suich [3]
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4 Extension to Non-normal Error Terms

Traditional model-fitting approaches in regression analysis use ordinary least square (OLS)

estimates for the parameters β in a model of the form given by equation (1). However, when

the standardized residuals from the fitted model have large magnitudes (large outliers), the

estimates using OLS are poor. This can happen when the noise term ε deviates from the

assumed normal distribution (i.e., thicker tails in the distribution). In such cases, a robust

regression approach is used, where the parameter estimates are obtained using methods

such as Least Absolute Deviations (norm), M-Estimators, Least Median Squares, or Ranked

Residuals [10],[4], which are less sensitive to non-normal errors than OLS. However, these

are non-Bayesian and cannot be incorporated in our approach. Robust regression techniques

do not consider uncertainties in the model or in the model parameters. Here, we present a

methodology to extend the idea of Bayesian model-averaged process optimization to obtain

a solution that is also robust to tν-distributed error terms. Here also, the objective we

consider is to maximize the posterior predictive probability that the response lies within the

specification limits.

We consider here a process with a single response variable y which is dependent on

regressors x given by a (p × 1) column vector which are functions of k controllable factors.

We assume that there are no noise factors present for simplicity, although the results from

the previous section can be applied here. It is assumed that a suitable experiment with n

runs has been designed and carried out and the data from the experiment is available. The

(n × k) design matrix used is denoted by X, and the (n × 1) vector of responses from the

experiment is denoted by y. Each of the potential models is assumed to be of the form

y = x′β + ε, (21)

where ε is the error term that is assumed in this section to follow a t-distribution with ν

degrees of freedom. As is well known, if e ∼ N(0, 1), and u ∼ χ2(ν), then e/
√

w has a

t-distribution with ν degrees of freedom, where w = u/ν. Thus, conditional on w, we can

12



consider equation (21) as a weighted regression model,

y = x′β + e/
√

w (22)

The transformations ỹ =
√

wy and x̃ =
√

wx conditional on w, give the non-weighted

regression model,

ỹ = x̃′β + e. (23)

Since the error term in equation (23) has a standard normal distribution, the model posteriors

in this case can be obtained from equation (7). If Xi is the design matrix corresponding to

model Mi, then using the notations and the priors in equations (3), (4), (5), and (6), the

model posteriors conditional on Wi are given by,

P (Mi|y, w1, ...wn) ∝ πfi(1− π)k−fiγ−ti|Σ−1
i + X̃′

iX̃i|− 1
2 S̃

− (n−1)
2

i (24)

= πfi(1− π)k−fiγ−ti|Σ−1
i + X′

iWiXi|− 1
2 S̃

− (n−1)
2

i , (25)

where, X̃i =




√
w1 · · · 0
...

. . .
...

0 · · · √
wn


Xi, diagonal matrix Wi =




w1 · · · 0
...

. . .
...

0 · · · wn


,

S̃i = (ỹ − X̃iβ̂i)
′(ỹ − X̃iβ̂i) + β̂i

′
Σ−1

i β̂i (26)

= (y −Xiβ̂i)
′W(y −Xiβ̂i) + β̂i

′
Σ−1

i β̂i, (27)

and,

β̂i = (Σ−1
i + X̃′

iX̃i)
−1X̃′

iỹ (28)

= (Σ−1
i + X′

iWiXi)
−1X′

iWiy. (29)

The model posteriors, P (Mi|y) are then obtained by taking the expected value in equation

(25) with respect to (w1, ..., wn), that is

P (Mi|y) = Ew1,...,wn [P (Mi|y, w1, ..., wn)] . (30)

The expected value with respect to (w1, ..., wn) in the above equation is computed by sam-

pling from a chi-square distribution according to the following numerical procedure:
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1. Set count = 1

2. Generate samples w1(count), ...wn(count) from their assumed distribution ∼ χ2(ν)

3. Compute P (Mi|y, w1, ...wn) for the sample using equation (25).

4. Set count = count + 1. Repeat steps 2 and 3 until count > N .

5. Estimate the desired expected value using the Weak Law of Large Numbers (WLLN),

lim
N→∞

1

N

N∑
i=1

[P (Mi|y, w1, ...wn)] = Ew1,...wn [P (Mi|y, w1, ...wn)] . (31)

Given a future setting of the control factors, x∗, and w∗ = u∗/ν, where u∗ ∼ χ2
ν , and using

the transformation x̃∗ =
√

w∗x∗, we get the posterior predictive density of ỹ∗ =
√

w∗y∗ from

equation (12) as,

ỹ∗|Mi,x
∗, w∗, w1, ..., wn,y ∝ tν

(
x̃∗β̂i, σ̂

2
i

[
1 + x̃∗

′
(Σ−1

i + X̃′
iX̃i)

−1x̃∗
])

, (32)

where ν = n − 1 and σ̂2
i = S̃i/(n − 1) for models that include a constant term, and ν = n

and σ̂2
i = S̃i/n otherwise. Thus,

y∗|Mi,x
∗, w∗, w1, ..., wn,y ∝ tν

(√
w∗x̃∗β̂i, w

∗σ̂2
i

[
1 + x̃∗

′
(Σ−1

i + X̃′
iX̃i)

−1x̃∗
])

. (33)

The cumulative posterior predictive density, P (L < y∗ < U |Mi,x
∗,Y), is thus calculated

from the c.d.f. of the t-distribution taking the expected value with respect to w∗ and

(w1, ..., wn):

P (L < y∗ < U |Mi,x
∗,Y) = Ew∗ [Ew1,...,wn {P (L < Y ∗ < U |Mi,x

∗, w∗, w1, ..., wn,Y)}] .
(34)

The expected values in equation (34) can also be computed using simulation. The objective

function in equation (2) can be computed using equations (30) and (34). The examples

below illustrate the method. The first example illustrates the interplay of the different

models under consideration and the effect of a thick-tail distribution. The second example

is an application to a real experiment.
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x y
-1.0 0.8551
-0.5 -1.8702
0.0 1.3421
0.5 3.7778
1.0 8.2322

Table 3: Sample data for example in section 4.1

model form P (Mi|y)
normal errors t-distributed errors (5 d.o.f.)

y = β0 0.108 0.127
y = β0 + β1x 0.263 0.298

y = β0 + β1x + β2x
2 0.629 0.575

Table 4: Model posteriors for example in section 4.1

4.1 Example 1

To illustrate the methodology, we consider the simulated data given in table 3, where there is

a single response y and a single controllable factor x. Assuming normally distributed errors,

the parameters for the linear and quadratic model can be estimated using equation (11).

The fitted models are plotted in figure 1, using a value of π = 0.5 and γ = 2.4. The choice of

these hyper-parameters is discussed in [9]. The posterior probabilities for the models under

consideration are computed by using equation (12) for the case of normal errors and by

using equation (30) for the case of t-distributed errors with 5 degrees of freedom. These are

shown in table 4. From table 4, it can be seen that the ratio of the posterior probability of

the quadratic model to that of the linear model is higher when we assume normal errors as

opposed to t-distributed errors. Figure 2 shows the cumulative model averaged posterior

predictive density P (L < y∗ < U |x∗) over values of x∗ in the range [−1, 1], under both normal

and t-distributed errors, for different choices of the specification limits. In this example, the

optimal x∗ in all the cases in the figure does not change much between normal errors and

t-distributed errors with 5 degrees of freedom. However, it can be seen that depending on

the specification limits, the probability P (L < y∗ < U |x∗) can be much different depending

15



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−2

0

2

4

6

8

10

x*

E
[y

*]

0.848 + 3.8154 x* + 3.238 x*2 

2.467 + 3.815 x* 

Normally distributed errors 

Figure 1: Parameter estimates for linear and quadratic model under normal errors assump-
tion

on the the distribution of the error term. It is also seen that large differences occur at those

values of x∗ where the linear and quadratic models shown in figure 1 are wider apart. As

the assumption of normally distributed errors relatively favors the quadratic model more as

compared to the assumption of t-distributed errors, it can be seen that P (L < y∗ < U |x∗) at

the optimal x∗ is higher for the normally distributed errors in the cases where L = 5, U = ∞
and L = 1, U = 3, and higher for the t-distributed errors in the case where L = −∞, U = 2.

4.2 Example 2: A mixture experiment

This example applies the methodology to real data. The data for this example is a mixture

experiment taken from Frisbee et al. [5], and is given in table 5. The response is glass tran-

sition temperature of films cast from poly(DL-lactide) (PLA), and the controllable variables

are amounts of non-ionic surfactants, namely, Polaxamer 188 NF (Pluronic r© F68), Ploy-

oxyethylene 40 monostearate (Myrj r© 52-S) and Polyoxyethylene sorbitan fatty acid ester

NF (Tween r© 60). The authors are interested in finding the composition of the controllable

16
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L = 5, U = ∞ 

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
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0.5

0.6

0.7
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P
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normal errors
t−errors (5 dof)

L = −∞, U = 0 

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x*

P
(L

<
Y

*<
U

)

normal errors
t−errors (5 dof)

L = 1, U = 3  

Figure 2: Cumulative model-averaged posterior probabilities for different specifications L, U

x1 x2 x3 y

1.000 0.000 0.000 18.90
0.000 1.000 0.000 15.20
0.000 0.000 1.000 35.00
0.500 0.500 0.000 16.10
0.500 0.000 0.500 18.90
0.000 0.500 0.500 31.20
0.333 0.333 0.333 19.30
0.666 0.167 0.167 18.20
0.167 0.666 0.167 17.70
0.167 0.167 0.666 30.10
0.333 0.333 0.333 19.00

Table 5: Mixture data from [5] where the response is Glass Transition temperature
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factors that minimizes the glass transition temperature. We consider models belonging to

the following two classes of models:

y = b1x1 + b2x2 + b3x3 + b4(x1x2) + b5(x1x3) + b6(x2x3), (35)

y = b1x1 + b2x2 + b3x3 + b4 min(x1, x2) + b5 min(x1, x3) + b6 min(x2, x3). (36)

The results for model-robust process optimization for these classes of models under normal

errors are given in Rajagopal and Del Castillo [9]. However, as there are only 11 runs, it

is difficult to verify the distribution of the error terms. Tables 6, 7, and 8 give the model

posteriors for the cases where the error distribution is assumed to be normal, t-distributed

with 100 degrees of freedom (d.o.f.) and t-distributed with 10 d.o.f., respectively. These are

obtained using hyper-parameters π = 0.5 and γ = 10 as discussed in [9]. The tables also

show the OLS statistics for the models that are based on the sum of squares of the residuals

(SSE), the total sum of squares (SST ), and the standard error (S.E.). As seen in the

previous example, the posterior probabilities of the competing models for the t-distributed

errors is different from those obtained using normally distributed errors, especially at lower

degrees of freedom. It is also noted that the ordering of models according to the model

posteriors is different depending on the error distribution. Thus, it is expected that the

optimal solution will differ depending on the error distribution.

Table 9 shows the results of the optimization under the different error distributions.

For each type of distribution, the MAP is used to maximize the posterior probability of

obtaining a glass transition temperature lesser than 18, i.e., P (Y ∗ < 18). The table shows

the optimal setting of the controllable factors (x∗1, x
∗
2, x

∗
3) obtained for each case of the noise

distribution. As observed in the previous example, although there is a difference in the

probability of conformance of the response for t-distributed errors as compared to normally

distributed errors, especially as the degrees of freedom is lesser, there is no drastic shift in

the optimal setting of the control factors. A possible explanation is that although the model

posteriors differ depending on the chosen error distribution, the shape of the surface of the

18



model-averaged posterior probability of conformance as a function of the control factors is

very close for all the error distributions considered, as can be seen in figure 2 for the first

example. In other words, model averaging under normal errors will “robustify” the optimal

solution if models that better explain abnormal observations with respect to some other

model are included in the analysis. Because of this, the differences between normal MAP

and t-MAP optimization will not differ much if a “rich enough” set of models is included.
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Error Distribution Optimal Setting P (Y ∗ < 18)

x1 x2 x3

normal 0.1330 0.8670 0.0000 0.9388
t-100 0.0000 1.0000 0.0000 0.9189
t-10 0.0000 1.0000 0.0000 0.8792

Table 9: Optimization results for example 3.2

5 Conclusion

An extension to the Bayesian method for model-robust optimization was presented which

includes robustness to the presence of noise factors and to the case of non-normal error dis-

tribution. In the presence of noise factors, the model-averaged posterior predictive density

was used to maximize the probability of conformance by optimizing over possible values of

the controllable factors, while simulating the noise factors from their assumed distribution.

The resulting optimal solution thus provided a setting of the controllable factors that is not

only robust to the form of the true model, but also to the variation in the noise factors.

When t-distributed error terms are assumed instead of normal errors, it was observed that

the posterior probabilities of the models changed, as demonstrated using two examples. The

posterior predictive density of the response given a model naturally decreases as the tail of

the assumed error distribution gets thicker. The optimization thus gives a different solu-

tion, both in terms of the settings of the controllable factors as well as the probability of

conformance, although there is no drastic shift in the former. It is recommended that the

optimization be carried out under different assumptions of the error distribution, especially

when the number of runs in the original design is small, so that the resulting solution is ro-

bust to the assumed distribution. One way to ensure robustness is to evaluate the probability

of conformance at the optimal setting given by normally distributed errors, by assuming t-

distributed errors with varying degrees of freedom. If the probability of conformance at this

setting does not vary much, then the solution is robust to the distribution of the error terms.
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