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ABSTRACT

In traditional Response Surface Methods (RSM) the fitting of a factorial design (possible frac-

tional) is followed by a steepest ascent search using the vector of first order parameter estimates as

an approximation for the gradient. In the presence of variability in the responses, there is a need

for a stopping rule to determine the optimal point in the search direction. Two formal stopping

rules have been proposed in the literature, Myers and Khuri’s (MK) stopping rule and Del Castillo’s

recursive parabolic rule. The first rule requires the specification of an initial guess on the location

of the optimum, while the performance of the latter rule has only been studied for quadratic re-

sponses. This paper proposes some modifications to the recursive parabolic rule in order to increase

its robustness for non-quadratic responses. The modifications include using only a fraction of the

experiments made along the search and the estimation of all the parameters in the recursive model.

It also compares, using simulation experiments, the performance of the aforementioned rules, to-

gether with classical rules of stopping after 1, 2 or 3 consecutive drops, under non-quadratic and

non-normally distributed responses. It was observed that the original recursive parabolic rule stops

before the optimum under non-quadratic behavior, while the modified parabolic rule and the MK

rule perform satisfactorily under most of the simulated conditions.

1. INTRODUCTION.

Since the seminal paper by Box and Wilson (1951), traditional response surface methods have

been based on initially conducting steepest ascent/descent searches until significant curvature is

detected. It will be assumed in this paper, without loss of generality, that it is of interest to maximize

the response so only the steepest ascent case will be discussed. Steepest ascent is conducted based

on experiments conducted on the direction defined by the gradient of an estimated main effects
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model. The observed responses along the steepest ascent direction are used to estimate when one

has reached the maximum on such direction. This paper presents a new rule for determining when

to stop a steepest ascent search in an RSM study.

The details of how to conduct steepest ascent are not completely defined in the literature, in

particular with respect to when or how to stop a search in the steepest ascent direction. In practice,

stopping a search too early before the true maximum over the steepest ascent direction evidently

implies that the optimum will be missed. The end result, over many line searches, is the increase

in the total number of experiments conducted. Likewise, a rule that stops many steps after the

true maximum evidently results in wasted resources in experimentation. These two types of errors

become more severe as the sampling error becomes more dominant. Common stopping rules, like

stopping after the first observed drop in response or stopping only after 3 consecutive observed

drops suffer from either of these two types of problems. Interest is in finding a stopping rule that

stops after, but as close as possible, to the true maximum along the steepest ascent direction.

In the literature, two formal rules have been proposed for signaling when to stop a search: a rule

by Myers and Khuri (1979) and a rule by Del Castillo (1997). The latter paper contains comparisons

of these two rules and the simpler stopping rule of stopping after 1, 2, and 3 drops in a row. The

Myers and Khuri rule is a formal test for the hypothesis that a drop in response is significant,

and requires to this effect that a preliminary guess on the number of steps to the optimum be

given. It also requires normality of the errors. The rule of Del Castillo (1997) recursively fits a

parabola to the sequence of observed responses. He proposes to fit recursively the second order

coefficient of a quadratic polynomial and to test for the negativeness of the first derivative. Even

though this rule does not require normally-distributed errors, its performance was only studied

when the response function was quadratic with additive noise. Although classical RSM uses second

order models to obtain a local approximation of the true function, during steepest ascent searches

significant changes are made to the controllable factors and the quadratic approximation may not

longer be valid. Furthermore, the intercept and first order term carried over from the previous

factorial design may also need to be changed in order to give a better local approximation of the

true function.

The objectives of this paper are 1) to present extensions and improvements to the recursive

rule proposed by Del Castillo (1997) with the objective of increasing its robustness against non-

quadratic responses, and 2) to evaluate the performance of the modified recursive rule by comparing

it to the rule by Myers and Khuri (1979), to the original recursive parabolic rule, and to the other
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simpler rules used in practice.

The following five sections are organized as follows. Section 2 reviews previous research in this

area and states the scope of the current research. Sections 3 and 4 present the proposed modi-

fications to the recursive rule of Del Castillo (1997). Section 5 provides simulation results where

the various stopping rules are compared for non-quadratic responses with normal and non-normal

additive noise. Finally, section 6 contains conclusion and recommendations for future research.

2. PREVIOUS RESEARCH AND OBJECTIVES OF CURRENT RESEARCH.

Myers and Khuri Stopping Rule

The Myers and Khuri (1979) stopping rule for steepest ascent involves a sequential test of hypoth-

esis. To apply this rule the user needs to make a preliminary guess, denoted by κ, of the number

of steps required to reach the optimum. The value of κ is used in the following equation to obtain

the test limits:

a = Φ−1
(

1
2κ

)
σε

√
2 = −b (1)

As it can be expected, the procedure is rather sensitive to the value of κ chosen (Del Castillo

1997). The procedure is equivalent to testing for the significance of the difference between two

responses, where the size of the test is given by 1/2κ, e.g. for κ = 10 a test of size α = 0.05 is

obtained. For higher values of κ the sensitivity is reduced because of the inverse normal function.

The remarkable characteristic of this rule is the absence of an assumption regarding the type of

functional relationship between the response and the controllable factors. However, it uses only

part of the information gathered during the search, and assumes normally distributed errors.

Recursive Parabolic Rule

In the derivation of his stopping rule, Del Castillo (1997) used the intercept and the directional

derivative in the gradient direction from the previous factorial experiment to estimate the intercept

and first order coefficient of the parabolic function given by:

Y (t) = θ0 + θ1t + θ2t
2 + εt (2)

where it was assumed that εt ∼ N(0, σ2
ε ) were i.i.d. random variables. These estimates were used
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as true values through all the procedure. The procedure consists of re-estimating recursively the

curvature coefficient θ2. This scheme allows to have estimates of all three parameters after just the

first experiment.

Let t be the step counter, Ŷ (0) be the response at t = 0 (usually obtained from the arithmetic

mean of the previous factorial center points), Y (t) the result of the tth experiment, and θ̂
(t)
2 the

estimate of the second order coefficients which uses observations up to and including Y (t). With

this notation, the algorithm proposed in Del Castillo (1997) was:

1. Update the estimate of θ̂
(t)
2 as follows:

θ̂
(t)
2 = θ̂

(t−1)
2 +

Pt−1t
2

1 + t4Pt−1
(Y (t)− Ŷ (0)− θ1t− θ̂

(t−1)
2 t2) (3)

2. Perform a rank 1 update of the covariance matrix. In the case of a single regressor, this is

just a scalar update and it can be simplified to:

Pt =

(
1− Pt−1t

4

1 + t4Pt−1

)
Pt−1 (4)

The reader can refer to Wellstead and Zarrop (1991) for the general case of multiple regressors.

3. Finally, if

θ1 + 2θ̂
(t)
2 t < −3

√
σ̂2

(θ1+2θ̂
(t)
2 t)

(5)

stop the search and return topt such that Y (topt) = maxl=1,..,t{Y (l)}. Otherwise, increase the

step counter (t) and go back to 1. Here, σ̂2

(θ1+2θ̂
(t)
2 t)

denotes the variance of θ1 + 2θ̂(t)
2 t, and

Pt denotes the variance of θ̂
(t)
2 .

To start up the RLS scheme, prior estimates of Pt and θ2 are needed. Del Castillo proposed

to use P0 = 10 and θ̂
(t)
2 = −θ1/2tprior, where tprior is an initial guess of how many steps away the

directional optimum is located. Although this guess needs to be specified by the user, its impact

on the overall performance of the rule was reported to be more moderate than the effect of κ in

the Myers-Khuri rule because of the relatively high value of P0.

The value of Pt converges quickly to σ̂2

(θ1+2θ̂
(t)
2 t)

(the difference is 1.04−5 after just three steps

when P0 = 10 is used) where:

σ̂2

(θ1+2θ̂
(t)
2 t)

=
120tσ̂2

ε

(t + 1)(2t + 1)(3t2 + 3t− 1)
≈ 4σ̂2

ε t
2Pt (6)

The approximation holds if it is assumed that θ̂1 ≡ θ1 and therefore V ar(θ̂1) = 0.

4



The advantage of the recursive parabolic rule is its exhaustive use of all the information available

from past and current experiments. However, its performance under non-quadratic responses has

not been validated.

Scope of Current Research

The scope of this research is to propose an extended RLS stopping rule by making the following

modifications to the recursive parabolic rule:

1 Recursively fit the intercept and the first order terms in addition to the second order terms

in equation (2), to increase the robustness against non-quadratic behavior;

2 Use a coding scheme in order to obtain a near orthogonal design, thus reducing the bias and

variance of the parameter estimates;

3 Allow the specification of a maximum number of experiments to be input in the RLS algo-

rithm, from now on called a “rectangular window”, in order to fit only a local model, less

sensitive to large scale deviations from quadratic behavior.

3. AN ENHANCED RECURSIVE PARABOLIC RULE.

In this section we propose some modifications to the Recursive Parabolic Rule. However, we do

not do this by enumerating them, but by presenting significant aspects of them. From these, the

proposed modifications follow naturally.

Bias in the RLS parameter estimates

Let the parameter estimates for the ith term in the model be denoted as θ̂
(t)
i where θ̂0 represents

the intercept. In addition, let t denote the current step in the steepest ascent search.

If we use the recursive parabolic given in equations (3-5) scheme and the true function is:

Y (t) = θ0 + θ1t + θ2t
2 + θ3t

3 + θ4t
4 + εt (7)

then it can be shown that E(θ̂2) is given by:

E(θ̂(t)
2 ) = θ2 +

5
2

t(t + 1)(2t2 + 2t− 1)θ3

(2t + 1)(3t2 + 3t− 1)
+

5
7

(3t4 + 2t3 − 3t + 1)θ4

(3t2 + 3t− 1)
(8)
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As it can be seen from equation (8) the bias due to third and fourth order terms increases

with t, the number of experiments performed. A better fit of the true function can be obtained

by increasing the number of parameters estimated in the model and the bias of the estimates can

be reduced by using coded regressors centered at zero. In the first case, we are giving the model

an increased ability to model changes in curvature. Clearly, when the true function is no longer

quadratic the parameter estimates loss practical meaning, however fitting more than one parameter

will surely yield a better local approximation of the true function whatever the type of relationship.

Regarding the coding of regressors, classical references in RSM explain how the bias in the

parameter estimates is reduced by using a coding scheme. See for example (Box Draper 1987 and

Myers Montgomery 1995). The single regressor used in the recursive parabolic rule can be coded

using the sequence:

{− t− 1
2

,− t− 3
2

,− t− 5
2

, · · · , t− 5
2

,
t− 3

2
,
t− 1

2
} (9)

This is a sequence of t numbers centered at zero that provides a new scale . However, if this coding is

used and only a second order coefficient is fitted recursively, then an estimate of the response at the

midpoint in the original scale is needed to be used as intercept. This will be available when t is odd

but will have to be interpolated when t is even. Furthermore, in most cases the intercept without

coding comes from repeated “center points” performed in the previous factorial, and therefore it is

a better estimate than a single observation. In addition, an estimate of the derivative at t−1
2 would

also be needed as an estimate of the first order coefficient.

Instead of estimating recursively only the quadratic coefficient, we propose to fit recursively

all three parameter estimates and to use the coding convention described by (9). This rule will

be denoted by R3N . Notice that the estimates from the factorial conducted prior to starting the

search can still be used as initial values for the RLS algorithm. The one-parameter-estimate model

considered by Del Castillo will be denoted by R1.

The expected value of the vector of parameter estimates for the R3N rule is presented in

equation (10) where we assume again a fourth order polynomial (equation 7) represents the true

function:
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E(θ̂R3N ) =




θ0 − 3
560

(t4 − 10 t2 + 9) θ4

θ1 +
1
20

(3 t2 − 7) θ3

θ2 +
1
14

(3 t2 − 13) θ4




(10)

For the purpose of the stopping rule what is relevant is the bias in the estimate of the first

derivative at the location of the last experiment. For the un-coded model this derivative is given

by:

∂Ŷ

∂t
= θ̂1 + 2tθ̂2 (11)

and for the coded model this is given by:

∂Ŷ

∂t
= θ̂1 + (t− 1)θ̂2 (12)

since t−1
2 is the position of the last run in coded units. Taking expectation in each case we get from

(8) and (10):

E

(
∂ŶR1

∂t

)
= θ1 + 2tθ2 +

5t2(t + 1)(2t2 + 2t− 1)θ3

(2t + 1)(3t2 + 3t− 1)︸ ︷︷ ︸
bR1,3

+
10
7

t(3t4 + 2t3 − 3t + 1)θ4

(3t2 + 3t− 1)︸ ︷︷ ︸
bR1,4

(13)

E

(
∂ŶR3N

∂t

)
= θ1 + (t− 1)θ2 +

1
20

(3t2 − 7)θ3

︸ ︷︷ ︸
bR3N,3

+
1
14

(t− 1)(3t2 − 13)θ4

︸ ︷︷ ︸
bR3N,4

(14)

Clearly, for large values of t the bias in the estimates of the derivative obtained from using R1

are much higher than those obtained from R3N . Figures 1 and 2 compare the bias between the

estimates of the first derivative obtained from using R1 and R3N .

Variance of Parameter Estimates in RLS

An advantage of the R1 rule is that the variance of the first derivative comes only from one

estimate. Therefore, a trade-off between bias and variance is made when more than one parameter is

estimated, and this trade-off will have an impact on the performance of the stopping rule. Equations

(15) and (16) give the variance of the first derivatives for the R1 and R3N rules, respectively.

Figure 3 presents a graphical comparison of these two variances.
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Figure 1: Bias due to third order terms in the first derivative of the quadratic model, lighter line

is from R1 and darker line is from R3N (bR1,3 and bR3N,3 in equations 13 and 14)
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Figure 2: Bias due to fourth order terms in the first derivative of the quadratic model, lighter line

is from R1 and darker line is from R3N (bR1,4 and bR3N,4 in equations 13 and 14)
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Figure 3: Comparison of the variance of the first derivative

V ar

(
∂ŶR1

∂t

)
=

120tσ2
ε

(2t + 1)(t + 1)(3t2 + 3t− 1)
(15)

V ar

(
∂ŶR3N

∂t

)
=

12(2t− 1)(8t− 11)σ2
ε

(t− 1)(t− 2)(t + 2)(t + 1)t
(16)

As it can be seen, the variance is higher for the R3N rule, specially for small t, thus reducing

the sensitivity of the test when the maximum is located close to the starting point.

In both of the proposed rules, the estimate of the intercept for the recursive model can be carried

over without any mathematical manipulation. This intercept can be estimated from averaging

center points or from the average of factorial points. In either case, the variance of the average

utilized should be used in the initial P matrix of the RLS algorithm.

If the steepest ascent direction is chosen for the linear search, the initial estimate for the first

order coefficient is given by the directional derivative in the gradient direction, i.e. the norm of the

vector of parameter estimates ‖θ̂‖ or
√

θ̂
′
θ̂. Because the operation of taking norm is non-linear the

distribution of this statistic is rather complex.

Now, if an orthogonal first order design with n experiments was used to estimate a first order

model in p parameters, then all the parameter estimates have the same variance, σ2
ε/n. Therefore,

if the errors are normally distributed we have that:
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n
θ̂
′
θ̂

σ2
ε

∼ χ2
p(δ) (17)

a non-central chi-square distribution with non-centrality parameter δ given by:

δ =
n∑

i=1

θ2
i = θ′θ . (18)

The variance and mean of nθ̂
′
θ̂/σ2

ε are:

V ar

(
nθ̂

′
θ̂

σ2
ε

)
= 4δ + 2p (19)

and

E

(
nθ̂

′
θ̂

σ2
ε

)
= δ + p . (20)

It can be observed that the variance and the expectation increase with the non-centrality pa-

rameter and the number of parameters fitted. However, if the rule for transformation of density

functions is used (see, for example, Arnold 1990), it can be shown that the mean of
√

nθ̂
′
θ̂/σε is:

E




√
θ̂
′
θ̂

σε


 =

√
2 e(−1/2 δ)

∞∑

k=0

2(−k) δk Γ
(

1
2

p + k +
1
2

)

Γ(k + 1) Γ
(

1
2

p + k

) (21)

Now, given that:

V ar


n

√
θ̂
′
θ̂

σε


 = E

(
n

θ̂
′
θ̂

σ2
ε

)
−


E


n

√
θ̂
′
θ̂

σε







2

(22)

we have, substituting (20) and (21) into (22)

V ar


n

√
θ̂
′
θ̂

σε


 = δ + p− 2 e(−δ)


KummerM

(
1
2

p +
1
2
,

1
2

p,
1
2

δ

) Γ
(

1
2
p +

1
2

)

Γ
(

1
2
p

)




2

(23)

where the summation of equation (21) has been substituted by the KummerM function (Abramowitz

and Stegun, 1972) a function readily available in computer algebra systems.

Despite the complexity of equation (23) Figure 4 indicates that it is less than one for finite values

of δ and p . Therefore, regardless of the number of controllable factors and the size of their main

effects, we can use the scaled variance (i.e. the variance divided by σ̂2
ε) of the parameter estimates
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Figure 4: Variance of
√

θ̂
′
θ̂/σε as a function of the number of controllable factors and the non-

centrality parameter

as starting values for the RLS algorithm without any risk of stopping before the maximum for this

cause, since the probability of a Type I error (false rejections) will not be inflated by underestimating

the variance. Another way of viewing this is that an initial low scaled variance will induce the RLS

algorithm to give low weight to new observations. However, caution should be exercised in not

specifying a too small variance because in such a case the initial estimate will vary little during

the RLS updates rendering an inflexible model unable to locally approximate a non-quadratic

response. Therefore, unless there is evidence that the true function resembles a quadratic function,

we recommend to use a scaled variance of 1 as the starting value for the intercept and first order

coefficient. Notice that this implies that the initial variance will be the estimate of σ2
ε . We retain

Del Castillo’s suggestion of using 10 for the initial scaled variance of the second degree coefficient.

We point out that under the assumption of a true quadratic response, this result strengthens

the approach of using the directional derivative as an estimate of the first order parameter in the

R1 rule. The results imply that, whatever the variance of the parameter estimates, we can assure

that the variance of the directional derivative will be smaller.

4. RECURSIVE LEAST SQUARES WITH A RECTANGULAR WINDOW.

It was mentioned in the introduction that classical RSM assumes the validity of second order
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approximations only in a local region of the space of regressors. In addition, it was seen in equations

( 8) and (10) that the bias of the parameter estimates increases with t. Therefore, reducing the

number of observations used to fit the second order model should increase the accuracy of the

estimates, making the procedure less sensitive to non-constant curvature. In case the curvature is

non-constant, a further modification to the recursive parabolic rule can be implemented as explained

in what follows.

Goodwin and Payne (1977) suggested to use a “Rectangular Window” Recursive Least Square

Algorithm (RWRLS) in order to track time-changing parameters in adaptive control applications.

The algorithm consists of discarding the last observation once a new observation has been made

in order to maintain their number constant. The same kind of algorithm can be used to fit a local

model during a steepest ascent search. In such a case, the change in the parameters allows to model

possible changes in curvature due to non-quadratic behavior.

Notice that if the RWRLS algorithm is used in conjunction with the coding convention of

equation (9), i.e. the proposed R3N rule, the matrix of regressors remains fixed at:

XR3N =




1 − (N−1)
2

(N−1)2

4

1 − (N−3)
2

(N−3)2

4
...

...
...

1 (N−3)
2

(N−3)2

4

1 (N−1)
2

(N−1)2

4




(24)

where N is the number of observations used to fit the model and XR3N denotes the design matrix

for the R3N rule. Therefore, it is not necessary to use the rank 1 update of the covariance matrix

typical of RLS algorithms. The expressions given in equations (16) and (10) for the variance and

bias of the first derivative apply to this scheme just by changing the step counter t for the window

size N .

The size of the window must be selected in order to make a compromise between bias and

variance. A large window will use much of the information available giving a very powerful test for

negativeness of the derivative, although the estimates used will be highly biased due to the wide

range over which the function is being fitted. In the presence of negative third and fourth order

terms this will lead to stopping before the optimum is reached.

The size of the window can be selected by indicating a desired power for the test. The power

function for an α = 0.05 test of the null hypothesis Ho : ∂Y
∂t > 0 versus an alternative Ha : ∂Y

∂t ≤ 0
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is given by:

KR3c(∆) = P∆

(
∂Ŷ

∂t
< −1.645Stdev

(
∂Ŷ

∂t

))
(25)

where ∆ is the true mean of ∂Ŷ
∂t under the assumption of a quadratic response. Now, under

Ha : ∆ ≤ 0 we have that:

KR3c(∆) = P∆




∂Ŷ
∂t −∆

Stdev
(

∂Ŷ
∂t

) < −1.645− ∆

Stdev
(

∂Ŷ
∂t

)

 (26)

Assuming again a quadratic response we have that:

E

(
∂Ŷ

∂t

)
= ∆ ⇒

∂Ŷ
∂t −∆

Stdev
(

∂Ŷ
∂t

) = Z ∼ N(0, 1) (27)

If in equation (26) we substitute Stdev
(

∂Ŷ
∂t

)
for the squared root of equation (16) and change

the t’s for N ’s (i.e. the window size), we get:

1− β = Φ

(
−1.645− ∆

σε

√
(N − 1)(N − 2)(N + 2)(N + 1)N

12(2N − 1)(8N − 11)

)
(28)

where β is the probability of a Type II error and 1 − β is the power of the test. Given values of

1− β and ∆, equation 28 may be solved to obtain a window size. By doing this we guarantee the

minimal window size for a given power and, therefore, the bias due to higher order effects will be

reduced (see equation 14).

For example, suppose we want to have a 90% probability of rejecting when the true derivative

(∆) is -4 with an estimate of the white noise standard deviation of 2. Then we will have to solve:

0.1 = Φ

(
−1.645− −4

2

√
(N − 1)(N − 2)(N + 2)(N + 1)N

12(2N − 1)(8N − 11)

)
(29)

which implies that:

−1.645 + 2

√
(N − 1)(N − 2)(N + 2)(N + 1)N

12(2N − 1)(8N − 11)
= −1.282 . (30)

This can be solved numerically to give, after rounding off, N ≈ 7. However, notice that in

practice it could be difficult to come up with suitable values of ∆. Therefore, assuming that the

true function has at least some symmetry in the search direction, we recommend that the value of
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∆ be determined as a percentage of the norm of the gradient at the beginning of the search. That

is:

∆ = α ‖ θ̂ ‖ (31)

where α is a number between 0 and 1 decided by the practitioner. Therefore we are guaranteeing

with some probability the rejection of the null hypothesis when the response is dropping at a

percentage of the rate at which it was increasing at the beginning of the search.

The RWRLS can only be started once N observations have been collected. Before this, a regular

RLS scheme can be used. The initial estimates for the intercept and first order coefficient will be

computed as in the R1 rule. However they will all be updated at each iteration. Once N steps have

been performed the procedure will switch to the RWRLS. Notice that by the coding convention, the

amount of computations required actually reduces after switching, since the matrix of regressors

becomes fixed.

5. SIMULATION EXPERIMENTS.

This section presents the results obtained from two types of simulated RSM experiments using

the different stopping rules mentioned in section 2. In the first experiment, a normally distributed

white noise sequence is used to simulate the observations. In the second experiment, a leptokurtic

distribution (thick tails) is used to increase the probability of outliers.

Three different polynomial test functions in five controllable factors were used. Of these, two

were generated using a recently developed RSM testbed (McDaniel and Ankeman 2000). They

were called HH21 and LL21 and differed in the level of curvature introduced in their generation,

with the HH21 function being the most curved one. The appendix contains a brief explanation

of the procedure used to generate the functions from the testbed. For further details the reader

is referred to McDaniel and Ankeman (2000). The third test response was a quartic polynomial

model. All the simulations were conducted in MATLAB version 5.3.1.

Normal Noise Simulations

Simulations were conducted according to the following general steps:

1. The global maximum of each surface was computed using MATLAB’s ”fmincon” command;
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2. A starting point was randomly selected from a hyper-sphere of specified radius centered

around the global maximum of the surface under consideration;

3. A 25−1
IV factorial design with four center points was run centered at the starting point obtained

in step 2, and a main-effects-only model was fitted;

4. The true maximum in the direction of the gradient of the first order model (called tmax) was

computed using a uniform search and the true value of the polynomial at this point (called

Ymax) was evaluated;

5. A steepest ascent search was conducted in the same direction as step 4 and a given stopping

rule was used to determine when to stop, this point was called tstop and the true response at

it Ystop;

In addition to the Myers-Khuri (MK) and the parabolic rules (R1 and R3N), the classical

FirstDrop, the 2− in− a− row and the 3− in− a− row stopping rules were tested as well. The

other parameters of the simulations were:

1. The distance from the starting point to the global maximum, or radius. Three levels were

used: 10, 20 and 30 units were tested;

2. The standard deviation of the white noise, σε. Four levels were used: 1%, 5%, 10% and 20%

of the potential improvement in the search direction. Hence, this differs for each simulated

search. The percentages will be called “noise levels” for the remaining of the paper.

3. An a priori guess on the number of steps to the maximum, called κ. As mentioned before

this is required by the Myers and Khuri rule and by Del Castillo’s recursive rule. Ten levels

were used: The correct value without any error and with bias between −80% and 100%.

One thousand replications were performed for each set of conditions. Within each replication,

the seed of the random number generator was reset to the same value after applying each stopping

rule.

Two performance measures were used to evaluate the stopping rules. The first one was the

mean squared difference (MSD) around the true maximum in the search direction:

MSD =
1000∑

Replicate=1

(tmax − tstop)2

1000
(32)
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This performance measure penalizes if the rule used has a very high variability in its stopping

point or if it systematically stops after or before the true maximum. Unless experiments are

extremely expensive, in most cases a rule that stops after the maximum will be considered better

than a rule that stops before, because a better estimate of the true maximum will be obtained. To

evaluate this from a practical point of view, the following percentage of improvement will be used.

%Improv =
Ystart − Ystop

Ystart − Ymax
(33)

where %Improv is the percentage improvement and Ystart is the true value of the response at the

starting point.

The other parameters of the R3N rule are α and the power 1 − β. Unfortunately, there is

no theoretical foundation to specify the power of the test for any given drop in response. Notice

that this is the same kind of problem typically encountered in designing quality control charts. To

provide some justification of the values chosen, an investigation was done to determine the effect

of changing these parameters in the R3N stopping rule. A distance from the maximum of 10 units

(radius=10) and the quartic polynomial response were chosen for this experiment. These results

are shown via box & whiskers plots of the differences tmax − tstop in Figure 5. The box represents

75% quartiles, the whiskers 95% and the cross represents the median of the differences obtained

from 1000 replications.

It can be seen from Figure 5 that for very small levels of noise the power and the parameter α

have no effect in the stopping point, since the procedure always picks the minimum window size

of 3 experiments. For high levels of noise the results are again very similar since the windows are

so large than in most of the situations the algorithm never reaches the window size, and therefore

never switches from a standard RLS to the RWRLS.

For the two intermediate levels of noise it is noticed that the algorithm presents a tendency to

short-stop only when α is small and the power is high, these are the cases where the window size

is the biggest.

Therefore it is seen that there is plenty of flexibility in the selection of α and power as long as α

is not too small and the power is not too high. Notice that in no case the median of the differences

was never negative. A power of 0.8 and a value of α of 0.4 were selected for the remainder of the

comparison experiments.

The results of %Improv for the quartic polynomial are presented in Figure 6. It can be seen

that the R1 and FirstDrop rules yield the lowest improvement in the mean response. Notice
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Figure 5: Box & Whiskers plot of differences using the R3N rule for various combinations of noise

level, power and α (a is α and p is the power)

how almost every rule gives perfect results for the lowest noise level except the R1 rule. However,

the performance of this rule improves with increasing noise level while the performance of the

FirstDrop rule worsens. It is also seen that the R3N rule performs as good or better than the R1

rule in every case. Comparing the MK and the R3N rules we observe that MK slightly outperforms

R3N . However, this difference is small in most of the cases.

For the differences tmax− tstop we have included Tables with the numerical values of their MSD

as well as box & whisker plots. As we can see in Table 1, the R3N and the MK rule have similar

MSD’s. However, it appears that the MK rule slightly outperforms the R3N rule for low levels of

noise, while the R3N rule slightly outperforms the MK rule for noise levels greater than 1%. This

pattern repeats for all the radii. The 2−in−a−row rule behaves very well stopping close and after

the maximum except for the cases the search starts far from the optimum (large radius) and the

noise level is 20%. The 3− in− a− row rule has a clear tendency of stopping after the maximum.

Finally, it is seen in Figure 7 that the MK rule has more variability in the differences tmax−tstop

than the R3N rule for high levels of noise, while the R3N rule has a slight tendency to short-stop

more often than the MK rule. Hence the slightly lower %Improv.
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Figure 6: %Improv computed from 1000 simulations using the quartic polynomial
18



Table 1: Mean Squared Differences for the Quartic Polynomial

radius = 10

Noise Level R1 R3N MK 1st 2nd 3rd

1% 12.89 8.84 7.19 1.33 8.23 19.55

5% 9.82 22.16 16.96 7.15 13.31 41.14

10% 7.92 21.32 24.57 15.21 15.21 55.94

20% 7.39 20.20 36.02 25.65 19.52 79.51

radius = 20

1% 79.2 35.83 30.62 23.87 14.61 46.55

5% 67.71 63.78 71.15 98.96 26.75 88.21

10% 58.2 71.56 102.27 146.09 41.28 129.07

20% 54.24 92.58 153.22 164.96 61.07 200.53

radius = 30

1% 194.79 77.51 64.12 103.16 26.81 72.49

5% 170.13 136.17 169.68 331.99 87.23 157.29

10% 152.3 177.4 263.68 406.42 142.75 221.93

20% 172.48 207.2 324.64 406.06 192.04 301.76
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Figure 7: Differences computed from 1000 simulations using the quartic polynomial
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Table 2: Mean Squared Differences for the HL21 response

radius = 10

Noise Level R1 R3N MK 1st 2nd 3rd

1% 1.12 2.40 3.21 1.31 4.90 10.30

5% 2.36 7.03 8.92 4.55 9.21 22.87

10% 4.76 9.82 16.71 16.72 11.99 38.39

20% 8.17 17.56 28.43 30.64 15.85 73.26

radius = 20

1% 6.79 10.99 9.39 2.56 8.51 20.07

5% 13.00 26.34 42.42 117.19 19.89 77.02

10% 32.66 43.94 87.46 176.60 48.46 136.72

20% 52.39 84.15 134.47 164.70 71.27 256.50

radius = 30

1% 27.09 28.83 22.46 25.23 12.82 40.09

5% 54.95 74.35 136.10 416.20 85.90 157.35

10% 132.31 140.24 240.93 431.86 179.87 266.59

20% 175.27 235.55 333.85 347.36 197.81 364.03
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Figure 8: Differences computed from 1000 simulations using the function HL21
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Figure 9: %Improv computed from 1000 simulations using the function HL21
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The results of %Improv for the HL21 function are showed in Figure 9. Notice how the R1

rule behaves better in this case, particularly when the noise level is low, since the surface resembles

more a quadratic polynomial. Nonetheless, for long searches it still suffers from short-stopping. For

this function the R3N rule outperforms the MK rule in almost every case, except the ones with

the highest noise level and radius 20 and 30.

The MSD’s for the HL21 function are presented in Table 2 and in Figure 8. In the plots it can

be observed that the R3N rule showed a consistent desirable behavior, having a great proportion

of stops just after the maximum and low variance. Again it is seen that the R1 rule performs well

for the short searches (small radius). Notice how when it stops in the right place it is typically the

one with the minimum variance. Again, the MK rule gave best results for the cases with low level

of noise and short searches.

The results for the LL21 function are showed in Table 3 and in Figures 10 and 11. For this

function the R3N rule gave better or similar %Improv values than the MK rule. However, in

some situations it was outperformed by the R1 rule. Notice that the R3N rule was not the worst

in any case. As in previous cases the 3 − in − a − row rule gave the highest %Improv, since it

systematically stops after the maximum.

In Table 3 it is seen that again the MK rule has lower MSD value than the R3N rule only for

some of the cases where the noise level is low. In addition, the tendency to short-stopping is less

pronounced in the R3N rule for all the cases except for the sigma=0.01, radius=30 case.

Simulations Under Non-Normal Noise

Additional simulations were carried over in the same way as those in the previous section with the

exception that the noise in the observations was sampled instead from the following distribution:

ε ∼





U(−6,−3) if r < 0.1

N(0, 1) if 0.1 ≤ r ≤ 0.9

U(3, 6) if r > 0.9

(34)

where r ∼ Unif(0, 1) and ε is the noise added to the respective polynomial to obtain the obser-

vations. The ε′s were multiplied by the same values as in the normal case. Notice that because ε

does not have variance one, the variance in this case is inflated with respect to the normal case.

Now, equation (34) gives a symmetric, leptokurtic distribution. To create negative and positive

skewed distributions the following was used:
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Table 3: Mean Squared Differences for the LL21 response

radius = 10

Noise Level R1 R3N MK 1st 2nd 3rd

1% 0.69 1.75 2.58 1.37 4.84 10.13

5% 1.88 5.17 6.36 2.45 7.86 17.57

10% 3.46 6.63 10.36 7.36 9.46 27.34

20% 7.01 12.53 15.75 15.53 14.16 52.21

radius = 20

1% 2.54 7.12 6.50 1.70 6.87 15.32

5% 6.65 17.56 28.78 54.70 15.45 51.28

10% 17.70 28.86 56.75 94.55 27.96 107.23

20% 33.63 56.80 91.44 103.09 43.99 175.98

radius = 30

1% 9.73 24.02 16.23 12.98 10.51 30.33

5% 28.07 46.10 76.77 200.90 39.86 102.60

10% 64.23 80.45 149.11 255.40 95.17 196.59

20% 116.34 181.29 242.39 248.91 132.92 317.43
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Figure 10: Differences computed from 1000 simulations using the LL21 polynomial
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Figure 11: %Improv computed from 1000 simulations using the LL21 polynomial
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Table 4: Mean Squared Differences for Quartic Polynomial (Non-Normal Noise)

Symmetric

Noise Level R1 R3N MK 1st 2nd 3rd

1% 11.70 16.30 13.80 2.55 10.06 28.13

5% 8.56 25.21 34.19 16.99 14.98 59.35

10% 8.36 25.95 49.15 22.96 18.71 75.19

20% 11.22 42.28 71.02 26.44 20.24 108.67

Positive Skewness

1% 11.74 18.14 14.58 2.42 10.43 27.53

5% 7.75 26.73 33.12 16.03 14.81 51.67

10% 5.96 29.93 52.27 22.62 17.76 69.77

20% 7.27 48.96 70.05 27.49 20.15 104.27

Negative Skewness

1% 12.80 15.94 14.56 2.47 10.59 27.52

5% 9.99 20.93 36.32 16.33 14.92 54.43

10% 9.48 23.19 56.73 24.40 19.72 73.62

20% 12.37 35.47 84.06 25.75 20.40 103.62

ε ∼





N(0, 1) if r < 0.8

U(3, 6) if r > 0.8
(35)

ε ∼





U(−6,−3) if r < 0.2

N(0, 1) if r > 0.2
(36)

where (35) gives a positively skewed distribution while (36) gives a negatively skewed distribution.

The results for these three distributions using the quartic polynomial and a radius of 10 units are

presented in Table 4.

The R1 rule appears to be the more robust rule against deviations from the normal assumption,

it even outperforms the R3N and MK rules for some cases. However, this rule still presents some

problems of short-stopping.

As expected, the performance of the MK rule deteriorates more by the relaxation of the normal
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Figure 12: Differences computed from 1000 Non-normal noise simulations using the quartic poly-

nomial and radius=10.
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Figure 13: %Improv computed from 1000 Non-normal noise simulations using the quartic polyno-

mial and radius=10.
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noise than for the R3N rule. A possible explanation for this behavior relies in the fact that OLS

estimates are still BLUE under non-normal distributions while as it can be seen in the derivation

of the MK rule, it seriously relies on the normality assumption. The impact on the R3N rule

probably comes from the test of negativeness of the derivative, which is a function of the no longer

normally distributed parameters. However, notice that the distribution of the parameters converges

to normal as the number of experiments increases. Because the R1 rule uses more runs it is more

robust to departures from the normal assumption.

Effect of Uncertainty in MK’s rule κ parameter

As it was mentioned before, the MK stopping rule requires that the user specifies a parameter called

κ which represents an initial guess on how many steps away is the optimum in the steepest ascent

search. Clearly this information will not be available in most of the cases, since it is precisely the

reason why the search is being performed.

In the previous simulation experiments the true value of κ was used in the searches, which rep-

resented an advantage for the MK rule in the comparisons. To asses the impact that uncertainty in

this parameter has on the performance of the rule, simulations were conducted introducing a sys-

tematic error. The plots in Figure 14 contain the results obtained when the value of κ used differed

from -80% to 100% from the true value. It is seen that sub-estimating κ incurs in short-stopping,

while overestimating κ slightly increases the variance. However, only when the sub-estimation is

greater than 40% this has a significant effect on the improvement. Notice also that for the case of

smallest noise level all the stops where done after the maximum, regardless of the amount of bias in

the estimate of κ. In general it is seen that overestimating κ reduces the performance slightly and

therefore a user should not be too cautious when specifying this parameter in actual applications.

This agrees with the recommendations in Del Castillo (1997) who studied the performance of this

rule under a quadratic function.

6. CONCLUSIONS.

1. The recursive parabolic rule may stop short of the optimum under non-quadratic responses.

2. By recursively estimating all the quadratic model and implementing a ”Rectangular Window”,

the sensitivity of the recursive rule to non-quadratic responses may be considerably reduced.

3. The performance of the proposed rule and the MK rule was not considerably different under
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Figure 14: Effect of Bias in κ on the Performance of the MK rule. Top: Differences; Bottom:

%Improv
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most of the conditions studied. However, the proposed rule is more robust to departures from

the normality assumption and does not require an initial estimate of the number of steps to

reach the optimum.

4. The performance of the FirstDrop rule was poor in almost all the conditions studies and its

use is strongly discouraged. The performance of the 3− in− a− row rule demands too many

experiments and it is only recommended if the experiments are not expensive to perform.

The performance of the 2− in− a− row rule was surprisingly good, although not as good as

the MK and the enhanced recursive rule.

APPENDIX: TEST FUNCTIONS FROM RSM TEST BED.

Here we present a brief explanation of the procedure used to obtain the HL21 and LL21 poly-

nomials. For a more complete description of the procedure the reader is referred to (McDaniel and

Ankeman 2000).

The RSM testbed requires the specification of a “S” and “T” matrices and a “flatness” index.

The S matrix controls the presence of main effects and their powers, that is the presence of the

xli
i terms, where i represents the ith controllable factor and li is the order (power at which xi

is raised) of the term in the polynomial. The T matrix controls the presence of two and three

order interactions, xli
i x

lj
j xlk

k ∀i 6= j 6= k. Currently the testbed only allows interactions such that
∑n

r=1 lr ≤ 3, where n is the total number of controllable factors in the polynomial. These matrices

control the “form” of the final polynomial by specifying the probabilities of appearance of a given

term.

The flatness index controls the values given to the coefficients once the form has been established

by the T and S matrices. It should be at least equal to the inverse of the number of variables, i.e.

f ≥ 1/n. Larger values of f produce flatter surfaces.

Two different S matrices were used, one to produce a highly “bumpy” surface and the other

one to produce a surface less bumpy. Only one T matrix were used two produce slightly “twisted”

surfaces. The test bed was unable to to produce highly twisted convex surfaces.

The aforementioned three matrices were combined to produce two different function forms. The

flatness was set to the lowest possible value of 0.21. The surface obtained with the low T and low

S matrices was named LL21 and with the high S and low T was named HL21.

In every case a large number of functions were obtained and only the ones that had a finite

maximum for an unbounded experimental region were selected. This was done to assure convergence
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of the steepest ascent searches. Unfortunately, the test bed does not give any means for controlling

the convexity of the generated functions. Although the functions used are not convex their Hessians

are negative definite for points located sufficiently far away from the center and, therefore, they

have a maximum in an unbounded region.

References

Abramowitz, M. Stegun I.A. (eds.) (1972). Handbook of Mathematical Functions. NY: Dover.

Arnold, S.F. (1990). Mathematical Statistics. Englewood Cliffs, NJ: Prentice Hall.

Box, G.E.P. and Draper, N.R. (1987). Empirical Model-Building and Response Surfaces. NY: Jon

Wiley & Sons.

Box, G.E.P. and Wilson, K.B. (1951). “On the Experimental Attainment of Optimum Conditions,”

Journal of the Royal Statistical Society, B13, 1-38.

Del Castillo, E. (1997). “Stopping Rules for Steepest Ascent in Experimental Optimization,” Com-

munications in Statistics, Simulations, 26(4), 1599-1615.

Goodwin, G.C. and Payne, R.L. (1977). Dynamic System Identification: Experiment Design and

Data Analysis. NY: Academic Press.

McDaniel, W. R. and Ankenman, B.E. (2000). “A Response Surface Test Bed,” Quality and Reli-

ability Engineering International, 16, 363-372.

Myers, R.H. and Montgomery, D.C. (1995). Response Surface Methodology. NY: Wiley Series in

Probability and Mathematical Statistics.

Myers, R.H. and Khuri, A.I. (1979). “A New Procedure for Steepest Ascent,” Communications in

Statistics, Theory and Methods, A8(14), 1359-1376.

34



Wellstead, P.E. and Zarrop, M.B. (1991). Self-Tuning Systems: Control and Signal Processing.

NY: Wiley.

35


