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Experiments in systems where each run generates a curve, that is, where the response of interest is a set
of observed values of a function, are common in engineering. In this paper, we present a Bayesian predictive
modeling approach for functional response systems. The goal is to optimize the shape, or profile, of the
functional response. A robust parameter design scenario is assumed where there are controllable factors and
noise factors that vary randomly according to some distribution. The approach incorporates the uncertainty
in the model parameters in the optimization phase, extending earlier approaches by J. Peterson (in the
multivariate regression case) to the functional response case based on a hierarchical two-stage mixed-e↵ects
model. The method is illustrated with real examples taken from the literature and from simulated data,
and practical aspects related to model building and diagnostics of the assumed mixed-e↵ects model are
discussed.
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Introduction

CONSIDER an experiment where the response of in-
terest Y is a curvilinear function of a scalar vari-

able s, a variable that may be controllable or uncon-
trollable. The shape or “profile” of this curve Y (s),
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observed at di↵erent values of s, determines the per-
formance of the system under study. By assigning
some real number describing the system performance
to each observed curve, we have the classical defini-
tion of a functional (see, e.g., Gelfand and Fomin
(1963)). In the type of experiments we study in this
paper, the shape of the curve is assumed to be mod-
ified by manipulating nc controllable factors xc and
is also a↵ected by the values of nn noise factors xn.
Following common convention in robust parameter
design (RPD), the noise factors are assumed control-
lable during an experiment, but during regular use
of the process or product, they vary randomly. As
in traditional RPD for scalar responses, the goal is
to find the optimal values of xc that make the pro-
cess response Y (s | xc,xn) robust, or insensitive, to
variations in xn. Optimality in the case with which
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we are concerned means achieving a specified target
shape for the response Y (s).

The problem we study relates to what Taguchi
called signal response systems or dynamic robust
design problems (see, e.g., Taguchi (1987), Miller
(2002), McCaskey and Tsui (1997), Miller and Wu
(1996), and Wu and Hamada (2000)), also called mul-
tiple target systems by Joseph and Wu (2002). In this
literature, the variable s is called a signal factor, se-
lected by the user, usually varied over very few levels
in order to reduce the number of experiments. After
a signal-response experiment is conducted, the sig-
nal factor is adjusted (optimized) to achieve a given
response value Y (s⇤) and the RPD problem then
consists in minimizing the variability of Y (s⇤) af-
ter this adjustment is made. Instead, the problem
with which we are concerned (RPD for a functional
response), while similar to the signal-response sys-
tem problem (the experimental data has an identical
structure), refers to obtaining an ideal relationship
between Y and s. Each experimental run generates
a complete profile consisting of several points of a
sampled function over s. Hereafter, we refer to the
values of s as the locations, terminology common in
spatial statistics. A related area in biostatistics is
longitudinal analysis, where a function of time (usu-
ally, the response to some therapy on di↵erent in-
dividuals) is observed at a few points in time after
treatment started (Fitzmaurice et al. (2004)). Many
authors have also considered functional responses in
process monitoring (statistical-process control) un-
der the name “profile monitoring” (e.g., see Kim et
al. (2003)). Nair et al. (2002) propose various fre-
quentist approaches for achieving robustness in a
functional response system and clarified the rela-
tions between signal-response systems and the type
of functional response systems studied in the present
article.

A Typical Example

Nair et al. (2002) studied the design of an elec-
trical alternator. The functional response of interest
is the electric current generated as a function of the
revolutions per minute (RPMs) at which the alterna-
tor operates (this is the location factor s). For each
alternator design, the electric current was measured
at each of the following RPM values: s1 = 1375, s2 =
1500, s3 = 1750, s4 = 2000, s5 = 2500, s6 = 3500,
and s7 = 5000. A designed experiment was run that
consisted of 8(= nc) controllable factors in the design
of the alternator, all varied at three levels, except x1,
which was only varied at two levels. The experiment

FIGURE 1. Alternator Data, from Nair et al. (2002). The
electric-current response for all 108 experiments is shown.

also considered 2 (= nn) noise factors, x9 and x10,
each at three levels. A total of N = 108 electric cur-
rent vs. RPM profiles were collected, one per run (see
Figure 1). Based on these data, the goal is to find
settings of the controllable factors that will achieve
a specified shape of the electric-current profile Y (s)
with high probability in the presence of variability in
the noise factors. We return to this example in the
fifth section below.

In this paper, we take a Bayesian predictive-
modeling approach, initiated by Peterson (2004) in
the process optimization field. The proposed method
allows one to make predictions about the probabil-
ity of achieving a desired shape of the functional re-
sponse (i.e., the method provides a measure of the
process “capability” for a given xc-point) and con-
siders, as part of the probability computations, not
only the variability induced by the noise factors but
also the uncertainty in the model parameters. The
method and auxiliary model-assessment techniques
are illustrated with both real examples taken from
the literature and with simulated examples. We next
provide an overview of the approach and of the re-
maining contents of this paper.

Overview of the Proposed Modeling
and Optimization Approach

Assume the response Y (s) can be observed at sev-
eral fixed locations s1, s2, . . . , sJ . For each experi-
mental run i (i = 1, . . . , N), where controllable and
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noise factors xi = (xc,xn)i have been tried in a de-
signed experiment, a complete profile or function is
observed consisting of J points. Thus, rather than
observing a continuous function Yi(s | xi), we ob-
serve

Yij = g(xi; sj) + "i(sj), i = 1, . . . , N, j = 1, . . . , J,
(1)

where g is some function to be specified/estimated
and "i(sj) is a random error, which can depend on the
location sj . If the N profiles are observed at the same
J locations, the errors can be denoted just as "ij .

An overall summary of the approach presented
in this paper is as follows. Suppose a parametric
model describes adequately each of the observed pro-
file functions yi = (Yi1, Yi,2, . . . , YiJ)0, i = 1, . . . , N .
Denote the posterior predictive density for a new pro-
file as p(y | xc,data), where “data” is short for all
past observed profiles and experimental conditions. If
after running the experiment p(y | xc,data) is avail-
able (either numerically or in closed form), it is pos-
sible to perform an optimization where the posterior
probability of achieving a function falling within a
given specification region A(s) is maximized, that is,
we would solve

max p(xc) = P (y 2 A(s) | xc,data)

=
Z

A
p(y | xc,data)dy

subject to: xc 2 Rc,

where Rc is a feasible region for the controllable fac-
tors. This is an approach first suggested by Peterson
(2004), who proposed it for the multiple-response op-
timization of linear regression models. The main ad-
vantage of this method is that it accounts for the
uncertainty in the parameters of the model (via the
predictive density, which integrates over the posterior
of the model parameters) and considers any correla-
tion present between the responses. It also provides
an easy-to-explain probability metric about the “ca-
pability” of achieving the specifications A(s).

If noise factors are present in the system and a↵ect
the responses (RPD case), a Bayesian approach that
provides solutions that are robust with respect to
both noise factor variability and regression coe�cient
uncertainty was proposed by Miro et al. (2004) as an
extension to Peterson’s method. It consists in solving

max p(xc)RPD

=
Z

allxn

P (y 2 A(s) | x,data)p(xn)dxn (2)

subject to: xc 2 Rc.

That is, after obtaining p(x) for fixed x = (xc,xn), a
second integration is performed over the (assumed-
known) density of the noise factors p(xn) to obtain
the probability of conformance for the RPD problem,
p(xc)RPD.

If the optimal probability after solving Equation
(2) is high, the desired shape of the function Y (s)
as defined by region A(s) will be achieved with high
probability, despite the noise-factor variability. We
would then have a robust solution to the functional
RPD problem. For the same amount of computa-
tional work, it is possible to instead compute the
posterior probability of achieving a given desirabil-
ity D(·) value of the response p(D(y) > D0 | data)
or compute the posterior probability that one will
incur in a quadratic cost Q(·) less than some given
value p(Q(y) < Q0 | data). See Peterson (2004) for
more details about these alternative optimization ob-
jectives, which may be useful when a specification
region is not well defined. In this paper, we focus
primarily on computing p(xc)RPD as above.

The sequel of this paper describes the type of
mixed-e↵ects model we use for Y (s) and its prop-
erties, discusses how one can assess the model fit,
explains how to compute the predictive density of
a profile p(y | xc,data) for the assumed model, and
shows how to solve the optimization problems above.

A Hierarchical Model for
Functional Data

A useful method for RPD of functional responses
consists in modeling the profiles over the locations in
a parametric form (stage 1), and then, at a second
stage, fitting additional models to the parameter es-
timates as a function of the controllable and noise
factors (stage 2). By changing the controllable fac-
tors, the stage 1 parameters can be modified and,
therefore, one has control over the profile or shape of
the function g in Equation (1). This is the method
followed by Wu and Hamada (2000) and Tsui (1999),
who refer to it as the response model approach. It is
also the approach followed by Nair et al. (2002), who
consider more general models than typically used for
stage 1 in the literature, where usually only simple
lines over s are fitted. While their approaches are
clearly hierarchical, previous authors have not an-
alyzed the model in a hierarchical way nor used a
Bayesian approach as we do here, which allows con-
sidering the uncertainty in the model parameters and
computing the probability of achieving a desired pro-
file.
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The formulation of a two-stage hierarchical model
for functional data is as follows. Suppose observa-
tions can be modeled as

yi = S✓i + "i, "i ⇠ NJ(0,⌃) (3)

and

✓i = Bf(xi) + wi, wi ⇠ Np(0,⌃w) (4)

for i = 1, . . . , N , where yi is a J ⇥ 1 vector contain-
ing the observations along profile i, S is a J ⇥ p ma-
trix of regressors for fitting the stage 1 model (here
the regressors are functions of the locations s), ✓i is
a p ⇥ 1 vector of stage 1 parameters, B is a p ⇥ q
matrix of parameters—the stage 2 parameters—and
f(xi) is a q ⇥ 1 vector with elements equal to the q
terms in the second-stage model evaluated at the ex-
perimental settings of run i, namely, xi = (xc,xn)0i.
Thus, each element of the stage 1 parameter vector
✓i is described by a model containing q parameters.
In RPD, a popular model for stage 2 is quadratic in
xc and has all control ⇥ noise interactions in addi-
tion to the noise-factor main e↵ects. It makes sense
to also include the noise ⇥ noise interactions, which,
although have no bearing in the RPD solution, may
reduce the probability of conformance if they are sig-
nificant. Not including them may result in an over-
estimation of the ‘capability’ of the process.

Model (3–4) is an instance of the classic Lindley–
Smith (1972) hierarchical regression model. By sub-
stituting Equation (4) into Equation (3), we get

yi = SBf(xi) + Swi + "i (5)

or yi ⇠ NJ(SBf(xi),S⌃wS0+⌃), which is a mixed-
e↵ects model. Later on, we will assume that ⌃ =
�2IJ , so the within-profile correlation is exclusively
modeled through the random e↵ects term Swi.

Ware (1985) shows how the mean of yi can be
written as a linear model. Recognizing that SBf(xi)
is a vector and using the property vec(Z1Z2Z3) =
(Z3

0 ⌦ Z1)vec(Z2) for conformable matrices Z1,Z2

and Z3 (where “vec” is the operator that stacks the
columns of a matrix and ⌦ is the Kronecker prod-
uct, see Henderson and Searle (1979)), we arrive at
vec(SBf(xi)) = SBf(xi) = (f(xi)0 ⌦ S)vec(B).
We can therefore rewrite Equation (5) as the linear
model

yi = Xi� + Swi + "i, (6)

where we define the J⇥qp matrix Xi = f(xi)0⌦S and
the qp⇥1 vector � = vec(B). This is a model widely
used in longitudinal analysis (see Laird and Ware

(1982) and Fitzmaurice et al. (2004)). The predictive
density of model (6) is not available in closed form,
and a Gibbs sampling scheme is utilized as described
in Appendix A.

Example 1. An Instance of the Mixed E↵ects
Model for Functional Response

Suppose the stage 1 model for Y (s) is linear in
s (a “linear profile”) and assume the intercept and
slope parameters can be, in turn, represented by a
main-e↵ects-with-interaction model in two control-
lable factors. Then we have that p = 2, q = 4 and
the two-stage model (3–4) is, for i = 1, 2, . . . , N ,

yi =

0
BB@

Y1

Y2
...

YJ

1
CCA

i

=

0
BB@

1 s1

1 s2
...

...
1 sJ

1
CCA
✓

✓0

✓1

◆
i

+

0
BB@

"1

"2
...

"J

1
CCA

i

or Yij = ✓0i + ✓1isj + "ij for j = 1, 2, . . . , J , and

✓
✓0

✓1

◆
i

=
✓

�00 �01 �02 �012

�10 �11 �12 �112

◆0B@
1
x1

x2

x1x2

1
CA

i

+
✓

w0

w1

◆
i

or ✓ik = �k0 + �k1xi1 + �k2xi2 + �k12xi1xi2 + wik,
for k = 0, 1. To transform this into the linear mixed-
e↵ects model of Equation (6), consider first the ex-
pected profile for given settings xi, namely E[yi |
xi] = Xi�, where

Xi = f(xi)0 ⌦ S = (1, x1, x2, x1x2)i ⌦

0
BB@

1 s1

1 s2
...

...
1 sJ

1
CCA

= (S, xi1S, xi2S, xi1xi2S)

(a J⇥pq matrix) and, therefore, because � = vec(B)
and B•,j is the jth column of B,

E[yi|xi]
= (f(xi)0 ⌦ S)vec(B)

= (S, xi1S, xi2S, xi1xi2S)

0
BBBBBBBBB@

�00

�10

�01

�11

�02

�12

�012

�112

1
CCCCCCCCCA

= SB•,1 + xi,1SB•,2 + xi,2SB•,3 + xi,1xi,2SB•,4
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=

0
BB@

�00 + �10s1 + (�01 + �11s1)xi1 + (�02 + �12s1)xi2 + (�012 + �112s1)xi1xi2

�00 + �10s2 + (�01 + �11s2)xi1 + (�02 + �12s2)xi2 + (�012 + �112s2)xi1xi2
...

�00 + �10sJ + (�01 + �11sJ)xi1 + (�02 + �12sJ)xi2 + (�012 + �112sJ)xi1xi2

1
CCA (7)

or E[Yij | xi] = (�00 +�01xi1 +�02xi2 +�012xi1xi2)+
(�10+�11xi1+�12xi2+�112xi1xi2)sj , for j = 1, . . . , J .
Therefore, the intercept and the slope are both con-
trolled by manipulating the factors x1 and x2. The
complete mixed-e↵ects model is then

Yij | xi

= (�00 + �01xi1 + �02xi2 + �012xi1xi2 + wi0)
+ (�10 + �11xi1 + �12xi2 + �112xi1xi2 + wi1)sj

+ "ij

for j = 1, 2, . . . , J . Thus, we see that, in this example,
both the intercept and the slope of profile i have
random components. ⇤

As discussed by Ware (1985) (see also Fitzmaurice
et al. (2004)), model (5) is unnecessarily restricted
because the design matrices for the fixed-e↵ects term
and for the random-e↵ects term are linked, as they
both depend on S. This implies that a complex model
for the mean will result necessarily in a complex
model for the covariance (induced by the term Swi),
and such a within-profile-correlation structure may
not be what the data show.

If the within-profile correlation is strong and is
neglected, the least-squares estimates (on which the
Bayesian posteriors we will use are based) will be
ine�cient and will yield less precise predictions than
what one would obtain otherwise. Hence, in this case,
Cov(yi) needs to be modeled. To better model the
within-profile correlation, we follow a recommenda-
tion by Ware (1985) and use instead di↵erent matri-
ces S and S⇤ in Equation (5), keeping the original
S matrix for the fixed-e↵ects term but selecting S⇤

to be equal to the first p2( qp) columns of Xi and
utilizing, therefore, only p2 random e↵ects wk. The
model is therefore

yi = Xi� + S⇤w⇤
i + "i, (8)

where we still have that Xi = f(xi)0⌦S and w⇤
i has

p2 elements only. Note how we can write Equation (8)
as yi = [X(R)

i |X(F )
i ][�(R) | �(F )]0 + X(R)

i w⇤
i + "i =

X(F )
i �(F ) + X(R)

i (�(R) +w⇤
i ) + "i, making clear the

separation between the fixed (F) and random (R) ef-
fects. The following example illustrates a simple in-

stance of covariance matrix that results from using
p2 = 1 when S has an intercept.

Example 1 (Continued)

Suppose in the previous example the mixed-e↵ects
model is modified in such a way that S⇤ equals to the
first column of Xi = (S,xi1S,xi2S,xi1xi2S) only,
i.e., only one (p2 = 1) random e↵ect is used so that
S⇤ = 1 (a J ⇥ 1 column vector of ones). Then as-
suming the errors "ij are uncorrelated, the induced
covariance matrix is

Cov(S⇤w⇤
i ) + �2IJ

=

0
BB@

1
1
...
1

1
CCA�2

w(1, 1, . . . , 1) + �2IJ

=

0
BB@

�2
w + �2 �2

w · · · · · · �2
w

�2
w + �2 �2

w · · · �2
w

. . .
(symmetric) · · · �2

w + �2

1
CCA.

This covariance structure, the simplest besides an
an independently and identically distributed (i.i.d.)
model, is the so-called “compound symmetric” co-
variance pattern (Fitzmaurice et al. (2004), p. 77),
a pattern common in split-plot experiments. It im-
plies the correlation between the response at any
two locations sk and sl is constant and equal to
⇢ = corr(Yik, Yil) = �2

w/(�2
w +�2). The random e↵ect

makes the intercept random. Choosing more random
e↵ects will provide more complex covariance struc-
tures than this. A subsequent section illustrates how
to determine the number of random e↵ects p2 and
hence, the covariance matrix, that best fits the data
using information criteria. ⇤

Alternative Models for Functional Response
Experimental Data

An alternative model, not pursued here, is to use
a spatial–temporal process to model Y (x, s). This
was first discussed by Fang et al. (2006) and recently
studied, with a view toward process optimization,
by Hung et al. (2011). These authors, however, fit
the model in a frequentist way and therefore the un-
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certainty in the model parameters is not considered
during the optimization, an issue emphasized by Pe-
terson (2004). Fitting all the parameters of such a
model in a full Bayesian way is a rather complex
task, and most authors working with these models
use a variety of approximations (see, e.g., Qian and
Wu (2008)).

A second possibility is to model the stage 1 pa-
rameters as functions of the locations s. Santner et
al. ((2003), pp. 45–47) describe this approach for the
analysis of computer experiments (not necessarily for
functional responses) but indicate, again, the di�cul-
ties in obtaining a full Bayesian estimation, mainly
discussing instead likelihood methods of estimation.
A full Bayesian estimation (i.e., estimation of all un-
known model parameters via Bayes’ theorem, either
with closed-form posteriors or with numerically com-
puted ones) of any of these alternative models would,
in principle, allow us to solve problem (2). The linear
mixed-e↵ects model we adopt can be analyzed in a
fully Bayesian manner and this allows one to solve
such an optimization problem. The examples in this
paper demonstrate that this is a flexible model useful
in the analysis and optimization of concrete engineer-
ing systems.

A simpler alternative model, feasible when the
number of locations J is small and equal for all pro-
files (a situation common in the “signal response”
type of problems alluded in the introduction), is to
use a multivariate regression model. A full Bayesian
analysis for this model is easy and available in closed
form, as briefly explained in Appendix B.

Functional RPD Optimization

The parameters of model (8) are ⇥ = {�, {w⇤
i },

⌃w,�2}. Bayesian inference for this model has been
studied by some authors (Lange et al. (1992), Chib
and Carlin (1999)) and requires Markov chain Monte
Carlo (MCMC) sampling because the joint poste-
rior of the parameters is not a known distribution
in closed form. Appendix A gives the full conditional
distributions of each parameter needed in the Gibbs-
sampling algorithm that yields the joint posterior of
the model parameters. It also describes the criteria
we followed to setup the priors for all parameters.

Finding a Robust Optimal Solution Using the
Bayesian Mixed Model

The probability of conformance to a set of speci-
fications, p(xc)RPD, is optimized once the predictive
density of the response along the profile, y | x,data,

is obtained via the MCMC scheme in Appendix A. As
described in that appendix, the Markov chain of the
model parameters ⇥ is run once until convergence
and the second half of the chain is sampled within
the optimization whenever a value of y | x,data is
needed. When noise factors are to be considered, then
x is split into (xc,xn), where the optimization is done
over the xc and, each time y | x,data is needed, we
generate random noise factors according to their dis-
tribution and use y|(xc,xn),data instead. This pro-
vides numerically the extra level of integration (with
respect to p(xn)) referred to above in the problem of
Equation (2). The experimenter should first check if
all of the predicted means fall within the specifica-
tions. If this is not the case, the optimal probability
of conformance will be low. The following example
illustrates the RPD optimization for a case where
simple models for the mean and covariance structure
fit well.

Example 2. Breaking Torque Example

An often analyzed RPD experiment in the litera-
ture is the breaking torque RPD experiment by the
American Supplier Institute (ASI (1998)). It consists
in a crossed array for 8 controllable factors and 2
compounded noise factors in a N = 72 run experi-
ment. In each run, four (J = 4) values of the break-
ing torque were collected at locations (line pressures)
s1 = 0.008, s2 = 0.016, s3 = 0.032, and s4 = 0.064.
The goal is to obtain a breaking torque profile with
maximum sensitivity to the line pressure applied.
The breaking torque–line pressure function can be
fit well with a simple line, y = ✓0 + ✓1s0 + ", where s0

is the centered line pressure (s0 = s � s). The ideal
shape of this relation is one that has the highest slope
✓1. Thus, the first-stage design matrix is p⇥J = 2⇥4,

S =

0
B@

1 �0.022
1 �0.014
1 0.002
1 0.034

1
CA .

Figure 2 shows the 72 observed profiles for the
torque–pressure function, together with the lower
specifications L = (5, 10, 20, 40)0 defined for this
problem (the upper specifications were set to numer-
ical “infinity” in this example). We fit the mixed-
e↵ects model of Equation (6) with main e↵ects and
all noise⇥control interactions because the design
does not allow fitting any control⇥control interac-
tion. Here we have that p = 2 parameters are used
in stage 1, namely, the intercept ✓0 and slope ✓1, and
q = 28 parameters are fitted in each of the two mod-
els in stage 2.
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FIGURE 2. Breaking Torque Example (Example 2). Ob-
served 72 torque vs. pressure profiles, lower specification
limit (dashed bold line) predicted posterior mean profile
(bold line) and 10th and 90th percentiles of the predictive
density (thin dark lines) at the optimal solution found.

The best number of random e↵ects p2 was found
to be two, using the information criteria described
below. Plots of the residuals discussed later in this
paper show no major concern with lack of normal-
ity and hence it was concluded this model fits the
data well (see Figure 3). The Gibbs-sampling routine
described in Appendix A was run for 100,000 itera-
tions, which showed convergence had been achieved
(a burn-in period of 50,000 iterations was used; the

other examples below required fewer iterations to
achieve convergence). This routine was initiated from
the priors described in the same Appendix. A flat
prior was used on �, and the other priors were set
as in Appendix A, with parameters �1 = 2.001 and
�2 = 2.5 (giving E[�2] = 0.4 and

p
Var(�2) = 12.6,

in the order of magnitude of the standard deviation
of the observed profiles; see Figure 2) and r1 = 5
and r2 = 2 (thus anticipating the intercept ✓0 may
be more variable numerically than the slope ✓1).

During the optimization, the noise factors were
simulated according to an N2(0, I) distribution.
Maximizing p(y 2 A | data,xc) using 1000 random
draws for each evaluation of the objective function
and the fmincon optimization routine from MAT-
LAB (started from 30 di↵erent initial points) results
in the solution x⇤c = (�1,�0.0853, 1, 1,�1, 1,�1, 1)0,
which agrees closely with the solution given by the
ASI and also with that given by Lesperance and
Park (2003) (x⇤c = (�1,NA, 1, 1,�1, 1,�1, 1)0), who
analyzed these data using generalized linear models
(there is some indication that the variance increases
with s). These authors did not report an optimal
setting for x2 because it is not clear what setting
to use for this factor by looking at its main e↵ect
alone. Figure 4 shows how the (posterior) main ef-
fect of x2 over the locations s0 has a mixed direction.
The computation of these e↵ect plots is discussed
in example 3. The solution found yields an estimate
p(y 2 A | data,xc) = 0.9348, which indicates it is
likely to meet the lower specification limit for the
profile. The optimal predicted mean profile, together

FIGURE 3. Q-Q Plots of the Residuals in the Breaking Torque Example. Left: r1, right: r2.
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FIGURE 4. E↵ect Plots Obtained from the Posterior Distributions of �, Breaking Torque Example. The upper left plot
shows the mean profile, and the subsequent plots the additional main e↵ect, over the mean, of changing each factor from its
low setting (- - - line) to its high setting (+ - + line). The solution found (�1, ⇡0, 1, 1, �1, 1, 1, �1, 1) seems reasonable
for specifications that call for a ‘high’ profile (last two factors are the two noise factors, over which no optimization takes
place).

with the 10th and 90th percentiles of the predictive
density at each value of s0, is well above the lower
specification, and is shown in Figure 2. ⇤

It is possible that, after conducting the optimiza-
tion, the probability p(y 2 A(s)|data,xc) is too low.
This can be due to three possible causes: a) the
specifications defining the band A(s) are technologi-
cally infeasible for the process, b) the linear mixed-
e↵ects model used in the optimization does not fit
the data well, or c) there is not enough data to fit
the model, and the large parameter uncertainties re-
sult in a low probability because the predictive den-
sity has large variance. We discuss model diagnos-
tics in the next section to deal with cause b. If the
diagnostics indicate a good model fit, then di↵er-
ent specifications A(s) should be tried and the op-
timization redone. In addition, one could try to sim-
ulate what would happen if more data were avail-
able, following the “preposterior” approach in Peter-
son (2004). The idea is to replicate the data matri-
ces [f(x1),f(x2), . . . ,f(xN )]0, and [y1,y2, . . . ,yN ]0
a certain number of times m, and change N to m ·N ,
where m is the number of pseudo-replicates. The
MCMC estimation and optimization is then con-
ducted on these combined matrices of real and sim-
ulated observations. If the probabilities of confor-
mance are still low, then the cause is probably due to

a, i.e., too demanding of specifications because get-
ting more data (running more experiments) is un-
likely to reduce the posterior variance and hence to
increase the process capability. Another thing to try
when probabilities are low is to perform statistical-
process monitoring on the profiles at the optimized
conditions (Phase I profile control; see Kim et al.
(2003)). If all the functional responses fall within the
specifications but the maximized p(xc)RPD is low,
this indicates that the variance model is wrong and
needs to be modified.

Model Diagnostics and
Covariance-Model Selection

In order for the optimization method proposed
here to be relevant in practice, it is important to ver-
ify the di↵erent modeling assumptions. Many of these
assumptions can be verified by computing the resid-
uals. The mixed e↵ects model of Equation (6) allows
two types of residuals, namely, the ‘population’ resid-
uals, r1i = yi � E[yi | Xi�], and the ‘subject’ (or
profile) residuals, r2i = yi � E[yi | Xi�,w⇤

i ]. Good
modeling practice calls for using ‘delete one’ cross-
validation residuals, where the expectations on the
right in the above expressions are estimated condi-
tionally also on all observations except observation i,
that is, E[yi | Y(i)]. Unfortunately, it is very expen-
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sive computationally to do this using MCMC tech-
niques because it would require running the MCMC
algorithm for each i. However, we can follow an argu-
ment in Carlin and Louis ((2000), pp. 204–206), who
suggest that the delete-one expectations required
in the residual computations can be approximated
with the unconditional ones obtained from a single
Markov chain, namely, E[yi|Y(i)] ⇡ E[yi | Y]. This
approximation is good unless the data set is small
and profile i is a severe outlier. Hence, residuals di-
agnostics should be computed after discarding outlier
profiles.

One way to identify outlier profiles from the ex-
perimental data is to compute E[w⇤

i |Y] for all i, the
posterior mean of the random e↵ects. A large ran-
dom e↵ect w⇤

i indicates the mean model Xi� is not
explaining the data well. If w⇤

i ⇠ N(0,⌃w), the Ma-
halanobis distance of the random e↵ects is such that
w⇤0

i ⌃ww⇤
i ⇠ �2

↵,p2
(Fitzmaurice et al. (2004)), and

this can be used to detect outlier profiles.

The distribution assumptions in model (6) indi-
cate the errors and the random e↵ects should follow
vector normal distributions. This can be verified by
doing a multivariate test of normality of the residu-
als and of the random e↵ects. Royston’s test (1995)
has been shown to be one of the best tests for mul-
tivariate normality and was used in what follows.

Example 3. Metal-Injection Data

Govaerts and Noel (2005) report an experiment
where there are 25 profiles of the logarithm of the
elastic modulus (Y ) of a binder used in a metal-
injection moulding process as a function of the tem-
perature, which corresponds to the locations s and
ranges from 10 to 80 degrees C. The two controllable
factors are the ingredients in the binder, namely, xan-
than gum concentration (varied from 1 to 5% and
coded into x1, ) and chromium nitrate/xanthan con-
centration ratio (varied from 1:1 to 4:1 and coded
into x2). Each profile had originally 701 locations;
this was reduced to 78 equidistant points per pro-
file (by keeping every 9th observation) as the ex-
tra locations did not provide additional features for
the observed curves and this speeded up all further
computations. The objective of the experiment was
to obtain a large elastic modulus at lower temper-
atures while using the lowest chromium concentra-
tion, given that it is a pollutant. The specification
band was therefore set considering the range of the
observed profiles and the conditions above. In their
paper, Govaerts and Noel used di↵erent methods to

fit a model to these profiles, including a nonlinear
sigmoidal function that depends on four parameters.
We use instead the following linear model based on
splines:

Y (s) = ✓0 + ✓1 log(s) + ✓2(log(s)� 1.4955)2+
+ ✓3(log(s)� 1.7374)+ + ✓4(log(s)� 1.7374)2+,

(9)

where (x)+ = max(0, x) denotes the positive part
(the locations of the knots were obtained by fitting
this model to the trimmed average of Y (sj) at each
location sj using nonlinear least squares). On a sec-
ond stage, each ✓i was modeled as a quadratic poly-
nomial in the two factors.

Model (8) was fit using Gibbs sampling from the
priors that are described in Appendix A, with pa-
rameters r1 =8/5, rk =1, k=2, . . . , 5 (implying more
variability is expected a priori on the intercept ✓0 in
model 9), and �1 = 2.001, �2 = 3.33 (so that E[�2]
=0.3 and

p
Var(�2)=9.48, in the same order of ma-

gnitude of the specifications shown in Figure 8). The
flat prior on � was set as described in Appendix A.

Figure 5 shows a plot of the w⇤0
i ⌃ww⇤

i obtained
from the means of the posteriors of these parame-
ters. Assuming the random e↵ects w⇤

i are normal,
this statistic is distributed as a �2

p, where p is the
dimension of w⇤, equal to the number of ✓ param-
eters we use in phase 1 (so p = 5 in this case). If
any random e↵ect w⇤

i is abnormally large, that is ev-
idence profile i is an outlier. From the figure, profile
number 12 is an outlier. Figure 5 shows also a plot of
all profiles, highlighting the one found as an outlier.
We hence deleted this outlier profile and proceeded
to refit the model using MCMC. After deleting the
outlier, the residuals and the random e↵ects (using
their posterior means) pass Royston’s test for mul-
tivariate normality, as seen in Table 1. In addition
to these residual diagnostics, it can be useful to plot
the predicted responses, obtained from the mean of
the posterior density of yi at each setting xi. We do
not show these for this example, as the di↵erences
between the predictions and the observations are too
small to the eye in this example. An additional type
of plot useful in profile responses are ‘e↵ect’ plots,
which can be obtained as follows. The expected pos-
terior response can be written as a sum of q terms ac-
cording to Equation (7), with each of the terms equal
to xjSB•,j , where xj (j = 1, . . . , q) is the jth term in
the stage 2 model (either a constant, a main e↵ect,
or higher order e↵ects) and B•,j is the jth column of
matrix B in Equation (4). Each of these terms is a
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FIGURE 5. Left: �2 Statistics w⇤
i 0Sw⇤

i from Metal Injection Process, All 25 Profiles. Horizontal line is at �2
0.95,5. Right:

observed profiles with the outlier in bold, thicker line.

J ⇥ 1 vector that measures the contribution of that
term to the posterior mean profile E[yi | xi,data],
so the terms involving main e↵ects only can each
be plotted as a function of s twice, for xj = +1
and xj = �1, to visualize the e↵ects along the shape
of the profile, i.e., over the locations. Note how the
first term on the right of Equation (7), (SB•,1), is
a vector that gives the overall mean (constant) ef-
fect because it is not a function of the factors. For
the metal-injection example, the constant and main
e↵ect plots over the locations are shown in Figure
6. Similar plots were provided by Govaerts and Noel
(2005), who used di↵erent models than us. To further
analyze the e↵ects of each of the controllable factors,
we suggest plotting the posteriors of the � stage 2
parameters. For instance, in the metal-injection ex-
ample, Figure 7 shows the posteriors of the � param-
eters associated with x1, namely, �01, . . . ,�41. As can
be seen, the largest e↵ects are due to �31 (< 0) and
�41 (> 0). The former is a coe�cient that changes pa-
rameter ✓3 in the stage 1 term ✓3(log(s)� 1.7374)+,
and the later is a coe�cient that a↵ects parameter
✓4 in the stage 1 term ✓4(log(s) � 1.7374)2+. These
terms control the profile shape for large values of
s. Because the diagnostics look adequate, we pro-
ceed with the optimization. The bounds and the best
predicted profile are shown in Figure 8. These were
found after 20 runs of the optimizer. The optimal so-
lution found is x⇤1 = 1.21 and x⇤2 = �1.11 (in coded
units), with a global probability of conformance of
P (L  y  U | data,x⇤) = 0.8338. This is in accor-
dance to what Govaerts and Noel (2005) reported:
high xanthan concentration makes the strength at

low temperatures go up, as desired (see also Figure
6). By a happy coincidence, the optimal solution calls
for a low use of chromium (x2), achieving in this way
the stated secondary goal of the experiment. Low val-
ues of x2 increase the strength at low temperatures
(see Figure 6). The solution found is for the bounds
shown in Figure 8 and provides the optimal predicted
profile in that same figure.

Covariance-Model Selection

The p2 random e↵ects determine the within-
profile covariance structure. This value can be se-
lected by choosing p2 such that it provides the low-
est Akaike information criterion (AIC) or (more in
tune with the Bayesian approach to estimation/
optimization undertaken) the lowest Bayesian infor-
mation criteria (BIC). These statistics are defined as
AIC = �2 log L+2pt and BIC = �2 log L+pt log(N)
where L is the restricted maximized likelihood func-
tion for model (6) and pt = p2(p2 + 1)/2 + 1 is the
number of di↵erent parameters assuming a common

TABLE 1. Multivariate Normality Test for Residuals and
Estimated Random E↵ects as Computed by Maximum

Likelihood, Example 3, p2 = 5. All appear normal
at the 5% significance level.

Statistic p-value for Royston’s test

r2 0.0501
r3 0.1250
w⇤

i 0.0678
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FIGURE 6. Predicted Mean (Upper Left Plot) and Addi-
tional Main-E↵ect Plots over the Mean (Plots of xi SB•, j),
Metal-Injection Example. Similar to Figure 4, the��� line
is the e↵ect (for all s) when the factor is low and the +++
line is the e↵ect when the factor is at its high setting. The
optimal solution found is x1 = 1.21 and x2 = �1.11. Low
values of x2 increase the elastic modulus at low tempera-
tures (low s), helping to solve one of the major di�culties
in this problem.

model structure for the mean (hence, we are only
selecting the best covariance model). See Appendix
C for the computer implementation of this method.

Example 3 (Metal Injection, continued)

For the metal-injection data, Table 2 shows the
AIC, BIC, and restricted log likehoods for various
values of p2. From the table, both the AIC and the
BIC statistics indicate the value p2 = 5 to be best.
This was the value used in the preceding analysis of
this data.

Sensitivity to the Prior Distributions Used

The solution obtained, x⇤c , and corresponding op-
timal probabilities of conformance to specifications,
p(x⇤c), depend on the assumed priors. We recommend
a sensitivity analysis be conducted on the prior pa-
rameters and, in particular, on the parameters of the
priors of �2 and ⌃w. If the solutions x⇤c do not change
much as we change the priors, this is stronger evi-

dence in favor of the solution found. In addition, if for
vague priors the probability of conformance is low, a
‘preposterior analysis’ (Peterson (2004)) can be con-
ducted to determine if collecting more data would
improve the models and hence increase p(x⇤c) or if
the problem is simply that the specifications are too
demanding. Note, however, that we cannot use very
vague priors on both ⌃w and �2 because the data
provides information in a joint manner about these
parameters, which would otherwise become uniden-
tifiable (for a discussion on this matter, see Chib and
Carlin (1999)).

Example 4 (Metal Injection, continued)

We repeat the model fitting and optimization of
the metal-injection problem for various values of the
prior parameters (see Appendix A for a description
of the type of priors used). In all cases, we fixed
⌫0 = max(N/20, p2) and used a flat prior on �, but
tried the scenarios shown in Table 3. The di↵erent
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FIGURE 7. Posterior Distributions of the Coe�cients � Associated with Factor x1. Each distribution corresponds to the
e↵ect of this factor on the stage 1 parameters ✓ in the fitted model (9). The largest e↵ects of factor x1 are on ✓3 and ✓4 (last
2 distributions on the right).

FIGURE 8. Observed Profiles (Grey), Desired Specifica-
tions (+), and Predicted Mean Profile at the Optimum So-
lution Found (Bold Continuous Line), Metal-Injection Ex-
ample. The two thin, black lines with dots represent the
10th and 90th percentiles of the predictive density of yij |
data, x⇤.

solutions agree that a high level of xanthan concen-
tration (x1 ⇡ 1) and a low chromium/xanthan con-
centration ratio (x2 ⇡ �1) produces the desired high
elastic modulus profile response.

Table 3 indicates relatively low probabilities of
conformance when the prior on ⌃w is less informa

TABLE 2. Covariance Model Selection for Metal-Injection
Problem, Example 3. From the table, p⇤2 = 5

p2 AIC BIC �2 log L

1 13917 13920 13913
2 13201 13205 13193
3 12779 12787 12765
4 12082 12095 12060
5 11945 11964 11913
6 11949 11975 11905
7 11959 11993 11901

15 12038 12181 11796
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TABLE 3. Sensitivity Analysis on the Parameters of the Priors of �2 and ⌃w, Metal-Injection Example (N = 24).
All solutions agree that the optimal solution is close to x1 ⇡ 1 and x2 ⇡ �1 regardless of the priors used

Scenario r1 r2 r3 r4 r5 �1 �2 E[�2]
p

Var(�2) x⇤1 x⇤2 p(x⇤c)

Baseline 8/5 1 1 1 1 2.001 3.33 0.3 9.48 1.21 �1.10 0.833
Flatter on ⌃w 10 5 5 5 5 2.001 3.33 0.3 9.48 0.92 �0.97 0.539
Flatter on �2 8/5 1 1 1 1 2.001 0.5 2.0 63.1 1.32 �1.26 0.831
Flatter on ⌃w,�2 10 5 5 5 5 2.001 0.5 2.0 63.1 1.03 �1.04 0.520

tive. This could be due to little information avail-
able in prior plus data rather than due to a set of
profile-response specifications that are hard to meet,
and therefore we proceeded to conduct a preposterior
analysis (Peterson (2004)). We increased the amount
of data by simply replicating the original data a cer-
tain number of times, and repeated the analysis as
if the new data were real. From Table 4, p(x⇤c) in-
creases as the data available increases, and this is an
indication that, if vague priors on the variances are
necessary due to lack of information, running more
experiments than the original 24 is worth the e↵ort.
The experimenter could also repeat the sensitivity
analysis on the priors with the simulated data to de-
termine if the robustness to the priors could be also
enhanced with more data. If experimental resources
for more data collection are limited, more data could
instead be collected in an observational manner at
x⇤c (and elsewhere, if possible), during the ‘Phase I’
monitoring stage of the process being developed.

TABLE 4. Preposterior Analysis, Metal-Injection Example.
Solutions obtained after replicating the initial data set of
24 observations 2, 3, and 5 times. ‘Flatter priors’ on ⌃w

and �2 equal to those used in Table 3 were used.
The notable increase in probabilities indicates it
is worth collecting more data and reoptimizing

N Replicates x⇤1 x⇤2 p(x⇤c)

48 2 1.07 �1.18 0.7598
2 1.21 �1.17 0.7314
2 1.09 �1.06 0.7850

72 3 1.10 �1.16 0.7880
3 1.12 �1.23 0.8500
3 1.30 �1.43 0.8876

120 5 1.45 �1.38 0.9218
5 1.44 �1.30 0.9228
5 1.45 �1.27 0.9172

Robustness to the Normality Assumption

The mixed-e↵ects model is based on an assump-
tion of multivariate normality. Diagnostics to detect
lack of normality were described in a previous sec-
tion. The predicted probabilities of conformance to
the specifications p(xc) = p(y 2 A(s) | xc, data) ev-
idently depend on the assumed multivariate normal
probability model. If the actual distribution of the
errors or of the random e↵ects is a severely skewed,
nonnormal distribution, the probabilities and result-
ing optimal solutions obtained will be considerably
biased. In the less severe case of heavy tailed but
symmetric error distributions, the behavior of the
method is better. To assess the behavior of the ap-
proach, a simulation was conducted based on the al-
ternator design data from Nair et al. (2002), dis-
cussed in the introduction. Recall there are eight
controllable factors and two noise factors and the
electric-current profiles were observed over seven val-
ues of RPMs. The following stage 1 model was fit to
the original alternator data and later on used to gen-
erate new profiles in our simulations:

Y (s) = ✓0 + ✓1 log(s) + ✓2(log(s)� 3.25911)+
+ ✓3(log(s)� 3.25911)2+ + ", (10)

where each ✓k depended on the 10 factors via the
stage 2 model (4). The experimental design was a
Taguchi L18 orthogonal array replicated three times
(N = 108 runs in total). This allows estimating all
main e↵ects and all the control ⇥ noise interactions,
but the only estimable control ⇥ control interac-
tion is x1 ⇥ x2. A multivariate standard t⌫ distri-
bution with ⌫ degrees of freedom was used to gen-
erate the random e↵ects w⇤

i and the random errors
"i in the mixed-e↵ects model. Three (= p2) indepen-
dent random e↵ects were simulated each with vari-
ance �2

w = 100 and the error variance was set at
�2 = 10. The value of p2 was selected by looking
at the AIC and BIC statistics (as described earlier).
The degrees of freedom ⌫ were varied from 100 (prac-
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FIGURE 9. Main E↵ects of the 10 Factors Plotted over the Locations, Alternator Problem. Left: ⌫ = 100 (approx. normal),
right: ⌫ = 1 (Cauchy, very fat tailed).

tically a multivariate normal) to the very fat-tailed
Cauchy distribution (⌫ = 1). This fat-tailed distribu-
tion can model adequately the presence of severe out-
liers in the data. The MCMC estimation algorithm
was applied for 5000 iterations using the priors in
Appendix A with parameters r1 = 40, r2 = 16, and
r3 = 4 (anticipating larger variance in ✓0 than in ✓1,
etc.) and �1 = 4 and �2 = 0.03, so that E[�2] = 11.1
and

p
Var(�2) = 7.8, which is in the order of magni-

tude of the specifications used in this illustration.

As can be seen from Figure 9, the main e↵ects do
not appear to be a↵ected much by the di↵erent dis-

tributions, and this is reflected in optimal solutions
that were not very di↵erent (Table 5). However, the
probabilities of conformance to the specifications (set
at the 70% to 95% percentiles of the simulated profile
data) change considerably, with smaller probabilities
when the data has fat tails.

Table 6 shows the p-values of Royston’s test of
multivariate normality for the residuals r1, r2 and
the random e↵ects w⇤. Also shown are the poste-
rior estimate of �2 (true value was 10). The MCMC
Bayesian estimates started from relative noninforma-
tive priors (see Appendix) resulted in unbiased es-

TABLE 5. Optimal Solutions for Simulated Alternator Data for Two Error Distributions. Table shows average,
standard deviation, min and max computed over 10 MCMC simulations each 10 K long. The optimization

was performed over 30 starting points

x1 x2 x3 x4 x5 x6 x7 x8 p(y | xc,data)

dof = ⌫ = 1 (Cauchy)

Average �0.90 0.66 �0.69 0.48 0.10 0.53 �0.35 1.00 0.46
Std. dev 0.16 0.70 0.38 0.61 0.47 0.44 0.69 0.00 0.07
Min �1.00 �1.00 �1.00 �0.87 �0.76 �0.35 �1.00 1.00 0.35
Max �0.52 1.00 0.16 1.00 0.79 1.00 0.77 1.00 0.54

dof = ⌫ = 100 (Approx. normal)

Average �0.93 0.76 �0.05 0.53 �0.10 0.42 �0.66 1.00 0.58
Std. dev. 0.10 0.62 0.62 0.56 0.78 0.37 0.58 0.00 0.04
Min �1.00 �1.00 �0.94 �0.65 �0.99 �0.17 �1.00 1.00 0.47
Max �0.75 1.00 0.94 1.00 0.92 0.83 0.52 1.00 0.61
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TABLE 6. p-Values for Royston’s Normality Tests for Two Error Distributions, Simulated Alternator Data. Table shows
average, standard deviation, min and max computed over 10 MCMC simulations each 10 K long. All tests detected

lack of normality for ⌫ = 1, whereas only one (false) detection was observed for ⌫ = 100. Also shown are
the posterior mean of �2 and its MLE estimator (true �2 = 10)

p for H0 : r1 ⇠ N p for H0 : r2 ⇠ N p for H0 : w⇤ ⇠ N E[�2 | data] b�2
MLE

dof = ⌫ = 1 (Cauchy)

Average 0.00 0.00 0.00 10.18 10.52
Std. dev 0.00 0.00 0.00 2.13 2.31
Min 0.00 0.00 0.00 8.03 8.10
Max 0.00 0.00 0.01 15.50 16.27

dof = ⌫ = 100 (Approx. normal)

Average 0.17 0.76 0.13 9.91 10.26
Std. dev. 0.10 0.30 0.13 0.39 0.45
Min 0.11 0.01 0.03 9.72 10.06
Max 0.43 0.93 0.49 10.91 11.41

timates of �2 regardless of the nonnormality of the
errors. The results indicate some degree of robustness
of the methods to nonnormal but symmetric errors
in the data. If an experimenter is faced with a heavy-
tailed distribution, a transformation to normality as
suggested by Trimm ((2002), pp. 118–132) could be
applied. Congdon ((2006), p. 171) shows how to use
gamma weights for Bayesian regression models with
t-distributed errors. See also Rajagopal et al. (2005)
and Peterson et al. (2009) for Bayesian regression
model examples with nonnormal errors.

Conclusions and Further Work

In this paper, a Bayesian approach for the opti-
mization of functional response systems obtained in
a designed experiment was presented. The goal is to
achieve a desired shape of the functional response
that is insensitive to variation in the noise factors.
The assumed hierarchical mixed-e↵ects model allows
one to control the shape of the function via certain
parameters ✓k that are modifiable depending on the
values of the controllable factors. We discussed the
case when all profiles are observed over the same
number of locations (J), but this is an assumption
easy to modify; in fact, the Chib–Carlin MCMC es-
timation routine allows having di↵erent numbers of
observations Ji over each profile i, i = 1, . . . , N .

An alternative modeling approach for the case
where the number of locations is large, not discussed

in this paper, is to use a spatial–temporal process
model Y (x, s) where the ‘time’ coordinate consists
of the locations s and the ‘spatial’ coordinates are
made up of the controllable factors. This was sug-
gested by Fang et al. (2006). A spatio–temporal co-
variance could then be specified to model the linear
association between profile responses yi and yj ob-
tained under experimental conditions xi and xj . The
covariance matrix should account also for within-
profile correlation, i.e., ‘temporal’ correlation, where
the measure of linear association between Y (si) and
Y (si0) is modeled. It is possible, in principle, to
specify a full Bayesian approach to such a spatio-
temporal model, but performing the MCMC estima-
tion of all parameters is a di�cult task.
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Appendix A
Gibbs Sampling for

the Linear Mixed-E↵ects Model

Lange et al. (1992) give the full conditionals
for the parameters (�, {w⇤

i }, {�2
i },⌃⇤

w) in the lin-
ear mixed model (8), where the �2

i ’s model di↵er-
ent variances among the observed profiles. Chib and
Carlin (1999) considered the same case as we do,
where ⌃ = �2IJ , showed how the Lange et al. pro-
cedure su↵ers from slow convergence, and proposed
two alternative algorithms: a pure Gibbs sampling
approach, and an algorithm which has a Metropolis
step (a rejection sampling step). Because the conver-
gence properties of these two algorithms appear to
be about the same, in particular for the � param-
eters, we chose the first algorithm (‘algorithm’ 2 in
their paper) because it does not require a Metropolis
step. The Chib–Carlin paper contains some hard-to-
detect errors in the full conditionals of �; the correct
formulation is shown below. We also provide the full
conditionals of the other parameters because they
were not explicitly given by these authors.

Specification of Prior Distributions

In all examples in this paper, the priors used were

� ⇠ Npq(�0,B0), with �0 = 0 and B0 = 10000I
(noninformative for �).

�2 ⇠ IG(�1,�2) (inverse-gamma distribution). In
our parametrization of the IG, this implies
that E[�2] = 1/(�2(�1 � 1)) and Var(�2) =
1/(�2

2(�1 � 1)(�1 � 2)) for �1 > 2. Param-
eters �1 and �2 can be chosen such thatp

E[�2] ⇡ min(U(s) � L(s)), that is, select
the prior standard deviation in accordance
with the specifications for the response. The
specifications for a process are, in a sense,
prior information, because an engineer would
design the specifications of a system with
some prior knowledge of what is technolog-
ically possible. If the process-error standard
deviation is much larger than the specifica-
tion’s band “width”, it makes no sense to pre-
tend to optimize the functional response and
make it fit inside such a band. Alternatively,
these parameters can be chosen by makingp

E[�2] in the order of the observed variabil-
ity in the plot of the profiles Y (s), but this
would not be a pure Bayesian approach, of
course.

⌃�1
w ⇠ Wishart((⌫0R0)�1,⌫0), so in our parametriza-

tion, E(⌃w) ⇡ R0. Carlin and Louis ((2000),

p. 377) suggest setting R0 such that

R0 = diag((r1/8)2, (r2/8)2, . . . , (rp/8)2),

where rk is the total range of anticipated
plausible values for parameter ✓k�1, k =
1, . . . , p in the stage 1 model (Equation (3)).
Because E(⌃w) ⇡ R0, this gives approxi-
mately a ±2 standard deviation range for
✓k�1 that is one quarter of the range of its
possible values (because ±2�✓k�1 = rk/4).
These authors also suggest setting ⌫0 = N/20
because ⌫0 can be understood as a measure
of how much weight the prior has and this
expression relates such weight to a percent-
age of the experiments observed. We adopted
this, but because ⌫0 � p for a proper prior,
we set ⌫0 = max(p,N/20). An alternative
prior formulation, not used in this paper,
is given by Gelman and Hill ((2007), pp.
284–287). Their approach provides marginal
U[�1, 1] priors on the correlation parameters
in ⌃w.

The di↵erent values of �1,�2 and rk parameters used
in this paper are given in each of the corresponding
examples.

Gibbs Sampling Scheme

Let Y be an N ⇥ J matrix containing all the ob-
served functional observations at each of the N ex-
perimental runs. The Gibbs sampling scheme is

1. Sample � from � | Y,�2,⌃w:

N

  
NX

i=1

X 0
iV

�1
i Xi + B�1

0

!�1

 
NX
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X 0
iV
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i yi + B�1

0 �0

!
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NX
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iV

�1
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0
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,

where Vi = S⇤
i ⌃wS⇤0

i + �2I, Xi = x(m)0

i ⌦ S, and
S⇤

i equals the first p2 columns of Xi.
2. Sample the random e↵ects w⇤

i , i = 1, . . . , N , from
{w⇤

i } | Y,�,�2,⌃w:

N
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where R(w)
i = yi �Xi�. Note how the mean is

the empirical Bayes estimate of w⇤
i .

3. Sample ⌃�1
w from ⌃�1

w |{w⇤
i }:

Wishart

0
@
 

NX
i=1

w⇤
i w

⇤0
i + ⌫0R0

!�1

, N + ⌫0

1
A .

4. Sample ��2 from ��2 | Y,�, {w⇤
i }:

Gamma

 
�1 +

JN

2
,

✓
1
�2

+
1
2

⇣
R(�2)0R(�2)

⌘◆�1
!

,

where R(�2) = Y � X� � vec(S⇤
i w⇤

1, . . . ,SS⇤
i w⇤

N )
(a NJ ⇥ 1 vector).

The MCMC sampling of the mixed-e↵ects model
parameters needs not be conducted within the op-
timization routine necessary to solve Equation (2);
otherwise, this would imply a tremendous compu-
tational burden. The reason for this is given by
the model written as in Equation (6). Given real-
izations of the posterior of ⇥ = (�, {w⇤

i },⌃w,�2),
p(⇥ | data), we can simulate draws of the poste-
rior predictive density by composition (Gelman et
al. (2004)) as follows:

p(y | data,x) =
Z

p(y,⇥ | data,x)d⇥

=
Z

p(y | data,⇥,x)p(⇥ | data)d⇥.

Thus, we conduct a simulation of the Gibbs sam-
pling chain until convergence, approximating in this
way p(⇥ | data) and simply sample from it. We then
substitute the sampled values into the marginal like-
lihood p(y | data,⇥,x) whenever a y | data,x vec-
tor is needed in the optimization routine. Hence, the
MCMC computations are only run once, before per-
forming the optimization. This represents a common
random-numbers strategy used in the optimization
routine for the posterior parameters, similar to that
recommended for the noise factors. The convergence
of the MCMC iterations was verified by time plots
and computation of the autocorrelation function of
all parameters. For instance, for the metal-injection
data, the lag 1 autocorrelation after 10,000 iterations
was 0.039 for �2 and varied between �0.04 and 0.03
for all of the p⇥q parameters in �. For more informa-
tion on MCMC methods, see Gelman et al. (2003).

Appendix B
An Alternative Multivariate-

Regression Model

In case the number of locations J along the pro-
files is small, a simpler multivariate linear regression
model can be used. The idea is to model each of
the values of the functional response at the di↵er-
ent locations sj , Y (sj) (j = 1, 2, ...J), as J di↵er-
ent responses and use a standard Bayesian multi-
variate linear regression model to compute the pre-
dictive density for a new set of J “responses” that
make up a complete profile. This strategy makes
sense when the number of locations J is small be-
cause it requires the estimation of a J ⇥ J covari-
ance matrix of general structure. The model is then
Y = X� + E, where X is an N ⇥ q design ma-
trix, with all the controllable and noise factors ex-
panded in model form according to some specified
q-parameter model, � is a q ⇥ J matrix containing
all the q parameters in the model for the response at
each location j = 1, 2, . . . , J (the same model form
is assumed at each location), and E ⌘ ["ij ] is an
N ⇥ J matrix of random errors assumed such that
"i• ⇠ NJ(0,⌃) and "•j ⇠ NN (0,�2IN ). For this
model, a new J⇥1 vector of observations y, contain-
ing a single not-yet-observed profile, for given levels
of the controllable and noise factors x, is assumed
to be equal to y = �0f(x) + ", where f(x) is as in
Equation (4) and " has the same distribution as a
row of E, i.e., a N(0,⌃).

Under the classical noninformative joint prior for
� and ⌃, it is well known (see, e.g., Press (1982),
pp. 136) that the predictive density for a new profile
vector response y is given by a J-dimensional t dis-
tribution with ⌫ = N � q�J +1 degrees of freedom.
This is denoted T⌫

J(a,b), where a is the mean vector
and b is the covariance matrix. Thus,

y | x,data ⇠ T⌫
J

✓b�0f(x),
⌫

⌫ � 2
H�1

◆
,

where b� is the ordinary least squares (OLS) estima-
tor of � and H is given by

H =
✓

⌫

N � q

◆ b⌃�1

1 + x0 (X0X)�1x

where b⌃ is the MLE of ⌃.
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Appendix C
Computer Implementation

All computations were implemented in MATLAB.
The program DriverBayesianRPDOpt.m, available
from the first author, contains all data sets and
calls the MCMC and optimization routines used.
The MATLAB Statistics and Optimization toolboxes
were used. Trujillo-Ortiz et al. (2007) provide a Mat-
lab implementation of Royston’s test for multivari-
ate normality and Schoenfeld (2008) provides the
MLE estimation of the Laird–Ware random e↵ects
model of Equation (6), which we used to compute
the AIC, BIC, and likelihood statistics used for co-
variance model selection.
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