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We review existing and develop new statistical techniques for the analysis of experiments where the re-
sponse is the geometric shape of a manufactured part. The analysis of variance for shapes is discussed.
An F test and a permutation test for detecting differences in shape are presented. It is shown how the
permutation test provides higher power for 2D circular profiles than the traditional methods used in man-
ufacturing practice, which are based on the circularity form error. The proposed permutation test does not
require the error assumptions needed in the F test, which may be restrictive in practice. New visualization
tools, including main effect and interaction plots for shapes and deviation from nominal plots are pre-
sented to aid in the interpretation of the experimental results. The proposed methods are illustrated with a
real manufacturing application in titanium lathe turning.
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1. INTRODUCTION

The statistical analysis of geometrical shapes is a relatively
new field within the history of statistics. Seminal work on
“shape theory” by Kendall (1984) and Bookstein (1986) only
appeared in the early 1980s. Shape theory brings statistical
analysis to geometry in the sense of Klein (1939) who by the
end of the 19th century defined the geometry of an object
as those properties which are invariant to certain transforma-
tions in a given space. Accordingly, in statistical shape analysis
(SSA) the shape of an object is defined as all the information of
the object that is invariant with respect to similarity transforma-
tions in Euclidean space (rotations, translations, and dilations—
changes of scale). The goal of SSA is to analyze the shapes of
objects in the presence of random error.

Analysis of shapes in manufacturing is critical because
geometrical tolerances (specifications) of roundness, flatness,
cylindricity, etc., need to be inspected, controlled, or optimized
based on a cloud of two-dimensional or three-dimensional mea-
surements taken on the machined surfaces of the part. These
tasks are even more complex if the part geometry has a “free
form,” that is, there is no standard geometrical construction that
can represent the shape, a situation common in advanced man-
ufacturing applications such as in the aerospace sector.

In this article, we review existing and develop new statistical
shape analysis techniques for experimental data collected when
the response of interest is the shape of a manufactured part.
We demonstrate the benefits and potential of statistical shape
analysis applied to parts manufactured in a production system.
It will be shown that one of the strengths of shape analysis in
manufacturing is the ability to work on the space where the
objects exist (i.e., we work with coordinate data that retains the
geometry of the objects), rather than working on some derived
space, for instance, when working with linear combinations of
ratios of lengths and angles. Alternatives like MANOVA cannot
be applied in general in manufacturing applications given the

typical dimensions of the problem (see Section 3.1). As will
be seen, retaining the geometry also has clear advantages with
respect to visualization of the results.

A Real Manufacturing Process Example

To illustrate the type of designed experiments we wish to an-
alyze in this article, consider the following machining exper-
iment. A set of 90 titanium alloy (Ti-6Al-4V) specimens was
machined by lathe-turning. Two cutting steps were performed
to reduce the initial diameter of 20 mm to the final diameter
of 16.8 mm (as shown in Figure 1). The original specimens
were obtained by vacuum arc remelting followed by forging,
rolling, hardening (1 hour at 780◦C and then air cooling), and
a last phase of centerless grinding. Lathe-turning of the exter-
nal surface was then performed considering a full factorial 32

design, where each of the 9 treatments was replicated 10 times.
The two factors under study were A = depth of cut [mm] and
B = cutting speed [mm/rev] of the final (finishing) machining
step. Values assumed for these two parameters in each of the
treatments are shown in Table 1. The machining feed [mm/rev]
was selected at specific levels depending on the cutting speed
(specifically a feed equal to 0.07, 0.11, and 0.14 mm/rev cor-
responded to a cutting speed of 80, 70, and 65 m/min, respec-
tively). This type of dependency between the feed and the speed
was suggested by the tool supplier in order to keep constant the
tool life. For each specimen, the roundness profile was obtained
at a fixed distance of 5 mm from the left-hand side of the spec-
imen (shown with a dotted line in Figure 1). The profile was
obtained using a coordinate measuring machine (CMM) that
measured a set of 64 equally spaced points on each profile. The
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Figure 1. The desired geometry of the final specimen obtained by
lathe-turning.

goal of the experiment is to determine the effect of depth and
cutting speed on the circularity of the parts and to determine the
best settings of these factors to achieve the most circular parts.
Given that circular shapes are very common in manufacturing,
a standard definition of the circularity form error exists in in-
dustrial practice (see, e.g., Krulikowsky 1996, who summarizes
the ASME standards; ASME 1994). In Section 6, the power to
detect differences in circularity for an ANOVA based on this
standard definition will be contrasted with the shape analysis
methods proposed here. We will return to the analysis of this
experiment in Section 5.

An early reference in the analysis of experiments where the
responses are shapes is the work by Snee and Andrews (1971).
Snee and Andrews’s work predated the modern developments
in the statistical analysis of shapes, but had the merit of pointing
out the importance of experiments where it is necessary to char-
acterize and even optimize the shape of an object. These authors
illustrated their ideas with application in agriculture [character-
ization of the shapes of sweet potatoes as a function of planting
date and variety; Snee (1972) studied also the shape of carrots].
These authors used the type of analysis of shape data existing
in the pre-SSA era: one analyzes ratios of distances between lo-
cations of interest in the object (what today are called the land-
marks).

Over the last 30 years, statistical shape analysis techniques
have been developed and applied in many areas of the nat-
ural sciences where interest is in characterizing differences in
shape, for example, biology, paleontology, and geology. A con-
siderable intersection of ideas exist also with image and pattern
analysis in computer science. In particular, SSA is known as
geometric morphometrics in biology, a field in which some au-
thors refer to a “morphometrics revolution” (Adams, Rohlf, and
Slice 2004) given the success SSA had over previous techniques
used to analyze shapes. For more on the history and foundations

Table 1. Factors and levels in the machining experiment

A: depth of cut B: cutting speed
Treatment [mm] [m/min]

1 0.4 80
2 0.4 70
3 0.4 65
4 0.8 80
5 0.8 70
6 0.8 65
7 1.2 80
8 1.2 70
9 1.2 65

of SSA we refer readers to the book by Dryden and Mardia
(1998).

Our interest in shape analysis stems in part from the recent
interest in “profile analysis” in the field of statistical process
control or SPC (Kang and Albin 2000; Colosimo, Pacella, and
Semeraro 2008) (although we do not discuss SPC based on
shape analysis in this article, this is certainly another potential
area of research where SSA ideas can be used). In profile-based
SPC, a parametric model is sought that describes the form that
the response follows with respect to some variable of interest
(in essence, one performs functional data analysis). The para-
meters of this model are fitted based on process data and then
multivariate SPC methods are applied to the estimated parame-
ters.

Another area that shows the relevance of shape analysis in
designed experiments in industry is the work on “signal re-
sponse systems” [see, e.g., the work by Nair, Taam, and Ye
(2002) and by Miller and Wu (1996)], where, similar to pro-
file analysis, a given parametric function describes the process
behavior. In a second stage, the changes in the fitted parameters
are analyzed with respect to the changes in the experimental
conditions. The goal is to maintain the process response close
to some desired signal (or profile). To date, despite the similar-
ity of this problem with that studied by Snee and Andrews four
decades ago, statistical shape analysis techniques have not been
used in the analysis of experimental data in industry.

One of the main difficulties when applying profile-based SPC
or analyzing signal response experimental data is that in many
experiments in industry, the response of interest has a compli-
cated shape (in manufacturing, the geometric shape of the part)
for which finding a parametric model is in itself a challenge.
By working with the shape directly, SSA techniques avoid the
parametric model definition step, allow complicated shapes to
be studied, and simplify the presentation of results. In SSA, one
works with the whole shape of the object, so the geometry is not
“thrown away” (Dryden and Mardia 1998).

The remainder of the article is organized as follows. In Sec-
tion 2, we review the main ideas of SSA (readers familiar with
shape analysis may wish to skip this section). In this section,
the notions of shape space, the generalized procrustes algo-
rithm, and tangent space coordinates are discussed. Section 3
presents the main results of this article. A two-way ANOVA
for shapes is described. New visualization tools, in particu-
lar, main effect shape plots and interaction effect shape plots,
are explained. A two-way permutation ANOVA test for shapes
useful under less restrictive error assumptions is given in Sec-
tion 4. The ANOVA tests for differences in shape are illustrated
with the titanium alloy lathe turning experiment in Section 5.
This includes a discussion of techniques for shape optimiza-
tion. Finally, Section 6 presents a brief comparative study of
the power of different ANOVA tests for detecting effects on cir-
cular shapes. The article concludes with a discussion of shape
analysis and alternative techniques, including areas of further
work.

2. A REVIEW OF SOME STATISTICAL SHAPE
ANALYSIS CONCEPTS AND TECHNIQUES

Given that there is a large body of literature on SSA, only
the main ideas used in later sections are presented here. For a
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more thorough presentation of SSA we refer readers to Dryden
and Mardia (1998), Goodall (1991), Adams, Rohlf, and Slice
(2004), Klingenberg and Monteiro (2005), Krim and Yezzi
(2006), Davies, Twining, and Taylor (2008) and the recent arti-
cles in Srivastava et al. (2010).

In most of SSA, the main goal is statistical inference with
shapes, in particularly, to test if two objects have equal shapes
or not and to analyze shape variability. Some other authors’
main interest (e.g., in biology) is to describe how shapes of ob-
jects (e.g., species of animals) change with time. In our case, the
main goal is to characterize how the shape of a manufactured
part is affected as one changes a set of controllable factors in an
experiment.

The techniques considered herein are based on shape data ob-
tained by measuring the parts at specific landmarks, points of
special interest or unique characteristics. Landmarks are points
of correspondence that match between objects. A landmark is
given by the two-dimensional or three-dimensional cartesian
coordinates of a point on the object surface and a given label
for the point, usually a sequential number 1,2, . . . , k which cor-
responds from object to object. Differences in shapes are mea-
sured by adding the squared Euclidean distances over all cor-
responding landmarks of different objects. For an instance in
text recognition, when writing the letter “V” three obvious land-
mark locations are the two end points and the point where the
line changes slope. Assignment of landmarks to objects is in it-
self an important problem; in some areas such as in archeology
or biology specific points of the objects are of interest and this
assignment is done manually. In manufacturing, considerable
amounts of data can be acquired with a coordinate measuring
machine (CMM) or through digital images of the objects. If the
surface of the part has edges, these could be used to place the
landmarks, which should correspond from part to part. If no
obvious landmarks exist, there are also automatic procedures
that can be used to determine landmarks, for example, based on
points of maximum curvature (Mardia 1989). There also exist
other SSA approaches not based on landmarks, to which we re-
fer briefly in Section 7. The SSA methods we consider in this
article require landmarks already assigned and corresponding
between objects in order to solve problems of statistical infer-
ence about the shapes of parts.

Landmark-based SSA techniques follow two main steps:
first, the objects under consideration are registered or superim-
posed with respect to each other in order to filter out rotation,
translation, and isometric scaling (dilation) effects. This is done
because the objects may have different orientations in Euclid-
ean space or have different locations or sizes, and therefore their
shapes cannot be initially compared. The main technique for
this task is the generalized procrustes algorithm (GPA). Once
objects are registered, multivariate statistical methods of infer-
ence can be performed on the projections of the shapes on the
space tangent to the mean shape, provided the differences be-
tween shapes are small. These two steps are explained below.
We first give some geometrical notions necessary to understand
the algorithms.

2.1 Preshape and Shape Space

Let X be a k × m matrix containing the k landmarks (coor-
dinate pairs or triples) of an object in m (two or three) dimen-
sions. X is sometimes called a configuration matrix (since it is

an element of the configuration space, the space of all possi-
ble arrangements of k landmarks in m dimensions), which we
could also refer to as a “profile matrix,” following manufactur-
ing practice for the case of 2D closed contours (ASME 1994).
With this notation, the shape of a configuration X is obtained,
first, by removing location and scale effects by computing the
so-called preshape Z:

Z = HX
‖HX‖ , (1)

where H is a (k−1)×k Helmert submatrix (Dryden and Mardia
1998) and ‖ · ‖ denotes the Frobenius norm of a matrix. If we
define hj = −[j(j + 1)]−1/2, then H is a matrix whose jth row is

(hj,hj, . . . ,hj︸ ︷︷ ︸
j times

,−jhj, 0, . . . ,0︸ ︷︷ ︸
k−j−1 times

) for j = 1, . . . , k − 1.

Note that HH′ = Ik−1 and that the rows of H are contrasts. Al-
ternatively, one could start with the centered preshapes, defined
by Zc = H′Z (these are k × m matrices).

Transformation (1) removes location effects via the numer-
ator, and rescales the configurations to unit length via the de-
nominator. Since we have not removed rotations from Z it is
not yet the shape of X, hence the name preshape. The centered
preshapes are equivalent to centering each coordinate of each
configuration by its centroid and dividing each by its norm.

The shape of configuration X, denoted [X], is defined as the
geometrical information that is invariant to similarity transfor-
mations. Once location and scale effects are filtered as above,
the shape is then defined as

[X] = {Z� :� ∈ SO(m)}, (2)

where Z is the preshape of X, � is a rotation matrix [i.e., a ma-
trix such that �′� = ��′ = Im with det(�) = +1] and SO(m) is
the space of all m×m rotation matrices that exclude reflections,
the special (or nonreflective) orthogonal group. Multiplication
by a suitable matrix � reorients (rotates) the object. Note that a
shape is therefore defined as a set.

The following geometrical interpretation of these transfor-
mations is due to Kendall (1984 and 1989). Given that pre-
shapes are scaled and centered objects, they can be represented
by vectors from the center to the surface of a unit sphere of
dimension (k − 1)m, because the numerator in (1) removes m
degrees of freedom for location parameters and the denomina-
tor removes one additional degree of freedom for the change of
scale. The preshapes, having unit length, form a space (denoted
Sk

m), which has (k − 1)m − 1 dimensions by virtue of being on
the surface. As one rotates a preshape Z via (2), the vectors Z�

describe an orbit on Sk
m. All the vectors on an orbit correspond

to the same shape, since by definition the shape of an object is
invariant to rotations. Thus, the orbits (also called fibers) of the
preshape space are mapped one to one into single points in the
shape space (denoted �k

m), the space of all possible shapes of
k landmarks in m dimensions. This space in general will be a
non-Euclidean M-dimensional manifold. Two objects have the
same shape if and only if their preshapes lie on the same fiber.
The shape space has dimension M = (k−1)m−1−m(m−1)/2
since in addition to losing location and dilation degrees of free-
dom we also lose m(m − 1)/2 degrees of freedom in the speci-
fication of the (symmetric) m × m rotation matrix �.
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Figure 2. One of the simplest illustrations of preshape and shape
space. (a) Two lines in the original two-dimensional space; (b) pre-
shapes on two-dimensional Euclidean space, after centering and scal-
ing; (c) the corresponding preshape space is the (one-dimensional) cir-
cumference of a unit circle. The two preshapes lie on the single fiber
or orbit generated as the preshapes are rotated, hence there is a single
shape; (d) the shape space for the two lines (�2

2 ) is zero dimensional
(a single point) and corresponds to the only shape that exists in this
example.

Example (Preshape space and shape space). In order to ex-
plain these ideas, consider one of the simplest possible cases,
where we have two lines in R

2 (see Figure 2). Thus, we have
that m = 2 and k = 2, where the obvious landmarks are the end-
points of the lines. After centering and scaling the two lines
using (1), one obtains the preshapes with matrices Z1 and Z2.
Since the original objects evidently have the same shape (that
of a line in Euclidean space) these two preshapes lie on the
same fiber or orbit, generated as the preshapes are rotated us-
ing (2). The preshape space S2

2 is of dimension (k−1)m−1 = 1,
namely, the circumference of a unit circle. As the preshapes ro-
tate (they can rotate clockwise or counterclockwise) they will
eventually coincide, which corresponds to the centered and
scaled lines coinciding. Finally, since there is a single shape,
the shape space �2

2 is the simplest possible, namely, a single
point [dimension is M = (k − 1)m − 1 − m(m − 1)/2 = 0, i.e.,
a 0-manifold].

In general, the shape space �k
m will be a nonlinear space, the

Riemannian M-manifold formed by the landmarks modulo sim-
ilarity transformations, of reduced dimension than the always
spherical preshape space. That is, the shape space is defined
as a quotient space, that is, �k

m = R
km/G = Sk

m/SO(m), where
G is the group of similarity transformations. While the step of
going from configuration space (the km-manifold of all possible

arrangements of the landmarks) to preshape space is easy to un-
derstand, going from preshape space to shape space is a nontriv-
ial step. For instance, for planar shapes Kendall (1984) showed
that �k

2 = CPk−2(4), the complex projective space of sectional
curvature 4 [thus in the previous example, �2

2 = CP0(4), a one-
point space]. See Kendall et al. (1999) for a detailed discussion
of the topology of shape spaces. Fortunately for applications in
manufacturing, the shapes will typically be very close in shape
space, and therefore the nonlinearity of the space can be ne-
glected.

2.2 Generalized Procrustes Algorithm

Two preshapes Z1 and Z2 lying on different fibers corre-
spond to two objects with different shapes. A measure of the
similarity between two shapes is the shortest distance between
the fibers, the procrustes distance ρ(X1,X2). This corresponds
to the shortest distance along the surface of the preshape space
and is therefore a distance along a geodesic. Alternatively, two
measures of distance over a linear space are the “partial pro-
crustes distance,” given by

dp(X1,X2) = min
�∈SO(m)

‖Z2 − Z1�‖ (3)

and the “full procrustes distance,” where the minimization is
also done over a scale parameter:

dF(X1,X2) = min
�∈SO(m),β∈R

‖Z2 − βZ1�‖. (4)

Geometrically, dp(X1,X2) is the secant between Z1 and Z2 in
preshape space, and dF(X1,X2) is the distance along the tan-
gent at either one of the preshapes (see Figure 3). As can be
seen, for objects with similar shapes, ρ ≈ dF ≈ dp. Note that all
these metrics are extrinsic to the shape space.

For a collection of n registered configurations or profiles, the
generalized procrustes algorithm registers or superimposes all

Figure 3. Distances between two shapes in preshape space. ρ is the
procrustes distance (along a geodesic), dF is the full procrustes dis-
tance (along a tangent), and dp is the partial procrustes distance (along
the secant). The preshapes have ‖Zi‖ = 1, and the preshape space will
be, in general, a unit hypersphere of (k − 1)m − 1 dimensions.
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the n objects by finding scaling factors βi ∈ R, rotation ma-
trices �i ∈ SO(m) and m dimensional translation vectors γi,
i = 1, . . . ,n, such that they minimize the sum of squared full
procrustes Distances between all objects:

G(X1,X2, . . . ,Xn) = min
βi,�i,γi

1

n

n∑
i=1

n∑
j=i+1

‖βiXi�i + 1kγ
′
i

− (βjXj�j + 1kγ
′
j )‖2, (5)

where 1k is a vector of k ones. Constraints must be added to
avoid the trivial solution where all parameters are zero (see be-
low). The resulting registered configurations are called the full
procrustes fits, defined as

Xp
i = β̂iXi�̂i + 1kγ̂

′
i , i = 1, . . . ,n. (6)

The mean shape of the n objects is simply the average of the n
registered configurations, namely, μ̂ = 1

n

∑n
i=1 Xp

i .

The minimization (5) needs to be subjected to a constraint
that limits the scaling done, otherwise the optimal value of G
will be zero. One such restriction is to use a constraint on the
size of the mean shape: S(μ̂) = 1 where the size of any con-

figuration X is defined as S(X) =
√∑k

i=1
∑m

j=1(Xij − Xj)2 =
‖CX‖, where C = Ik − k−11k1′

k, Xj = 1
n

∑k
i=1 Xij, and Xij is

the jth coordinate of the ith point in the configuration. Another
common constraint, used in what follows, is to make the av-
erage of the squared sizes of the registered configurations Xp

i
given by (6) equal to the average of the squared sizes of the
original objects:

1

n

n∑
i=1

S2(Xp
i ) = 1

n

n∑
i=1

S2(Xi). (7)

The generalized procrustes algorithm, as developed by Gower
(1975) and Ten Berge (1977) proceeds as follows to solve (5)
subject to (7):

1. Center (but do not scale) the configurations X1, . . . ,Xn by
initially defining

Xp
i = HXi, i = 1, . . . ,n

[alternatively, we can define H′HXi = CXi = Xp
i and the

resulting matrices will be k × m; note that Xp
i as defined

above is instead (k − 1) × m].
2. Let X(i) = 1

n−1

∑
j�=i Xp

j , i = 1, . . . ,n. These are the “jack-
nifed” average shapes excluding object i.

3. Do a procrustes fit (rotation only) of the current Xp
i ’s on

to X(i). This yields rotation matrices �̂i from which we let

Xp
i ← �̂iX

p
i , i = 1, . . . ,n.

We repeat steps 2 and 3 for all i.
4. Compute the n × n correlation matrix � = corr(Xv),

where

Xv = [vec(Xp
1)vec(Xp

2) · · ·vec(Xp
n)].

Note we stack all the m dimensions together.

5. Let φ = (φ1, . . . , φn)
′ be the eigenvector of � correspond-

ing to its largest eigenvalue. Then set

β̂i =
√√√√∑n

j=1 ‖Xp
j ‖2

‖Xp
i ‖2

φi, i = 1, . . . ,n,

and let Xp
i ← β̂iX

p
i . The algorithm repeats steps 2 to 5

until convergence.

The algorithm is guaranteed to converge, and converges usu-
ally in just a few iterations (Ten Berge 1977). The exact so-
lution to the procrustes registration problem between two ob-
jects X1 and X2 required in step 3, implies finding � ∈ SO(m)

that minimizes dp(X1,X2) [see Equation (3)] for X1 = Xp
i and

X2 = X(i), i = 1, . . . ,n. The exact solution to this problem is
well known in both statistics (Jackson 2003) and computer vi-
sion (Horn, Hilden, and Negahdaripour 1988) and is given by
�̂ = UV′ where U and V are obtained from the singular value
decomposition Z′

2Z1 = V�U. An important implementation
detail of singular value decomposition for shape analysis is that
to assure we have det(�̂) = +1 and hence a rotation matrix (as
opposed to −1 and a reflection matrix), we can make instead
�̂ = URV′ where R is the identity matrix except for its last di-
agonal which equals det(UV′).

The GPA algorithm as described assumes the statistical
model

Xi = βi(μ + Ei)�i + 1kγ
′
i , i = 1, . . . ,n, (8)

where μ is the mean configuration and the k × m matrix of er-
rors Ei is such that vec(Ei) ∼ (0, σ 2I), where 0 is a vector of km
zeroes and I is the km × km identity. The model then assumes
isotropic variance, that is, the variance is the same at each land-
mark and in each of the m coordinates. Modification of GPA for
the case of a general covariance matrix of the errors � requires
a straightforward modification of the definition of the dF dis-
tances minimized in (5) that accounts for �. However, given
that in general � is unknown and needs to be estimated there
is no known registration algorithm which guarantees conver-
gence in the nonisotropic case. Common practice is to initially
set � = I, run GPA, then estimate � with

�̂ = 1

n

n∑
i=1

vec(Xp
i − μ̂)vec(Xp

i − μ̂)′,

run again GPA with the squared full procrustes distances in (5)
replaced by the Mahalanobis squared distance vec(Xp

i )
′�̂−1 ×

vec(Xp
j ) and iterate this process (but convergence is not guar-

anteed).
Model (8) implies that each object results from the rotation,

scaling, and translation of the mean shape in the presence of
random noise, that is, similarity transformations of the mean
shape observed with noise generate the observed profiles of the
objects.

2.3 Tangent Space Coordinates

Once n configurations or profiles have been registered us-
ing GPA, the mainstream of the SSA literature (see, e.g., Dry-
den and Mardia 1998; Goodall 1991; Adams, Rohlf, and Slice
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2004) recommends that further statistical analysis of shape vari-
ability and any desired inferences be made based on the re-
sulting registered shapes Xp

i using the full procrustes distances
from the mean shape (or pole), called the tangent space co-
ordinates. This is appropriate if the shapes are close to each
other, and hence instead of considering distances in the non-
linear shape space we can approximate these with the linear
tangent space distances (if shapes vary considerably, see Huck-
emann, Hotz, and Munk 2010a, for a recent MANOVA on the
nonlinear shape space). A principal component analysis (PCA)
is also recommended on the tangent space coordinates to bet-
ter understand the directions in which the shapes are varying
the most [the corresponding PCA on the nonlinear shape space
has been studied by Huckemann, Hotz, and Munk (2010b), for
cases when between shape variability is large].

Performing a PCA on the tangent coordinates is of value
when one is interested in analyzing how the variability of the
shapes behaves around the mean shape. For analyzing the ef-
fect of factors (varied during an experiment) on the mean shape
(as we require in the present article) one needs to perform an
analysis of variance (ANOVA), which we now discuss.

3. ANALYSIS OF VARIANCE OF SHAPES

Goodall (1991) (see also Dryden and Mardia 1998) shows
that an approximate balanced one-way ANOVA can be per-
formed to test for the equality of mean shape among a groups of
n objects if the shapes are close to each other. The more general
unbalanced one-way ANOVA decomposition with a treatments
is given in terms of the full procrustes distances, that is,

SStotal =
a∑

i=1

ni∑
j=1

d2
F(Xp

ij,X··)

≈
a∑

i=1

nid
2
F(Xi·,X··) +

a∑
i=1

ni∑
j=1

d2
F(Xp

ij,Xi·)

= SStreatments + SSerror,

where as usual in the balanced case ni = n for all i and
SStreatments = n

∑
d2

F(Xi·,X··). These are only approximate ex-
pressions, becoming closer to an equality as the error variance
decreases and as the shapes get closer to the mean shape. A di-
agrammatic depiction of the terms in this expression is shown
(on preshape space) on Figure 4 for the case of two treatments
and two objects.

From Figure 4, and the relations sin2 ρ = d2
F(X1,X2) (note

that the procrustes distance ρ can be considered an angle, see
Figure 3) and ρ3 = 2ρ2 − ρ1, we have that

SStotal = 2(sin2(2ρ2 − ρ1) + sin2 ρ1) ≈ SStreatments + SSerror

= 4 sin2 ρ2 + 4 sin2(ρ2 − ρ1).

In general, we have that SStotal ≤ SStreatment + SSerror . This
gets closer to an equality the smaller ρ2 gets, which occurs
when the treatment mean shapes get closer to the overall mean
shape. In addition, the departure from equality tends to 0 as
ρ2 − ρ1 tends to 0, which indicates the case when the differ-
ences around the treatment mean (given by the error term vari-
ance, σ 2), reduce to zero.

Figure 4. One-way ANOVA illustration, a = 2,n1 = n2 = n = 2.
The sum of the squares of the depicted distances enters into the
ANOVA expression. Only when all shapes are close to the overall
mean (much closer than depicted) the curvature of the shape space
can be neglected and the ANOVA identity will be approximately true.
This is usually the case in the type of manufacturing applications that
concern us here.

Applying results from Langron and Collins (1985, theo-
rem 6.2) we have that for the isotropic, normal model (8), where
M = (k − 1)m − 1 − m(m − 1)/2 is the dimension of the shape
space,

a∑
i=1

nid
2
F(Xi·,X··) ∼ σ 2χ2

(a−1)M (9)

and
a∑

i=1

ni∑
j=1

d2
F(Xp

ij,Xi·) ∼ σ 2χ2
(
∑a

i=1 ni−a)M, (10)

with the first result above holding only under H0 : [μ1] =
[μ1] = · · · = [μa] = [μ]. From these results, Goodall (1991)
suggests to test H0 using

F0 = SStreatments

(a − 1)M

/ SSerror

(N − a)M
(11)

which for small σ follows a F(a−1)M,(N−a)M distribution under
H0. The isotropic model assumptions (normal errors with con-
stant variance in each dimension and no correlation between
dimensions or between landmarks) are quite restrictive. For ex-
ample, quite often in practice the two coordinates of a landmark
are correlated. In consequence, we suggest instead to test H0
using a permutation test (see Section 4) which holds true under
more general conditions.

3.1 Two-Way ANOVA of Shapes

Some authors have considered more complex analysis of
variance models for the study of symmetry in biology (Klin-
genberg and McIntyre 1998; Klingenberg and Monteiro 2005).
In manufacturing applications, it is of utmost importance to be
able to characterize the effect of controllable factors on the
shape of parts. For this purpose, Goodall’s one-way ANOVA
model can be extended to a factorial-like structure in a straight-
forward manner. For a two-way balanced ANOVA for shapes,
the mean of the object configurations is identical to a standard
balanced two-way model:

E[Xijl] = μ + τ i + β j + (τβ)ij,

i = 1, . . . ,a; j = 1, . . . ,b; l = 1, . . . ,n, (12)
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SHAPE ANALYSIS FOR MANUFACTURING 7

where the different effect matrices have the same dimensions
as Xijl. We consider only balanced ANOVAs in the rest of the
article; a discussion on the difficulties found with unbalanced
designs in two-way ANOVA is given in Section 7. The error
terms are assumed to follow the isotropic error variance model,
that is, εijl ∼ N(0, σ 2I) (iid). We point out that a MANOVA
cannot be performed on the vectorized Xijl matrices given that
we usually have in practice that km ≥ ab(n−1) (see Press 2005,
p. 267), owing to the large number of measurements per part
available in manufacturing.

Since the parts may not be initially registered, the first step
of the ANOVA on shapes is to register all abn = N shapes with
the GPA algorithm. The procrustes fits will then be given by
Xp

ijl = β̂ijlXijl�̂ijl + 1kγ̂
′
ijl. The estimated overall mean shape is

μ̂ = X··· = 1/N
∑

i
∑

j
∑

l Xp
ijl where we use the standard “dot”

notation in two-way ANOVA. We work with the registered pro-
files Xp

ijl from then on.
Provided the shapes of the objects are not too far from

the mean shape (a condition that should hold for each of the
ab + a + b + 1 means in a two-way ANOVA), we have the ap-
proximate ANOVA partition

SStotal ≈ SSA + SSB + SSAB + SSerror,

where SStotal = ∑a
i=1

∑b
j=1

∑n
l=1 d2

F(Xp
ijl,X···),

SSA = bn
a∑

i=1

d2
F(Xi··,X···),

SSB = an
b∑

j=1

d2
F(X·j·,X···),

SSAB = n
a∑

i=1

b∑
j=1

d2
F

(
Xij· − (Xi·· − X···) − (X·j· − X···),X···

)
(note how in SSAB the row and column effects are discounted in
the first argument of the distance formula), and where

SSerror =
a∑

i=1

b∑
j=1

n∑
l=1

d2
F(Xp

ijl,Xij·).

Given that the ANOVA is valid only if shapes are close to each
other (otherwise the nonlinearity of the shape space must be
considered), an important practical question is: when can we
claim the sizes of objects are “close enough” to the mean so that
the ANOVA approximation holds? Dryden and Mardia (1998,
p. 287) give the following rule of thumb: objects are close to the
mean shape if max dF < 0.2. (Note this does not consider the
number of landmarks, k, so it should be seen only as a rough
recommendation. In the type of manufacturing applications we
consider, max dF is much smaller than 0.2 despite k being usu-
ally in the hundreds. See Section 5 for an example.)

An extension of the one-way ANOVA in Goodall (1991) for
testing H(1)

0 :τ i = 0, H(2)
0 :β j = 0, and H(3)

0 : (τβ)ij = 0 is based
on the statistics

F(1)
0 = MSA/MSerror,

F(2)
0 = MSB/MSerror,

F(3)
0 = MSAB/MSerror.

Similarly to the one-way ANOVA case, the distributions of
these three statistics (under their null hypothesis for small σ )
are

F(a−1)M,ab(n−1)M, F(b−1)M,ab(n−1)M, and

F(a−1)(b−1)M,ab(n−1)M,

respectively. But just as for the one-way ANOVA case, given
the restrictive assumptions in the isotropic model, the permuta-
tion tests in Section 4 are recommended instead.

The estimated effects are preshapes, that is, (k − 1) × m
normalized configuration matrices (or k × m matrices, if cen-
tered). The algebraic form of the least squares estimates is iden-
tical to the ones used in standard ANOVA, and requires addi-
tional constraints to be uniquely obtained. Under the usual con-
straints [i.e.,

∑a
i=1 τ i = 0,

∑b
j=1 β j = 0,

∑a
i=1(τβ)ij = 0, and∑b

j=1(τβ)ij = 0; Searle 1971] we have that

τ̂ i = Xi·· − X···, (13)

β̂ j = X·j· − X···, (14)

(̂τβ)ij = Xij· − Xi·· − X·j· + X···, (15)

where all means are computed from the registered profiles.

3.2 Visualization of ANOVA Effects: Shape Main Effect
and Shape Interaction Plots

It is difficult in general to interpret the effect estimates (13)–
(15) directly. However, one of the main advantages of the pro-
posed approach is that we preserve the geometry of the objects,
and hence visualization of the multivariate results is in principle
simple and useful. Visualization to display the directions and
magnitude of the variability of the landmarks based on princi-
pal component analysis is frequently used in the SSA literature
(see, e.g., Dryden and Mardia 1998). Here we propose analo-
gous plots to display the directions and magnitudes of the ef-
fects of the factors on the mean shape. While it is tempting to
plot the average shape at each factor combination (Xij·), with
modern manufacturing data this will almost never help, since
the differences will be of such a small order to be undetectable
by the human eye (“zooming in” of several orders of magnitude
will be required to see differences, but this will lose the overall
geometric feature one wishes to observe). Instead, we suggest
to plot the effects (13)–(15) at each landmark in a scaled form
to allow visualization. We define a shape main effect in the most
obvious way, namely, as the change in mean shape when a fac-
tor is changed. To visualize these effects, we need to refer these
changes to the mean shape. Thus, if we simply plot τ̂ i or β̂ j,
we will not see the mean shape of the objects, as the effects
(13)–(15) are differences between average shapes.

In a main effect shape plot we first graph points giving the
overall mean shape μ̂ = X···. At each landmark of the mean
shape, we then add arrows proportional to the corresponding
coordinates in the main effect matrix. Thus, for factor A, we add
arrows proportional to the corresponding coordinates of τ̂ i. We
do this for i = 1, . . . ,a, showing these plots one on top of each
other with different colors for each i, and do likewise to visual-
ize the effect of factor B (see, e.g., Figure 5). If the magnitude of
the effects is small relative to the mean shape (not uncommon in
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8 ENRIQUE DEL CASTILLO AND BIANCA M. COLOSIMO

Figure 5. Main effect on shapes for factors A (a) and B (b). Each factor was varied at two levels only. The continuous line corresponds to the
sample mean shape X··· = μ̂. The effect of A is to induce an oval deformation (a bilobe) that alternates direction from low to high setting of A.
As factor B increases, it increases the depth of the notch.

manufacturing), it is necessary to exaggerate the effects by mul-
tiplying by a suitable large number. We have found vector plots
(made with the quiver command in Matlab) especially use-
ful for this purpose. The resulting shape main effect plots have
therefore an interpretation equivalent to that of the usual main
effect plots given by most DOE software. These plots preserve
the geometrical information of the effects, displaying at each
landmark the direction in which the average shape changes as
the factor is varied.

Visualizing shape interaction effects requires more care if
an interaction plot on the shapes equivalent to that of standard
DOE interaction plots is desired. Recall how in standard DOE
a two-factor interaction plot is constructed (see, e.g., Mont-
gomery 2006). These graphs are prepared not by plotting the
interaction effects (̂τβ)ij directly, but by plotting the condi-
tional effects of B given A (or vice versa) for the different com-
binations of levels for A and B. These effects are computed
using “cell” means. Thus, in standard DOE, we conclude—
informally—that there is an AB interaction when the effect of
A as it changes from its low setting to its high setting depends
on the setting of factor B (and vice versa). In such case the lines
in the interaction plot—which join the averages corresponding
to the same level of a factor—will not be parallel.

To visualize interaction effects on the shape of the objects,
we need to refer the effects to the mean shape. Thus, similarly
as for shape main effects, we first plot the overall mean shape
μ̂ = X···. We do this b times (one per level of factor B) forming
an array of b graphs to be displayed together. At each landmark
of the mean shape of the jth graph (j = 1, . . . ,b) we plot arrows
proportional to the corresponding coordinates in the matrix

Xij· − X···, i = 1, . . . ,a.

Visualization is aided if the a arrows at the mean shape land-
marks are given in different colors. This gives a visual repre-
sentation of the conditional effect of B given A. One can alter-
natively plot an array of a graphs next to each other each with

b arrows in different colors to show the effect of A given B
(giving an equivalent “BA” shape interaction plot).

The interpretation of these plots is done by comparing the
AB (or BA) shape interaction effect plot with either the A (re-
spectively, the B shape) main effect plot: if the effect of A when
changed across its levels is not affected by the setting used on
B (so the effect is similar as depicted in the factor A main effect
shape plot), we can conclude, informally, that there is no AB in-
teraction effect on the shapes of the objects. For two examples
of these plots, see Figure 6.

Example (Shape main effect and shape interaction effect
plots). To illustrate the visualization tools described above, we
simulated n = 10 profiles at each of 2(= a = b) levels of two
hypothetical factors affecting the mean shape depicted in Fig-
ure 7. This type of “notched” circular profile is common in
parts that are used for coupling mechanical components. This
is a “free-form” of relatively complex geometry not easily de-
scribed with standard methods. The first factor (A) was sim-
ulated to induce a bilobed shape (oval) around the mean; the
second factor (B) was simulated to affect the depth of the notch
section. Initially, no AB interaction was simulated. Independent
N(0,0.42) errors were added to each of the cartesian coordi-
nates of each landmark in the mean shapes. All numerical re-
sults in this article were conducted using Matlab (release 2007)
and its built-in random number generator (randn).

Figure 5 shows the main effect shape plots for factors A
and B. Figure 6 shows two AB interaction plots, for the case
where no AB interaction was simulated and also for the case
where such interaction was simulated.

3.3 ANOVA Test on the Size of the Objects

The ANOVA tests shown in this article deal with shapes, and
therefore no consideration is made of the sizes of the objects.
While it is possible to modify the generalized procrustes algo-
rithm to consider only rotation and location effects, a simpler

TECHNOMETRICS, FEBRUARY 2011, VOL. 53, NO. 1



SHAPE ANALYSIS FOR MANUFACTURING 9

Figure 6. Examples of AB shape interaction plots. On top, the case
where no AB interaction exists: changing factor A results in a bilobed
shape regardless of the setting used for factor B [compare with Fig-
ure 5(a)] while factor B seems the only factor affecting the depth of
the notch section. On the bottom: the case where an AB interaction
exists. Here, the depth of the notch section is affected by both A and B
factors. Factor B no longer determines the depth of the notch section
alone.

approach (Dryden and Mardia 1998) that preserves the ANOVA
analysis on shapes just presented is to consider in addition a
two-way ANOVA test specifically designed to detect changes
in size due to the factors. The sizes of the N = abn objects are
computed from S(Xijl) (see Section 2.2) and a standard ANOVA
is conducted on these sizes. This test is also illustrated in Sec-
tion 5.

4. A PERMUTATION TEST FOR THE TWO–WAY
ANOVA ON SHAPES

As discussed in Section 3, the F0 statistics used in the
ANOVA for shapes hold under restrictive assumptions. Instead,
we recommend using the following permutation test.

Figure 7. True mean overall shape (μ), used in the simulated man-
ufacturing example.

A permutation test for the difference between the mean shape
of two groups of objects was suggested by Dryden and Mardia
(1998). In this spirit, we can also perform a permutation test for
the two-way ANOVA case as an alternative to the F tests.

Following recommended practice in random permutation
tests (Edgington and Onghena 2007; see also Klingenberg and
McIntyre 1998), we rearrange the N = abn objects forming dif-
ferent random subgroups to perform the different tests (for the
main effects and the two-factor interaction). While testing for
a main effect we account for the assignment of levels for the
other factor not being tested. Thus, we form several random
arrangements of a subgroups (each with N/a = bn objects) to
test for the hypothesis of no difference in mean shapes across
rows (factor A). To form these arrangements, we only permute
shapes between the levels of factor A but not between the levels
of factor B, that is, the B level assignment of the shapes is not
changed when testing for the main effect of A. Edgington and
Onghena (2007) emphasize this point in permutation ANOVA
tests for factorial experiments. Similarly, we next form several
random arrangements of b groups (each with N/b = an objects)
to test for main effect B. Here we only permute between levels
of factor B but not between levels of factor A. We are there-
fore assuming exchangeability of the observations Xijl among
the factor levels when testing for the significance of the main
effects.

To test for the significance of the main effects, for each
random arrangement formed to test for factor A we compute
the test statistic F(1)

0 . Likewise, for each random arrangement
formed to test for factor B (notice two separate sets of random
arrangements were formed, one set for each factor), we com-
pute the test statistic F(2)

0 . The observed statistics Fobs
0 for each

test are then compared to the distribution of the corresponding
F statistics obtained through random resampling. If r samples
result in F0 > Fobs

0 , then the p-value of the test is given by r/P,
where P − 1 denotes the number of random permutations gen-
erated for each effect tested, with the Pth permutation being the
actual observed arrangement, as discussed by Edgington and
Onghena (2007).
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Permutation tests for interactions in two-way ANOVA have
been recently reviewed by Jung, Jhun, and Song (2006). These
authors show that if random permutations of the observations
are used to form ab groups of n objects from which (in our
notation)

F(3)
0 =

(
n

a∑
i=1

b∑
j=1

d2
F(Xij· − Xi·· − X·j· + X···,X···)

(a − 1)(b − 1)

)
/(

a∑
i=1

b∑
j=1

n∑
l=1

d2
F(Xijl,Xij·)
ab(n − 1)

)
(16)

is computed, the test for no AB interaction will have an inflated
Type I error with respect to a Normal-F test, and it will have
lower power to detect true differences. An alternative is to as-
sume exchangeability across cells of the quantities X∗

ijl defined
as

X∗
ijl = Xp

ijl − Xi·· − X·j· + X···
and then for each random permutation compute

F(3)∗
0 =

(
n

a∑
i=1

b∑
j=1

d2
F(X

∗
ij· − X

∗
i·· − X

∗
·j· + X

∗
···,X

∗
···)

(a − 1)(b − 1)

)
/(

a∑
i=1

b∑
j=1

n∑
l=1

d2
F(X∗

ijl,X
∗
ij·)

ab(n − 1)

)
.

According to Jung, Jhun, and Song (2006) this procedure has
slightly lower Type I error than advertised (for the normal case),
but the power is better than using (16), even for small sample
sizes and nonnormal data. Note that before performing the per-
mutations, all matrices Xijl need to be registered with respect to
the overall mean using GPA.

5. A REAL MANUFACTURING APPLICATION

We now illustrate the aforementioned ANOVA tests with the
titanium lathe-turning manufacturing example described in the
Introduction. In terms of the notation introduced earlier, we
have m = 2, a = b = 3, n = 10, and k = 64. The two-way
ANOVA test for shapes was applied to this experimental data.
The results are shown in Table 2. The shape-space dimension is
M = (k − 1)m − 1 − m(m − 1)/2 = 124, and hence, the degrees
of freedom for A, B, AB, and error are (a − 1)M = (b − 1)M =
248, (a−1)(b−1)M = 496, and ab(n−1)M = 10,044, respec-
tively.

Note how the sums of squares identity holds very exactly.
This is because the shapes are very close to the average shape
in shape space, a situation common in manufacturing data; in

Table 2. ANOVA for the shapes in the machining experiment

Source SS (×10−7) df MS (×10−10) F0

A (depth) 9.88 248 39.85 7.98
B (speed) 4.85 248 19.56 3.91
AB int. 2.34 496 4.71 0.94
Error 50.14 10,044 4.99

Total 67.22 11,036

Figure 8. Scores of the first two principal components for all treat-
ment groups in the titanium experiment. The data is concentrated and
varies little, hence the shape space curvature can be neglected and the
ANOVA identity holds very closely.

this example we have that max dF = 5.13 × 10−4. Figure 8
gives a plot of the principal component (PC) scores for each
treatment combination over the first two PC’s of matrix Xv (see
Section 2.2). This shows that the Gaussian assumption seems to
hold, but reveals that the isotropy assumption is suspect. This
plot also shows the data to be very concentrated around the
mean shape.

Figure 9 shows the shape main effect plots and Figure 10
shows the shape interaction plots for this experiment. As can be
seen, both depth (A) and speed (B) induce an oval (bilobed) de-
formation in the mean profile, but the induced ovals are oriented
differently. If we apply the F distribution results suggested by
Goodall (1991), the resulting p-values are 0.0000, 0.0000, and
0.8039, so we would conclude both depth and speed affect the
mean shape of the parts but there is no depth-speed interaction.

For this example, the permutation ANOVA test, which given
the evidence against isotropy should be the preferred test, indi-
cates a similar conclusion to the F test. One thousand permuta-
tions (P = 999) were generated to test each of the three hypoth-
esis. The empirical CDF of the tests is shown on Figure 11. The
empirical p-values are 0.0, 0.0, and 0.5180, which are in gen-
eral agreement with the ANOVA F shape test: the main effects
of both factors are significant but the interaction is not. Finally,
the p-values for the ANOVA on the size of the parts described
in Section 3.3 yielded p-values of 0.7372, 0.6841, and 0.9647,
thus there is no evidence that the factors (or their interaction)
affect the size of the parts.

5.1 Shape Optimization

The shape effect plots presented above are useful tools to vi-
sualize the effect of each factor on the mean shape. In general,
in advanced manufacturing data the mean shape will not be ex-
actly equal to the nominal, or target, shape T, but is typically
quite close to it. To determine the optimal factor levels that will
get the shape of the objects closest to T, it is necessary to con-
trast the deviations between the cell means Xij· and the nominal
shape T. These differences can then be displayed graphically

TECHNOMETRICS, FEBRUARY 2011, VOL. 53, NO. 1



SHAPE ANALYSIS FOR MANUFACTURING 11

Figure 9. Main effect on shapes for A = depth (a) and B = speed (b). The circles denote the overall mean shape X··· = μ̂. The effects have
been increased 1000 times to allow visualization.

as in Figure 12. The nine graphs in the figure correspond to the
3 × 3 cell means for the Titanium lathe experimental data. The
arrows are proportional to the deviations from each cell mean
to a perfect circle with 64 landmarks. To prepare these plots,
the nominal and the cell means must have corresponding land-
marks and be registered using the procrustes algorithm. In the
example, it is obvious that factor B (speed) should not be set at
its low level since this will result in large deviations from nom-
inal. Likewise, setting factor A (depth of cut) to its low level
is clearly best. The plots are of value since an engineer can vi-
sualize the directions and relative dimensions of the deviations
at each landmark. A nongraphical measure useful to determine

optimal settings is the full procrustes distance d2
F(Xij·,T) com-

puted for i = 1, . . . ,a and j = 1, . . . ,b. We would choose the
levels i, j that minimize this quantity. Applying this idea to the
titanium lathe experimental data, the 3 × 3 matrix of distances
[d2

F(Xij·,T)] is equal to

10−6 ×
(0.299 0.266 0.282

0.354 0.340 0.291
0.556 0.409 0.334

)
and hence, it would appear there is some evidence that the
best settings are depth = A = low and speed = B = medium or
high. From a manufacturing point of view these settings make

Figure 10. AB shape interaction effect plot. The effect of depth (A) when changed from low to high while varying the speed (B) is similar to
that observed in the main effect plot of depth (A) alone [Figure 9(a)], hence, there is no evidence of an AB interaction. The effects have been
increased 1000 times to allow visualization.
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Figure 11. Empirical cumulative distribution functions for the per-
mutation ANOVA shape test, 1000 permutations. (a) Main effect of
depth-A (p-value is 0.0), (b) main effect of speed-B (p-value = 0.0),
(c) AB interaction (p-value = 0.518). The dots on the x-axis indicate
the observed test statistics, Fobs

0 .

physical sense, since using the lowest depth of cut implies low-
est cutting forces and this can help obtaining a perfect circle.
Using a relatively higher speed can allow the turning spindle
to encounter less rotation problems related to an oval contour
shape, which is common in this data set (note how a high level
for speed is best if the depth of cut is medium or high, and only
second best if the depth is low).

Note, however, that the d2
F values are subject to sampling

variability and hence the deviations from nominal at the dif-
ferent factor levels may not be statistically different. What we
have in effect is a multiple comparisons problem for shapes:
we wish to compare the deviations from nominal μij − T to
choose the optimal factor settings. Since the nominal shape T is

a constant, it suffices to make multiple comparisons on the cell
means alone. A formal two-sample test for shape differences
due to Goodall (1991) can be used for this purpose. Under the
normal isotropic assumptions, the hypothesis H0 : [μij] = [μi′j′ ]
is tested against a general alternative with the F statistic:

F0 = n1 + n2 − 2

1/n1 + 1/n2

× G(Xij·,Xi′j′·)
G(Xij1,Xij,2, . . . ,Xijn1) + G(Xi′j′1,Xi′j′,2, . . . ,Xi′j′n2)

∼ FM,(n1+n2−2)M. (17)

The usual caveats as in any multiple comparisons problem ap-
ply. If a preset significance level is used, the overall (exper-
imentwise) Type I error rate may be higher than advertised.
A Bonferroni correction could be used to reduce this problem,
given that no other multiple comparison procedure with control
of the experimentwise Type I error rate exists for shape analysis
(a permutation test based on F0 above can be performed instead
similarly to the permutation tests of Section 4, but these will
have the same Bonferroni-like problems). In addition, the com-
parisons to make should be planned before observing the ex-
perimental results. To illustrate the multiple comparison tests,
suppose before running the titanium lathe experiment we sus-
pect (based on prior process knowledge) that the lowest value
for depth of cut should improve circularity. Thus, we wish to
make all possible multiple comparisons when factor A is set to
its low setting. Table 3 shows the results from the corresponding
tests. As it can be seen, the cell mean for the setting A = low,
B = medium (μ1,2) is not significantly different than that for
the setting A = low, B = high (μ1,3). Hence, either of these
two settings seems to provide equally good circular shapes.

Figure 12. Deviations from nominal plots for the titanium lathe experiment. The arrows in each plot i, j are the deviations Xij· − T shown at
each landmark in the target shape (a perfect circle) multiplied by a scale factor equal to 400 to allow visualization.
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Table 3. Multiple comparisons for the cell means when factor
A = low (i = 1), titanium lathe experiment

μi,j
vs.

μi′,j′ p-value for

i j i′ j′ H0 : [μij] = [μi′j′ ]
1 1 1 2 0.0049
1 1 1 3 0.0000
1 2 1 3 0.6893

6. POWER ANALYSIS OF THE DIFFERENT
METHODS FOR CIRCULAR SHAPE DATA

We study the statistical performance of the following three
methods used to determine differences in circular shapes:
(1) the ANOVA test based on Goodall’s F test (Section 3),
(2) the permutation test of Section 4, and (3) an ANOVA per-
formed on the circularity form error, the usual way to deter-
mine factor effects on the circularity of manufactured parts
(Krulikowski 1996; ASME 1994). The circularity (roundness)
form error is defined in manufacturing practice as the smallest
difference between the radii of two coaxial circles that con-
tain all the measurements. Note that the computation of the
circularity form error does not require labeled (corresponding)
landmarks. A standard ANOVA was then conducted on these
form errors. Circular shape profile data was simulated that is
less circular as the level of a factor increases (we only con-
sider the one-factor ANOVA case in this section). As the value
of the factor—say, depth of cut—changes from low to high,
a second harmonic with amplitude δ was added to the simu-
lated circular profiles. To determine a power curve for each
ANOVA method, different values of the “shift” in amplitude
δ were tried. Since the ability to detect a change in a circular
profile is related to both the amount of noise and the magnitude
of the radius R of the ideal circular profile, the number δ was
expressed as a multiple w of the ratio σ/R, thus the shift in am-
plitude was given by δ = wσ/R. The values tested for w were
{0,0.5,1.0,1.5,2.0,2.5,3.0}, with w = 0 (δ = 0) denoting the
baseline case where the factor has no effect on the circular con-
tour. This double standardization of the shift in amplitude of
the second harmonic allows us to observe the behavior of the
different methods for a circle of any size since the graph gives
power as a function of w. That is, as long as the added ampli-
tude is expressed in multiples of σ/R, the power curves for the
different methods will be as shown in Figure 13.

Twenty parts (n = 20) were simulated at each of the two lev-
els of the factor (the low value always giving a circular contour
and the high value always adding a second order bilobe of am-
plitude δ). For each value of the w multiplier (the “shift size”),
100 simulations were performed, and N(0, σ 2) iid errors were
added at each landmark, where k = 64 equidistant landmarks on
the circle were used. The percentage of times p that the null hy-
pothesis of no factor effect was rejected is the estimated power
of each test. The desired probability of a Type I error was set
at 5%. A value of σ/R = 0.01 with σ = 0.05 and R = 5 was
used to generate the plot.

From Figure 13 it is clear that the ANOVA on the circularity
form error is unable to detect differences in the circular pro-
files unless these become very large. This relatively low power

Figure 13. Power results for circular profiles (α = 0.05) for the
one-factor ANOVA based on the circularity form error, the ANOVA
F-test for shapes, and the permutation ANOVA test for shapes (100
permutations). The estimated power is valid for any circular objects as
long as the amplitude of the added second harmonic is wσ/R with w
as in the x-axis. Bars indicate 95% confidence intervals.

is probably the result of using only two landmarks, the closest
and the farthest from the center, when computing the circularity
form error, as opposed to using all the landmarks as in the pro-
posed SSA methods. Given that the isotropic error assumptions
are frequently unrealistic, we suggest the permutation ANOVA
on the shapes as the test to use in practice. The test achieves the
desired α level and has high probability of detection, almost as
high as for the F-test (under ideal conditions for the latter) and
has much higher power than the traditional form error method
used in manufacturing practice. Furthermore, the permutation
test does not rely on the normality or anisotropic variance as-
sumptions. This test, used in combination with the visualiza-
tion techniques described in Section 3 provides a powerful set
of tools to analyze experiments when the responses of interest
are the geometrical shapes of objects.

7. DISCUSSION AND FURTHER WORK

In this article, new two-way ANOVA tests for shapes have
been presented. The power of the tests to detect effects in circu-
lar mean shapes was investigated and new graphical tools were
presented, namely, shape main effect plots, shape interaction
plots, and deviation from nominal shape plots. These graphics
aid in the analysis and interpretation of experiments where the
response of interest is the shape of manufactured objects.

We suggest using the permutation ANOVA test when analyz-
ing shape responses in a designed experiment. The test achieves
the desired α level and has high power, almost as high as for
the ANOVA F-test for shapes and much higher than the usual
form error ANOVA performed in manufacturing practice. Fur-
thermore, it does not rely on the normality or isotropic variance
assumptions as the F test does. Further more general evidence
supporting this recommendation can be found in Alshraideh
and Del Castillo (2009), who conducted a power analysis for
all the tests for shape difference presented here for a variety
of shapes, both of interest in manufacturing and for arbitrary
shapes. They also consider the nonisotropic variance case, since
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in the present article we only have considered the isotropic vari-
ance case.

For the type of manufacturing applications we study, the
shapes are very close to the overall mean and this satisfies
an underlying assumption of the ANOVA methods presented.
When shapes differ considerably, the nonlinearity of the shape
space cannot be neglected, and the ANOVA identity will not
hold. Recent work along the lines in Huckemann, Hotz, and
Munk (2010a, 2010b) should be applied instead. These authors
present shape analysis methods on the shape space. A differ-
ence with the type of applications in the SSA literature (includ-
ing the recent work by Huckemann, Hotz, and Munk) is that
in manufacturing, the number of landmarks k is usually in the
hundreds, whereas in zoology and botany applications k is fre-
quently less than 10.

There are several lines of further work that can be under-
taken. A basic problem is to label the points in each part such
that they relate to similar physical locations (landmarks) be-
tween parts, that is, the points in different parts are correspond-
ing. This is a problem that has received considerable attention
in the field of computer vision (see, e.g., Belongie, Malik, and
Puzicha 2002; Gold et al. 1998; and for a more recent presenta-
tion and review, Davies, Twining, and Taylor 2008) where it is
called the “matching points” or the “correspondence” problem.

One immediate application of the graphical techniques pre-
sented in this article is related to the “Robust Parameter Design”
(RPD) problem (Montgomery 2006). In an RPD problem, ex-
perimental factors are divided in two categories, controllable
(C) and noise (N), and the purpose of the RPD experiment is
to find the values of the controllable factors that will yield re-
sponse values that are robust (i.e., not sensitive) with respect
to random variation in the noise factors. The easiest way to
achieve this goal in a standard factorial experiment is to look
at the C × N interaction plots, and choose values of the control-
lable factors where the slope of the interaction plot is smallest
(this minimizes the transmitted noise). We could use either the
AB interaction plot or the deviation from nominal plots in an
analogous way. For example, in Figure 10 (or Figure 12), sup-
pose A is controllable but B is a noise factor. Then the high
value of A should not be selected since this results in shapes
that are most sensitive to variations in factor B.

Another area of potential further work, suggested to us by an
associate editor, is to modify the ANOVA tests presented for un-
balanced experiments. Although the power results presented in
Section 6 refer to balanced experiments, the one-way ANOVA
test is valid for general unbalanced designs. Similarly, the test
for comparing means used to determine best factor combina-
tions [Equation (17)] is valid for unequal sample sizes. An easy
unbalanced case to handle (in any number of factors) is that of
a few missing observations, which could occur in manufactur-
ing perhaps due to defective CMM data acquisition on a given
part. While this can always be treated by simply remeasuring
the part, this can also be treated by replacing the missing obser-
vation with the mean shape for the remaining shapes in the cell,
μ̂i,j = Xij·. Fortunately, in experimental designs in manufactur-
ing this is the most common type of unbalancing found.

Another consideration suggested by the associate editor is
that of shapes serially correlated with each other (between
shape correlation), rather than shapes with a (nonisotropic) co-
variance structure within each shape (between landmarks). This

in principle could occur in manufacturing due to wearing-out
phenomena, although for the typical small sample sizes in shape
analysis experiments the wear would have to be quite drastic to
be observable, so we conjecture that this a rare situation in prac-
tice. Serial correlation violates an underlying assumption not
only in the ANOVA shape methods presented here but also in
“standard” ANOVA. The suggested ANOVA permutation test is
particularly sensitive to serial correlation since it is based on an
assumption of exchangeability. Just as in standard situations, if
the run order cannot be randomized (otherwise the permutation
test is still valid), one is forced to either model the correlation
somehow (e.g., via time series analysis techniques) or to an-
ticipate it in the experimental design (e.g., via blocking in the
case of time trends). How to do this in experiments with shape
responses is a matter of further work.

This article has focused on 2D shapes. Extensions to the
three-dimensional case are evidently practical (see Alshraideh
and Del Castillo 2009 for some recent results on the ANOVA
tests applied to 3D objects). We have also confined ourselves
to least squares registration methods (i.e., procrustes), but the
use of registration methods that are more robust to wild land-
mark locations (e.g., Rohlf and Slice 1990) can be investigated.
A comparative study of the statistical power that the (permuta-
tion) ANOVAs have when based on different registration meth-
ods also seems necessary.

Finally, this article has focused on shape analysis methods
based on procrustes methods. Comparisons with shape analy-
sis methods based on the Euclidean distances between matri-
ces (e.g., Lele and and Richtsmeier 2001) is also a matter for
further research. Alshraideh and Del Castillo (2009) show how
distance-based methods seem to have low power in the case of
2D circles and 3D cylinders, but do have relatively competitive
power compared to the ANOVA methods presented here to de-
tect differences in certain geometrical objects that have just a
few landmarks.

APPENDIX: COMPUTER IMPLEMENTATION OF
THE ANOVA SHAPE ALGORITHMS

Matlab programs that perform the computations required for
ANOVA for shapes, including visualization, were written for
this research and can be downloaded from http://www2.ie.psu.
edu/Castillo/research/EngineeringStatistics/ software.htm.

There are three main programs: one for the two-way ANOVA
F-test for shapes that assumes normality and isotropy and pro-
duces the plots helpful for visualization (ANOVAShape.m); a
second program that implements the (recommended) two-way
permutation ANOVA test for shapes, valid under more general
error distribution assumptions (permutationANOVAShape.m)
and a third program, ANOVAShapeNominal.m, that computes
and displays the deviation from nominal plots and performs
multiple comparisons of cell means. The dataset for the lathe
experiment used in this article can also be downloaded from
the same URL.
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