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Abstract

Optimal experimental design procedures, utilizing criteria such as D-optimality, are

useful for producing experimental designs for quantitative responses, often under non-

standard conditions such as constrained design spaces. However, these methods require

a priori knowledge of the exact form of the response function, an often unrealistic as-

sumption. Model-robust designs are those which, from our perspective, are efficient with

respect to a set of possible models. In this paper, we develop a model-robust technique

which, when the possible models are nested, is D-optimal with respect to an associated

multiresponse model. In addition to providing a justification for the procedure, this

motivates the generalization of a modified Fedorov exchange algorithm, which is devel-

oped and used to construct exact model-robust designs. We give several examples and

compare our designs with two model-robust procedures in the literature.

∗corresponding author, absmucker@gmail.com
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Introduction and Motivation

Since Kiefer (1959) debuted the idea of optimal design of experiments, a vast literature has

grown up around the notion of choosing a design based upon some numerical criterion. The

most common is D-optimality, which chooses the design minimizing the generalized variance

of the regression parameter estimates. Though standard designs can be used in most design

situations, optimal procedures are useful when, for instance, there are constraints on the

design space or some factors are categorical. However, optimal design procedures have been

criticized (Box and Draper 1959) because they require complete knowledge of the form of

the regression function, though this knowledge is rarely at hand. Subsequently, techniques

have been developed which produce designs that are in some way robust to departures from

the assumed model.

For instance, optimal designs are often used in mixture experiments because of the

constrained nature of the design region. Heinsman and Montgomery (1995) describe an

experiment involving a household factor with four surfactant mixture factors. Beyond the

mixture constraint, the factors were restricted as well which made an optimal design natural.

However, such a design would require the complete specification of the form of the mixture

regression model. For instance a special cubic Sheffé polynomial model might be chosen,

though it is unknown before the experiment whether this is the correct model. We provide

a procedure which allows the experimenter to obtain a design which does not assume a

single model form, but rather accounts for a class of user-specified models. We revisit this

example later.

Model-robustness has enjoyed significant development over the years, primarily in the

hands of theoreticians whose work has provided insights into specific problems and the

tradeoff between bias and variance in the assessment of optimal designs; see, for instance

Montepiedra and Fedorov (1997), Dette and Franke (2001), Fang and Wiens (2003), Zhou
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(2008). On a practical level, much of this work lacks an intuitive framework within which

an experimenter might work. In fact, as Chang and Notz (1996) admit in a review of

the research literature just mentioned, these model-robust methods have more value as

perspicacious descriptions which warn of the dangers of ignoring the issue than as useful

prescriptions which would allow their adoption by practitioners.

Even further, nearly all of this research employs Kiefer’s continuous design theory which,

while mathematically elegant and tractable, produces designs optimal for asymptotically

large sample sizes. In contrast, most applications in the physical sciences and engineering

require optimal designs for a relatively small number of runs, i.e. discrete, or exact, designs.

Consequently, commercial software implementations employ exchange algorithms for fixed

sample sizes, including the Fedorov exchange algorithm (Fedorov 1972), DETMAX (Mitchell

1974), and the k-exchange algorithm (Johnson and Nachtsheim 1983).

There is remarkably little work done in accessible discrete methods for model-robust

designs. A mean squared error criterion reminiscent of Box and Draper (1959) was pro-

posed by Welch (1983), along with an accompanying DETMAX-like exchange algorithm.

DuMouchel and Jones (1994) use a Bayesian approach to provide some protection against

specified terms not in the assumed model, but their method requires specification of a prior

precision parameter and does not explicitly guard against more than two models; i.e. the

assumed model and one that includes the potential terms. Still, this approach formalizes

the ad hoc practice of adding center points to test for lack of fit and has spawned sig-

nificant follow-up work, such as Neff (1996), Goos et al. (2005), and Jones et al. (2008).

Heredia-Langner et al. (2004) allow protection against multiple models by utilizing a de-

sirability function to incorporate information about each possible model. The necessary

optimization is performed by a genetic algorithm, which introduces additional complexity

in implementation.

We propose a new, practical method which produces designs robust for a set of user-

defined possible models. These ideas are motivated by the a connection between mul-

tiresponse regression (Zellner 1962), multiresponse optimal design (Fedorov 1972), and a
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continuous model-robust optimal design technique due to Läuter (1974). To implement

these ideas, we develop multiresponse exchange algorithms which generalize existing uni-

variate methods. As far as we know, only Huizenga et al. (2002) has generalized the basic

exchange algorithm of Fedorov (1972) to the multiresponse case, although it is not used to

construct model-robust designs.

The paper is organized as follows. In the next section we give the technical background

and describe the basic approach taken to find model-robust designs. We then review some

basic univariate exchange algorithms and give a multiresponse determinant-updating for-

mula, a simplification of which is used to drive a multiresponse and/or model-robust ex-

change algorithm. We next give several examples illustrating our method and compare our

designs to those of DuMouchel and Jones (1994) and Heredia-Langner et al. (2004). We

conclude with discussion of the procedure and its results.

Setting and Proposed Approach

Suppose one is interested in performing an experiment with a single quantitative response

variable, y, and a factors (quantitative or categorical), x = (x1, . . . , xa). We assume that the

classical univariate linear regression model will be fit, where yi = f ′(xi)β + εi, i = 1, . . . , n

with β a p-vector of parameters and f(x) the p-vector valued model function, though p and

the precise form of f(x) are unknown. In matrix notation, we have y = Xβ + ε where y is

an n-vector, X is an n× p expanded design matrix, and ε is also an n-vector with E(ε) = 0

and V ar(ε) = σ2In. We assume also that the least squares criterion is used to estimate β,

in which case the estimator is β̂ = (X′X)−1X′Y with V ar(β̂) = σ2(X′X)−1.

To fit such a model, the design must be chosen and yi observed at each of the designs

points, xi. Let χ be the design space, Ξ be the set of all possible designs and ξn(x) ∈ Ξ be

a discrete, n-point design:

ξn =

x1 x2 . . . xd

n1 n2 . . . nd

 (1)
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where n is the total number of experiments, and ni, i, . . . , d is the number of exper-

iments performed at design point, xi. We define the information matrix in this case

as M = σ−2
∑n

i=1 f(x)f ′(x) and in the specific instance of the linear regression model,

M = (X′X)/σ2 = [V ar(β̂)]−1.

An optimal design approach would attempt to find the n points, xi ∈ χ, i = 1, . . . , n, such

that some criterion, φ(M), is optimized. Many criteria have been proposed, but probably

the most popular and mathematically tractable is the D-optimality, for which φ(M) = |M|.

Such an optimal design minimizes the volume of the confidence ellipsoid of the parameters.

Since the precise form of f(x) is generally not known, we might make the weaker as-

sumption that there exists a set of r possible models F that might be fit. Läuter (1974)

presented this idea for continuous designs ξ, and introduced a model-robust criterion simi-

lar to φ (MF (ξ)) =
∏
f∈F |Mf (ξ)|, where MF = (M1, . . . ,Mr) and Mf is the information

matrix for model f . Thus, the design which maximizes φ(MF (ξ)) over all possible designs

might be considered robust to the models in F . Cook and Nachtsheim (1982) utilized this

idea to develop linear-optimal designs focusing on prediction. Later, Dette (1990) used

the theory of canonical moments to give more explicit solutions for this product criterion.

These papers, however, are limited to continuous designs and unconstrained cuboidal design

regions.

Our discrete approach springs from Laüter’s idea, since allowing the experimenter to

define a class of possible models is practically compelling. When model-robustness is viewed

in this way, it is closely related to multiresponse optimal design, which has a literature in

its own right; see Fedorov (1972), Khuri and Cornell (1987), Chang (1997), and Atashgah

and Seifi (2009). These methods are based upon a multiresponse regression model due

to Zellner (1962) which allows the functional form of the factors to be different for each

response and can produce more precise estimates of the regression parameters by considering

the covariance structure of the responses.

Zellner’s seemingly unrelated regression (SUR) model, with r responses, can be written
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as 

y1

y2

...

yr


=



X1 0 . . . 0

0 X2 . . . 0
...

...
. . .

...

0 0 . . . Xr





β1

β2

...

βr


+



ε1

ε2

...

εr


(2)

where each yi and εi are n-vectors, βi is a qi-vector, and Xi is a n×qi expanded design matrix

for response i and the total number of parameters is
∑r

i=1 qi = q. It is assumed that the n

observations are independent, but the r responses for the ith observation are correlated as

specified by the r× r covariance matrix Σ. This leads to an error covariance matrix which

is Ω = Σ ⊗ In where ‘⊗’ is the Kronecker product. Consequently, the generalized least

squares estimator is β̂
∗

= (Z
′
Ω−1Z)−1Z

′
Ω−1Y with V ar(β̂

∗
) = (Z

′
Ω−1Z)−1 where

Z =



X1 0 . . . 0

0 X2 . . . 0
...

...
. . .

...

0 0 . . . Xr


(3)

as seen in (2). Then the q × q multiresponse information matrix is Mm = Z
′
Ω−1Z. Thus,

for a given Σ, to find a multiresponse D-optimal design, one must find that which maximizes

|Mm|, which, as in the univariate case, will be the design which minimizes the volume of

the confidence ellipsoid for the parameters.

Notice, however, that finding the multiresponse optimal design for r responses with

different regression functions should give a design that is simultaneously “good” for all

the response models, though not optimal for any particular one. Consequently, when a

univariate model-robust design is viewed as one which performs well for a set of specified

models, finding such a design is similar to a parallel multiresponse situation in which there

are r response models and we calculate the corresponding multiresponse D-optimal design.

Recently, we discovered a technical report (Emmett et al. 2007) which makes the same

connection, though the basis of our work is independent of theirs.
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Results by Bischoff (1993) and Kurotschka and Schwabe (1996) prove that when the

models are nested multiresponse optimal designs are invariant to Σ. Moreover, since our

primary concern is model-robustness, it seems reasonable to assume the identity matrix as

the covariance between the r “responses” or models, which when the models in F are nested

gives the attractive multiresponse D-optimal interpretation for the model-robust design. To

implement these ideas, we will develop a multivariate generalization of the determinant-

updating formula used in univariate exchange algorithms, then use a simplification when

Σ = I for our model-robust exchange algorithm.

Multiresponse and Model-Robust Exchange Algorithms

In this section we first review the basic univariate exchange algorithms upon which our

methods are based. Then we present a generalization to the matrix-updating formulas used

in the univariate procedures, as well as a simplification when Σ = I. Finally, we introduce

our model-robust exchange algorithm, which utilizes this simplification to avoid calculating

determinants when evaluating potential exchanges.

Univariate Exchange Algorithms

The first univariate exchange algorithm (Fedorov 1972) considered exchanges between each

design point and points in a candidate list, a discretized version of the design space. At

each iteration, the exchange was made which most increases the determinant of the infor-

mation matrix. He exploited a determinant-updating formula to alleviate the considerable

computational burden this problem imposed. Specifically, given design ξn, he showed that

if xj ∈ ξn is exchanged for x ∈ χ resulting in the new design ξ̃n,

|M(ξ̃n)| = |M(ξn)| (1 + ∆(xj ,x, ξn)) (4)
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where

∆(xj ,x, ξn) = V(x, ξn)−V(x, ξn)V(xi, ξn) + V2(x,xj , ξn)−V(xj , ξn) (5)

under the assumption that σ2 = 1, with V(x, ξn) = f ′(x)M−1(ξn)f(x) and V(x,xj , ξn) =

f ′(x)M−1(ξn)f(xj). The Fedorov algorithm is as follows:

1. Initialize algorithm: Begin with a nonsingular design; construct grid, G ⊂ χ

2. Let j = 1.

3. For design point xj , calculate ∆(xj ,x, ξn) as in (5) for all x ∈ G. Choose x∗j =

arg maxx∈χ ∆(xj ,x, ξn).

4. Increment j and if j < n return to Step 3. Else choose j∗ = arg maxj∈{1,··· ,n}∆(xj ,x∗j , ξn)

and exchange xj∗ and x∗j∗ , updating the determinant.

5. Update the inverse of the information matrix according to the standard rank-2 up-

dating formula (Fedorov 1972)

6. If ∆(xj∗ ,x∗j∗ , ξn) < ε, STOP. Else return to Step 2.

This algorithm generates a convergent nondecreasing sequence of determinants, but will

not in general converge to the global optimum. Therefore, it is necessary to run many

instances of the algorithm each with a randomly generated initial design. Despite the cheap

determinant updates, the primary drawback to Fedorov’s algorithm is its computational

demands since N optimizations are required during each iteration.

Cook and Nachtsheim (1980) proposed a modified Fedorov exchange algorithm, which

mimics Fedorov’s original procedure but exchanges each xj and x∗j in Step 3. This capitalizes

on each of the n optimizations that are performed during each iteration, and seems to be as

effective as its archetype. It is actually a special case of the k-exchange algorithm (Johnson

and Nachtsheim 1983), which considers only the k least critical design points (those with

the smallest prediction variance) for exchange.
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In the remainder of this paper, we develop a multiresponse generalization of the modified

Fedorov exchange algorithm and use it to construct single response model-robust designs.

We focus on this algorithm since we found it to be faster than the original Fedorov algorithm

while producing better designs than the k-exchange. Similar extensions to other existing

univariate algorithms, such as DETMAX (Mitchell 1974), BLKL (Atkinson et al. 2007), and

coordinate-exchange (Meyer and Nachtsheim 1995), could be developed. The latter does

not require a candidate list and is computationally attractive, but its sheen is tarnished

in the face of multifactor constraints on the design space. Given that computer-generated

designs are especially useful when design regions are constrained (e.g. mixture designs), the

benefits of a model-robust coordinate-exchange algorithm may be modest.

Model-Robust Exchange Algorithm

Model-robust exchange algorithms arise from a confluence of motivating factors. First,

there is a need to develop practical and intuitive tools which allow experimenters to design

experiments for nonstandard situations. Since the form of the model is rarely known in

advance, traditional optimal design methods fall short in providing the necessary technical

machinery.

Secondly, by noting the similarity between multiresponse optimal design and the single

response model-robust design problem we might consider the use of existing multiresponse

optimal design methods to construct model-robust designs. However, there exists almost

no exact design methods for multiresponse optimal design. This has led us to the devel-

opment of multiresponse optimal design exchange algorithms based on the multiresponse

determinant updating formula given in the second Appendix, and using them to produce

model-robust designs.

Simplification of Multiresponse Determinant Updating Formula

Recall that q is the total number of parameters in the multiresponse regression model given

in (2) and r is the number of responses. In the second Appendix, we give a multiresponse
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generalization of the determinant updating formula (4), which allows the determinant of

the q× q multiresponse information matrix to be updated by evaluating the determinant of

a 2r × 2r matrix when a single point is exchanged.

However, if we assume that Σ = Ir we can simplify the multiresponse determinant

updating formula given in equation (39) (second Appendix) so that the update involves

only a scalar. It is well known that the determinant of a block diagonal matrix is the

product of the determinants of the blocks. Thus,

∣∣∣Mm(ξ̃)
∣∣∣ =

∣∣∣Z̃′Z̃∣∣∣ =
m∏
i=1

∣∣∣X̃i
′
X̃i

∣∣∣
=

m∏
i=1

∣∣∣X′iXi

∣∣∣ · (1 + ∆i(xj ,x)) (6)

where the last equality follows from the univariate identity (4). This allows us to update

the information matrix via (6) instead of (39), which requires a determinant calculation.

We are now prepared to describe the proposed model-robust modified Fedorov exchange

algorithm.

Model-Robust Modified Fedorov Exchange Algorithm

As in Läuter (1974) we consider, instead of a single model, a finite set of models F from

which the experimenter believes the true model form can be chosen. More specifically, let

ξn be an n-point design and Mi(ξn) be the information matrix for model i where fi ∈ F ,

i = 1, · · · , r. Suppose that we exchange a design point xj for an arbitrary point x in the

design region, resulting in a new design ξ̃n. Then the model-robust optimization criteria
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can be written as:

φ(MF (ξ̃n)) =
r∏
i=1

∣∣∣Mi(ξ̃n)
∣∣∣ (7)

=
r∏
i=1

|Mi(ξn)| (1 + ∆i(xj ,x))

= φ(Mf (ξn))
r∏
i=1

(1 + ∆i(xj ,x))

so that for each iteration of the algorithm, we need to just calculate and maximize
∏r
i=1(1+

∆i(xj ,x)) where ∆i is calculated as in (5) for model i. We make a slight adjustment to

this criterion so our algorithm will not choose to exchange a point that is so bad that

(1 + ∆i(xj ,x)) < 0 for an even number of models, which would result in a positive value of

our criterion even though the exchange is undesirable. Thus, we choose the exchange which

maximizes
r∏
i=1

(1 + ∆i(xj ,x))I(1 + ∆i(xj ,x) > 0) (8)

where I is the indicator function. By (6) this is equivalent to updating the multiresponse

information matrix under the assumption that Σ = I.

Based on the above development, the algorithm is as follows:

1. Initialize algorithm: Begin with a nonsingular design ξn; construct grid, G ⊂ χ.

2. Let j = 1.

3. For design point xj , calculate (8) for all x ∈ G. Choose x∗j = arg maxx∈χ
∏r
i=1(1 +

∆i(xj ,x))I(1 + ∆i(xj ,x) > 0).

4. Perform exchange x∗j for xj , updating ξn. Update the determinant and also
(
X
′
iXi

)−1

for each model using the rank-2 formula in Fedorov (1972).

5. Increment j and if j < N return to Step 3. Else, if maxj
∏r
i=1(1+∆i(xj ,x∗j )) < 1+ ε,

STOP. Else return to Step 2.
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As in the univariate algorithm, to find a global optimum for larger problems it is necessary

to perform many runs of the algorithm using different initial designs.

Examples

In this section we present several examples illustrating the proposed model-robust modified

Fedorov (MRMF) exchange algorithm, and compare it with two other exact model-robust

design methods in the literature. Before giving the examples, we will briefly describe these

methods and discuss how the designs will be evaluated.

DuMouchel and Jones (1994) use a Bayesian approach to provide protection against

higher-order terms. They set r terms as primary and s terms as potential and after scaling

the two groups to make them nearly orthogonal, they assume an informative prior for

the potential terms and calculate a posterior distribution for the parameters with variance

A = [X
′
X + K/τ2]−1, where X = (Xpri|Xpot) and K is a (r+ s)× (r+ s) diagonal matrix

with 0 on the first r diagonals and 1 on the last s. The prior variance parameter, τ , is to be

chosen by the user. Once they have this posterior variance, they simply choose the design

that minimizes |A| using slightly adjusted exchange algorithms.

A distinct advantage of this method is that it can provide protection against models

with more parameters than observations. On the other hand, it is not designed to produce

model-robust designs with respect to more than two models. Since it is a prominent and

rare model-robust technique for exact designs, we compare its results to ours. Difficulties

associated with this method are the choice of the prior precision value, 1
τ , and how to

designate the primary and potential terms. We use 1
τ = 1, as recommended by DuMouchel

and Jones, but also include designs based upon 1
τ = 16. Because of the structure of A, larger

prior precision values will result in less consideration of the potential terms as manifested by

lower efficiencies for models involving those terms. We also generally assume more primary

terms as opposed to less. The results are based upon the implementation of this method in

the SASr software’s PROC OPTEX (SAS 2004).
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Heredia-Langner et al. (2004) used a genetic algorithm to calculate exact model-robust

designs. They consider r possible models and use a genetic algorithm to optimize a desir-

ability function which incorporates the determinants of the information matrices of each of

the models. Their procedure does not require a candidate list, though implementation of a

tuned genetic algorithm is not trivial. Examples 1 and 3 are taken from their paper, which

allows comparisons to be made.

We compare designs on the basis of efficiencies with respect to each model f ∈ F .

The D-efficiency for model f is Deff =
(
|Mf |
|M∗f |

)1/p
where M∗

f is the information matrix

for the design optimal for f alone, and p is the number of parameters for model f . Since

determinants can roughly be viewed as measures of volume, this quantity takes the ratio

of the volumes and scales the comparison to a per-parameter basis. When the number of

parameters is large, the determinants themselves can be orders of magnitude different yet

result in a high D-efficiency. Thus, we provide an alternative measure of efficiency which

measures the ratio of determinants, which we call D Volume-efficiency: DVeff = |Mf |
|M∗f |

.

For the individual model optimal designs in all examples save the last, Fedorov’s algo-

rithm via PROC OPTEX was run 50 times from randomly chosen initial designs and the

best final design was chosen. For the final example, the MRMF algorithm was used to

find the best designs for the models individually. Furthermore, all model-robust designs

produced by the methods in this paper, as well as those based upon DuMouchel and Jones

(1994), were also generated based on 50 separate algorithm instances.

Example 1: Constrained Response Surface Experiment

A constrained two-factor example, taken from Heredia-Langner et al. (2004), will serve as

an initial example illustrating our method. The design region, shown in 1, is χ = {x =

(x1, x2) : −1 ≤ x1, x2 ≤ 1, x1 + x2 ≤ 1,−0.5 ≤ x1 + x2}, n = 6 and the experimenter

would like a design robust for a first-order, a first-order with interaction, or full quadratic
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polynomial; i.e. F = {f ′i (x)βi, 1 ≤ i ≤ 3,x ∈ χ} where

f
′
1(x) = (1, x1, x2) (9)

f
′
2(x) = (1, x1, x2, x1x2) (10)

f
′
3(x) = (1, x1, x2, x1x2, x

2
1, x

2
2) (11)

The candidate list for this example consisted of 266 points constituting a grid of resolution

0.1 placed over the design space. For the Bayesian method, we adopt 1
τ = 1 and assign f

′
pri =

(1, x1, x2, x1x2) and f
′
pot = (x2

1, x
2
2) in accordance with recommendations in DuMouchel and

Jones (1994). We also include in our comparison the model-robust design of Heredia-

Langner et al. (2004) as well as the optimal design for the largest model.

The model-robust designs are shown in Figure 1. Three design points are common to all

four designs, {(0, 1), (1, 0), (1,−1)}, and the MRMF and Bayes methods produced the same

design. Table 1 also compares the designs in terms of the determinant, DV-efficiency, and

D-efficiency for each of the considered models, and the last column gives the product. The

last row gives the determinant of the information matrix for the D-optimal design for each

of the models individually, and the efficiencies are calculated using these values.

Even though the Bayesian and MRMF designs seem close to the optimal design for

the quadratic model (since their D-efficiency for the quadratic model is nearly 1), the latter

produces a poor design with respect to the interaction model. It is also somewhat surprising

that the Bayesian method produced the same design as the MRMF method, given that three

models were to be guarded against. However, in this simple example the MRMF design for

the three models is the same as that obtained when considering only models (10) and (11)

and ignoring (9). Therefore, it appears that the first-order model has no effect upon the

MRMF algorithm, so that there are essentially two models under consideration, a situation

for which the Bayesian procedure is natural.
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Figure 1: Model-robust Designs for Example 1

Example 2: Hypothetical Constrained 3-factor Experiment

To further explore our method and how it compares to the Bayesian method in particular,

consider a three-factor example with design region χ = {x = (x1, x2, x3) : −1 ≤ x1, x2, x3 ≤

1,−1 ≤ x1 + x2 + x3 ≤ 1,−1 ≤ x1 + x2 ≤ 1,−1 ≤ x1 + x3 ≤ 1,−1 ≤ x2 + x3 ≤ 1} and five

models of interest:

f
′
1(x) = (1, x1, x2, x3) (12)

f
′
2(x) = (f

′
1, x1x2, x1x3, x2x3) (13)

f
′
3(x) = (f

′
2, x

2
1, x

2
2, x

2
3) (14)

f
′
4(x) = (f

′
3, x

2
1x2, x

2
1x3, x1x

2
2, x

2
2x3, x1x

2
3, x2x

2
3, x1x2x3) (15)

f
′
5(x) = (f

′
4, x

3
1, x

3
2, x

3
3) (16)

so that F = {f ′i (x)βi, 1 ≤ i ≤ 5,x ∈ χ}.

In particular, assume that the experimenter would like to use n = 20 runs and would like
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Model
Design Measure (9) (10) (11) Product
MRMF Determinant 27.04 33 3.01 2685.88

DVeff .531 .677 .968 .348
Deff .810 .907 .995 .731

Genetic Algorithm Determinant 31.14 26.91 2.21 1851.93
DVeff .612 .552 .711 .240
Deff .849 .862 .945 .692

Bayes ( 1
τ = 1) Determinant 27.04 33 3.01 2685.88

DVeff .531 .677 .968 .348
Deff .810 .907 .995 .731

Optimal Design for (11) Determinant 31.63 14.35 3.11 1411.60
DVeff .622 .294 1 .183
Deff .853 .737 1 .629

Optimal (for each model) Determinant 50.88 48.77 3.11

Table 1: Determinants, with DV- and D-efficiencies, for Example 1 with n = 6, protecting
against three models.

a design that can fit each of these models well. To specify the Bayesian procedure, we take

as primary all terms in (14) and designate the rest as potential. We give the MRMF design

in Table 2, as well as Bayesian designs with 1
τ = 1 and 1

τ = 16 and the optimal design for

the largest model, all using a candidate list consisting of a grid of points with resolution 0.1

placed over the design space.

The Bayesian designs are competitive for most of the models, but the designs lack effi-

ciency for model (15) when compared to the MRMF design, which might be expected since

it is in between the primary and full model and as such not explicitly considered. None

of the designs perform very well for model (13), though the MRMF design is marginally

better. As we expect, when a larger prior precision value is used in the Bayesian procedure,

the efficiency of models containing primary terms is reduced, and in this case significantly

degrades the design in terms of the product criterion. The optimal design for the largest

model is competitive with the Bayesian designs in terms of model-robustness, though the

MRMF design would likely be preferred because of its higher efficiencies in models (13),

(14), and (15).

16



Model
Design Measure (12) (13) (14) (15) (16) Product
MRMF Determinant 6.58e3 5.57e4 1.10e5 3.21e0 5.24e-3 6.78e11

DVeff .558 .142 .249 .461 .649 .0059
Deff .864 .756 .870 .955 .979 .531

Bayes ( 1
τ = 1) Determinant 6.63e3 5.21e4 9.74e4 9.92e-1 7.94e-3 2.65e11

DVeff .564 .133 .220 .142 .983 .0023
Deff .867 .749 .860 .892 .999 .498

Bayes ( 1
τ = 16) Determinant 5.93e3 4.39e4 1.12e5 4.61e-1 4.41e-3 5.93e10

DVeff .505 .112 .254 .066 .546 .0005
Deff .843 .731 .872 .852 .970 .444

Optimal for (16) Determinant 6.44e3 4.94e4 9.62e4 7.63e-1 8.07e-3 1.88e11
DVeff .548 .126 .218 .110 1 .0017
Deff .860 .744 .859 .878 1 .4826

Optimal (for each model) Determinant 1.18e4 3.93e5 4.42e5 6.97e0 8.07e-3

Table 2: Determinants, with D-efficiencies and DV-efficiencies, for Example 2 with n = 20,
protecting against five models.

Example 3: Constrained Mixture Experiment

We now revisit the example (Heinsman and Montgomery 1995) briefly described at the

outset. This is a four-factor constrained mixture experiment regarding the formulation of a

household product in which 20 runs are available. The design region can be defined thusly:

χ =

{
x = (x1, x2, x3, x4) :

4∑
i=1

xi = 1, 0.5 ≤ x1 ≤ 1, 0 ≤ x2, x3 ≤ 0.5, 0 ≤ x4 ≤ 0.05

}
(17)

where x1 is a nonionic surfactant, x2 is an anionic surfactant, x3 is a second nonionic

surfactant, and x4 is a zwitterionic surfactant. Because of the dependency induced by the

mixture constraint, standard mixture design models are considered which do not include

an intercept:

f
′
1(x) = ({xi, i = 1, . . . , 4}) (18)

f
′
2(x) = (f

′
1, {xixj , i < j ≤ 4}) (19)

f
′
3(x) = (f

′
2, {xixjxk, i < j < k ≤ 4}) (20)

f
′
4(x) = (f

′
3, {xixj(xi − xj), i < j ≤ 4}) (21)
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so that F = {f ′i (x)βi, 1 ≤ i ≤ 4,x ∈ χ}. Heredia-Langner et al. (2004) also used this

example, and so we compare our method to their Genetic Algorithm as well as to the

Bayesian method of DuMouchel and Jones (1994). For the latter, we use both a standard

value for the prior precision, 1
τ = 1, and a larger precision value ( 1

τ = 16), with primary

terms all those except those unique to f4, which are regarded as potential.

Since this is a large mixture design, we supplemented a regular grid (resolution 0.01) with

extreme vertices and approximate centroids of the design region using code as described in

Piepel (1988).

Model
Design Measure (18) (19) (20) (21) Product
MRMF Determinant 5.31e-2 7.22e-22 2.65e-43 8.36e-78 8.49e-143

DVeff .281 .336 .365 .921 .032
Deff .728 .897 .931 .996 .606

Genetic Algorithm Determinant 5.23e-2 7.46e-22 2.90e-43 7.80e-78 8.83e-143
DVeff .277 .347 .399 .859 .033
Deff .725 .900 .937 .992 .607

Bayes ( 1
τ = 1) Determinant 5.46e-2 6.74e-22 2.24e-43 9.08e-78 7.48e-143

DVeff .289 .313 .308 1 .028
Deff .733 .890 .919 1 .600

Bayes ( 1
τ = 16) Determinant 5.64e-2 6.12e-22 3.01e-43 3.08e-78 3.20e-143

DVeff .298 .285 .414 .339 .012
Deff .739 .882 .939 .947 .580

Optimal Design for (21) Determinant 5.46e-2 6.74e-22 2.24e-43 9.08e-78 7.48e-143
DVeff .289 .313 .308 1 .028
Deff .733 .890 .919 1 .600

Optimal (for each model) Determinant 1.89e-1 2.15e-21 7.26e-43 9.08e-78

Table 3: Determinant function values, D-efficiencies, and DV-efficiencies for Example 3 with
n = 20, protecting against four models.

In Table 3, our method can be seen to be competitive with the Genetic Algorithm, though

their design is slightly superior by our product optimality criterion. This is likely a function

of the discretization in our candidate list. Note that the optimal design for model (21) has a

significantly higher objective function value (9.08e-78) than that given in Heredia-Langner

et al. (2004), though theirs was asserted to have been obtained from PROC OPTEX in SAS

as well.
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It is the case again in this example that the best design found by the MRMF method

is relatively close to that of the optimal design for the largest model. The Bayesian design

with precision of 1 actually chooses the optimal design for the largest model, and shows that

this design is competitive with those that look to maximize the product of the determinants.

When the precision is increased, we see the same behavior as was noted before: The Bayesian

design becomes less efficient for the model that involves potential terms. The resulting

Bayesian design gives slightly more balance, but suffers against the product optimality

criterion.

Example 4: Mixture Experiment with Disparate Models

For our final example we use an unconstrained mixture experiment by Frisbee and McGinity

(1994) with n = 11. The response is the glass transition temperature of a certain film with

three nonionic surfactant factors. The goal was to minimize this transition temperature,

and Frisbee and McGinity fit a traditional polynomial model. However, another class of

models, the so-called Becker models (Cornell 1990, Sec. 6.5), were shown by Rajagopal

and Castillo (2005) to also fit the data well and lead to a significantly different optimal

solution. These models, originally considered to address certain shortcomings in the Sheffé

polynomial models, use min(·) instead of prod(·) to model factor interactions.

In this case,

χ =

{
x = (x1, x2, x3) :

3∑
i=1

xi = 1, 0 ≤ xi ≤ 1, i = 1, 2, 3

}
(22)
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and we take five possible models:

f
′
1(x) = ({xi, i = 1, 2, 3}) (23)

f
′
2(x) = (f

′
1, {xixj , i < j ≤ 3}) (24)

f
′
3(x) = (f

′
2, {x1x2x3}) (25)

f
′
4(x) = (f

′
1, {min(xi, xj), i < j ≤ 3}) (26)

f
′
5(x) = (f

′
4, {min(x1, x2, x3)}) (27)

so that F = {f ′i (x)βi, 1 ≤ i ≤ 5,x ∈ χ}.

In addition to the three models we are guarding against, we also examine effectiveness

of our design with respect to the model fit by Frisbee and McGinity, as well as the most

probable model found a posteriori by Rajagopal and Castillo:

f
′
fm(x) = (x1, x2, x3, x1x3, x2x3) (28)

f
′
rc(x) = (x1, x2, x3,min(x1, x3),min(x2, x3)) (29)

For a candidate list, we used a regular grid with resolution 1/12, which because of the

regular design region, contained the vertices and centroids of the region.

With the disparate model types, the Bayes procedure, with its primary and potential

factors, cannot be easily applied. Instead, we examine the results of the MRMF design

and compare it in Table 4 to the design that was actually used. In terms of efficiency,

the actual design is much inferior for all models considered, and cannot even estimate the

Becker model. This is the case because the original design includes, in addition to two

centroid points, three other points on the interior of the simplex design region.

As seen in Table 4, the MRMF design is optimal for models (25), (26), and (27). This

is because the optimal designs for these models individually are interchangeable; i.e. the

optimal design for one is also optimal for another. Note that since the models are not nested

we do not have the multiresponse D-optimality interpretation.
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Model
Design Measure (23) (24) (25) (26) (27) (28) (29)

MRMF Determinant 19.81 5.91e-3 5.36e-6 0.569 2.78e-2 6.61e-2 1.46
DVeff .413 .756 1 1 1 .352 .486
Deff .745 .954 1 1 1 .812 .866

Frisbee and McGinity Determinant 8.25 1.22e-3 1.51e-6 .146 8.82e-3 2.30e-2 .588
DVeff .172 .156 .283 .257 .317 .123 .196
Deff .556 .733 .835 .797 .849 .658 .722

Optimal (for each model) Determinant 48 7.8e-3 5.36e-6 .569 2.73e-2 .188 3

Table 4: Objective Function Values, D-efficiencies, and DV-efficiencies for Example 4, n =
11, protecting against 5 Models.

Discussion

The Model-robust Modified Fedorov (MRMF) exchange algorithm presented in this paper

provides a natural tool with which to find designs when an optimal design is desired but

the model-form is unknown. The mechanism to achieve this is intuitive and simple: The

experimenter chooses r models for which he/she would like to design. Then, a design is

found which maximizes the product of the determinant of the information matrices of each

of the models. In the case that the models under consideration are nested, this is the D-

optimal design for the associated multiresponse model with r responses and thus minimizes

the volume of the confidence ellipsoid of the parameters.

Furthermore, the MRMF method produces designs that are competitive, with simpler

algorithmic machinery, than the Genetic Algorithm approach of Heredia-Langner et al.

(2004). The strength of the MRMF method with respect to the GA technique is that it

is automatic and a straightforward extension of commonly used exchange algorithms. The

GA requires tuning of several parameters and is nontrivial to implement effectively.

We also compared our procedure to the Bayesian method of DuMouchel and Jones

(1994), a widely available model-robust technique. We initially hypothesized that the

Bayesian method would suffer when confronted with multiple possible models, since it cat-

egorizes terms into just two groups. This is supported by Example 2, though the procedure

performed fairly well in Examples 1 and 3. The choice of 1
τ certainly affects the model-

robustness of the design; indeed for certain values of 1
τ (i.e. 1

τ = 1 in Example 3) the
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method seems to produce a design optimal for the highest-order model, while for large

enough values of 1
τ the full model is not even estimable. The choice of terms as primary or

potential also makes an impact. Our procedure does not suffer from these uncertainties, has

a multiresponse D-optimal interpretation (for F nested) and explicitly considers a larger

class of models; it can also handle situations as in Example 4 in which the possible models

are disparate and impossible to nest.

One strategy, if faced with a situation necessitating a D-optimal design, might be to de-

sign for the highest-order model possible. If, as assumed in this paper, there are a sufficient

number of runs to estimate the largest model, one might question whether the efficiency

gained in model-robust methods is worth the additional methodology. In certain cases, as

in the third example, the gains appear to be limited. But as demonstrated by the first and

second examples, significant gains can be made by utilizing the model-robust approach.

Therefore, a dedicated procedure based upon accepted univariate exchange algorithms will

be useful to produce model-robust designs.

In terms of D-efficiency, the MRMF designs can be seen to favor larger models. In other

words, the efficiency of the smaller models suffer as compared to the larger ones. To mitigate

this, one might consider the following optimization criterion (Atkinson et al. 2007, Emmett

et al. 2007), instead of (7):

φ(MF (ξ̃n)) =
r∏
i=1

∣∣∣Mi(ξ̃n)
∣∣∣1/qi (30)

where qi is the number of parameters in the ith model. It is straightforward to derive an

exchange algorithm using this criterion–call it the scaled MRMF–which has the effect of

shrinking values of dissimilar orders of magnitude toward each other, in essence weighting

more heavily those models with fewer parameters. We implemented this procedure using

several examples, and the results were surprisingly similar. For instance, for the constrained

mixture experiment in Example 3, the scaled MRMF design resulted in a design very close

to the MRMF in Table 3. For the hypothetical experiment in Example 2, we observed more
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of a difference, with D-efficiencies increasing from 86.4% to about 89% for model (12) and

from 75.6% to about 78% for model (13), while decreasing the efficiencies of model (14)

from 87% to about 85.5% and model (16) from 97.9% to about 96.5%, but still resulting in

an unbalanced design in terms of the D-efficiencies.

The model-robust criterion used in this paper could easily be extended to include prior

information in terms of model weights, if certain models are preferred over the others.

However, since this work was motivated in part by multiresponse optimal design theory,

the minimal volume of the parameter confidence ellipsoid interpretation of D-optimality is

used and thus we only consider equally weighted models. Furthermore, the relative ineffec-

tiveness of the scaled MRMF to provide designs with balanced D-efficiencies underscores

the difficulty in balancing the designs using weights.

Finally, assume that Te is the time it takes to run the univariate exchange algorithm.

The runtime for these model-robust algorithms should be rTe where r is the number of

models considered. Commercial software programs have fast implementations of exchange

algorithms, so the computational burden imposed by a similarly implemented model-robust

exchange algorithm should not be heavy.

Note: All designs referred to in this paper, as well as Matlab code to generate the MRMF

designs in the four examples, are available at http://www2.ie.psu.edu/Castillo/research/

EngineeringStatistics/publications.htm.

Appendix: Matrix Algebra Results

We provide here a collection of results which are necessary to prove Theorem 4. The first

is well-known and presented without proof.

Lemma 1 Let ∆ be a block matrix such that

∆ =

∆11 ∆12

∆21 ∆22

 (31)
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where ∆11 is a n × n nonsingular matrix, ∆12 is a n × k matrix, ∆21 is a k × n matrix,

and ∆22 is a k × k nonsingular matrix. Then

|∆| = |∆11||∆22 −∆21∆−1
11 ∆12| = |∆11 −∆12∆−1

22 ∆21||∆22| (32)

The next result is a slight generalization of an identity given in Schott (1997).

Lemma 2 Let M be n× n, A be n× k and B be k × n. Then

|M + AB| =

∣∣∣∣∣∣∣
M A

−B Ik

∣∣∣∣∣∣∣ (33)

Proof. Using basic matrix multiplication, it is true that

M A

−B Ik


In 0

B Ik

 =

M + AB A

0 Ik

 (34)

Taking the determinant of both sides, and using the well known property that the deter-

minant of a product of two matrices is equal to the product of the determinants of the

matrices, gives ∣∣∣∣∣∣∣
M A

−B Ik

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
In 0

B Ik

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
M + AB A

0 Ik

∣∣∣∣∣∣∣ (35)

and by Lemma 1, ∣∣∣∣∣∣∣
In 0

B Ik

∣∣∣∣∣∣∣ = |In||Ik − 0| = 1 (36)
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Thus,

∣∣∣∣∣∣∣
M A

−B Ik

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
M + AB A

0 Ik

∣∣∣∣∣∣∣
= |In||M + AB−AIk0|

= |M + AB|

where the second equality follows from another appeal to Lemma 1.

The final determinant lemma simply combines the two previous results and is a slight

generalization of Lemma 2.5.1 in Fedorov (1972).

Lemma 3 Let M be a nonsingular n× n matrix, let A be a n× k matrix and let B be an

k × n matrix; then

|M + AB| = |M||Ik + BM−1A| (37)

Proof. Lemma 2 gives that

|M + AB| =

∣∣∣∣∣∣∣
M A

−B Ik

∣∣∣∣∣∣∣ (38)

and then by Lemma 1 we get what we wanted to prove.

Appendix: Multiresponse Determinant Updating Formula

We can prove a multivariate generalization of a result (Fedorov 1972, Lemma 3.2.1) from

which (4) is derived, using the same sorts of arguments. This is essentially identical to the

result given in Huizenga et al. (2002), but we present it here with an explicit proof.

Theorem 4 Let ξn be an exact design consisting of points x1,x2, . . . ,xn and ξ̃n be the

design produced when xj1 ,xj2 , . . . ,xj`, xji ∈ ξn, are exchanged for x̃k ∈ χ, k = 1, . . . , `.

Further, let Mm(ξn) be the q × q multivariate information matrix of the design ξn and
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γ(xjk) be the r× q multiresponse basis matrix, where q = p1 + ...+ pr and pi is the number

of parameters for the ith response; then

|Mm(ξ̃n)| = |Mm(ξn)||I2`r + A
′
2M
−1
m (ξn)A1| (39)

where

A1 =
(
−γ ′(xj1)Σ−1/2,γ ′(x̃1)Σ−1/2, . . . ,−γ ′(xj`)Σ

−1/2,γ ′(x̃`)Σ−1/2
)

(40)

and

A2 =
(
γ ′(xj1)Σ−1/2,γ ′(x̃1)Σ−1/2, . . . ,γ ′(xj`)Σ

−1/2,γ ′(x̃`)Σ−1/2
)

(41)

and both matrices are q × 2`r.

Proof. By definition,

M(ξ̃n) = M(ξn)−
∑̀
k=1

γ ′(xjk)Σ−1γ(xjk) +
∑̀
k=1

γ ′(x̃k)Σ−1γ(x̃k) (42)

Now,

A1A
′
2 =

(
−γ ′(xj1)Σ−1/2,γ ′(x̃1)Σ−1/2, . . . ,−γ ′(xj`)Σ

−1/2,γ ′(x̃`)Σ−1/2
)


Σ−1/2γ(xj1)

Σ−1/2γ(x̃1)
...

Σ−1/2γ(xj`)

Σ−1/2γ(x̃`)


(43)

=
∑̀
k=1

−γ ′(xjk)Σ−1γ(xjk) + γ ′(x̃k)Σ−1γ(x̃k) (44)

This implies that M(ξ̃n) = M(ξn) + A1A
′
2 and by Lemma 3,

|M(ξn) + A1A
′
2| = |M(ξn)||I2`r + A

′
2M
−1(ξn)A1| (45)
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which implies what we wanted to prove.
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