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Abstract

This paper proposes a Bayesian method to set tolerance or specification limits on
one or more responses and obtain optimal values for a set of controllable factors. The
existence of such controllable factors (or parameters) that can be manipulated by the
process engineer and that affect the responses is assumed. The dependence between
the controllable factors and the responses is assumed to be captured by a regression
model fit from experimental data, where the data is assumed to be available. The
proposed method finds the optimal setting of the control factors (parameter design)
and the corresponding specification limits for the responses (tolerance control) in order
to achieve a desired posterior probability of conformance of the responses to their
specifications. Contrary to standard approaches in this area, the proposed Bayesian
approach uses the complete posterior predictive distribution of the responses, thus the
tolerances and settings obtained consider implicitly both the mean and variance of the
responses and the uncertainty in the regression model parameters.

1 Introduction: Tolerance Control

In engineering design, the limits defining the acceptable quality of a product are called

tolerance or specification limits. The problem of setting these limits based on different criteria

is known as tolerance control. This paper addresses the problem of setting tolerance limits

on one or more quality characteristics that depend on controllable factors, (x1...xk). The

approach presented is Bayesian. Bayesian methods have been used in the literature [Peterson

(2004), Miro-Quesada et al.(2004)] to identify the settings of (x1...xk) that maximize the

probability of conformance of the responses or quality characteristics to a pre-defined given

tolerance region. However, in this paper, one of the problems we address is the inverse

1



problem: that of identifying a tolerance region such that the probability of conformance of

the response(s) to the region is at least equal to a user-defined value φ.

In tolerance control problems, it is also of interest to identify the setting of the control

factors that gives the smallest such tolerance region. For example, suppose the design en-

gineers in a company design a part that should be machined with thickness between 3mm

and 5mm, and suppose that there are two controllable factors in the machine, cutting speed

and pressure, that the operator can adjust to get the required thickness. Using the Bayesian

optimization approaches in the literature, it is possible to find the settings of these two con-

trollable factors that maximize the posterior probability that the part will have a thickness

that is within the specification (tolerance) limits [Peterson (2004)]. However, it is possible

that at these settings the value of the posterior probability is quite low, say 0.6, which means

that even at the best operating setting only 60% of the manufactured parts will meet the

tolerances that have been set. This is a common problem in tolerancing and can be overcome

if the designer transfers tolerance requirements to the manufacturing plant, while keeping in

mind the limitations of the machinery and making the most of the design flexibility [Hong et

al. (2002)]. Thus in the previous example, the designer could prefer to adjust the design such

that it is possible to set a different tolerance limit on the part that gives a higher posterior

probability of obtaining conforming parts. It may be of interest, for example, to determine if

there is another setting of the controllable factors where there is a high posterior probability

of conformance to thickness between 5mm and 6mm, say a 90% probability. If this is true, at

this new setting not only is the probability of conformance higher, but the tolerance region

is also smaller, thus giving a lower variation in the conforming parts.

In the standard approaches to statistical tolerancing [Guttman (1988)], if Y is a quality

characteristic with probability distribution P θ
Y , where θ are the parameters, and if a sample

(y1...yn) of n independent observations is available, two common statistical methods have

been used for constructing a tolerance region A. These are defined as,

1. the α-expectation tolerance region, given by:

E[C(A)] = α, (1)

2. the α-content tolerance region at confidence level γ, given by:

p[C(A) ≥ α] = γ, (2)

where C(A) is the coverage of the region A. These definitions are applicable for both

classical or frequentist and Bayesian approaches. Both approaches are discussed in Guttman

[Guttman (1981), Guttman (1988)]. However, they do not consider the problem of tolerance
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control in conjunction with regression, where the response depends on the settings of control

factors. Also, the methods in the literature do not address the problem of finding the smallest

tolerance region that satisfies one of the two criteria shown in equations (1) and (2).

The idea of a robust tolerance and parameter design was originally proposed by Taguchi

[Taguchi (1986)]. Taguchi recommended tolerance design as the stage in quality control that

follows parameter design. Parameter design is used to fit regression models to data and

identify levels of the controllable factors that give the required mean and variation of the

fitted response models. Taguchi’s robust tolerance design is used to adjust the tolerances of

the controllable factors that have a large influence on the response(s). However, this does not

address the problem of setting tolerance or specification limits on the responses themselves.

Taguchi’s idea is related to what is called “transmission of errors”, where variation in the

controllable factors causes additional variation in the responses. In this paper, we first

address the problem of setting tolerances on the responses assuming that the controllable

factors can be set to fixed desired settings. The effect of transmission of errors because of

variation in the controllable factors is addressed in the discussion in section 4

The remainder of the paper is organized as follows. The next section describes the

proposed method for constructing tolerance limits for systems with a single response or

quality characteristic. Section 3 discusses the multiple response case. A summary of the

approach is given in the discussion section.

2 Single Response Systems

In this section, we consider a process with a single response or quality characteristic of

interest, y. It is assumed that this response depends on k controllable factors, x1...xk. It is

also assumed that we have data from an experiment with n runs from which we can fit a

model to the response of the form

y = x′β + ε, (3)

where x is the (p × 1) vector of regressors that are functions of the k controllable factors,

β is the (p× 1) vector of model parameters and ε is the error term which is assumed to be

normally distributed, N(0, σ2). Denote the design matrix from the experiment by an (n×p)

matrix X and the vector of observed responses from the experiment by an (n× 1) vector y.
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2.1 Bayesian Predictive Density

The posterior predictive density of a future response vector y∗ at a given setting of the model

regressors x∗ for the given data y is defined as [Press (1982)]:

p(y∗|x∗,y) =

∫

σ2

∫

β
p(y∗|x∗,y,β, σ2)p(β, σ2|y) dβ dσ2, (4)

where p(y∗|x∗,y, β, σ2) is the likelihood function, and p(β, σ2|y) is the posterior distribution

of the model parameters. It is noted that the uncertainty in the model parameters is naturally

accounted for by considering β and σ2 to be random variables and evaluating their posterior

distributions using Bayes’ theorem:

p(β, σ2|y) ∝ p(y|β, σ2)p(β, σ2), (5)

where p(y|β, σ2) is the likelihood function, and p(β, σ2) is the joint prior distribution of the

model parameters. For the system described earlier, under a diffuse prior given by,

p(β) ∝ constant, (6)

p(σ2) ∝ 1

σ2
, (7)

and

p(β, σ2) = p(β)p(σ2), (8)

the posterior predictive density is given by a t-distribution [Press (1982)]. That is,

y∗|x∗,y ∼ tν(x
∗′β̂, σ̂2(1 + x∗′(X′X)−1x∗)), (9)

where ν = n− p,

β̂ = (X′X)−1X′y, (10)

and

σ̂2 =
(y −Xβ)′(y −Xβ)

n− p
. (11)

As the posterior distribution of the response is a t-distribution, the posterior mean of the

response given x∗ is

E[y∗|x∗,y] = x∗′β̂, (12)

and the posterior variance of the response given x∗ is

V ar[y∗|x∗,y] =
ν

ν − 2
σ̂2(1 + x∗′(X′X)−1x∗). (13)
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2.2 Optimization for Tolerance Control

The objective of the tolerance control problem is to find the setting of the controllable

factors, x∗1...x
∗
k, that gives the smallest interval [l, u] such that the posterior probability of

conformance, p(y∗ ∈ [l, u]|x∗,y), is at least φ, where φ is decided by the process engineer or

the designer. In addition, there may be constraints imposed on the ranges of x∗, l, and u.

In mathematical notation, the problem is formulated as:

min
x∗1...x∗k

u− l

s.t.,

p(l ≤ y∗ ≤ u|x∗,y) ≥ φ

l ≥ Bl

u ≤ Bu

x∗1...x
∗
k ∈ <,

where Bl and Bu are, respectively, a lower bound on l and an upper bound on u, determined

by the user. For a given x∗, we have from equation (9) that y∗|x∗,y ∼ tν(µy∗ , σ
2
y∗), where

µy∗ = x∗′β̂, and σ2
y∗ = σ̂2(1 + x∗′(X′X)−1x∗). Let Ft and ft be, respectively, the c.d.f. and

the p.d.f. of this posterior t-distribution (note that Ft and ft depend on x∗). Based on the

constraints on the bounds, Bl and Bu, a given setting x∗ is infeasible if

Ft(Bu) < φ, (14)

or if

Ft(Bl) > 1− φ. (15)

If the above inequalities are not true, then P (l ≤ y∗ ≤ u|x∗,y) ≥ φ can be satisfied, and

from figure 1, it is evident that the smallest interval [l, u] that encloses an area at least equal

to φ should be centered about the mean µy∗ and can be computed by

l = F−1
t

(
1− φ

2

)
, (16)

u = 2µy∗ − l. (17)

However, the values of l and u computed using equations (16) and (17) need to satisfy also

the constraints l ≥ Bl and u ≤ Bu. Thus, when using equations (16) and (17) to obtain l

and u, there are four cases as shown in figure 2. These are:

1. l ≥ Bl, u ≤ Bu: This case satisfies all the constraints. Here, the values of l and U from

equations (16) and (17) give the smallest interval [l, u] for the given x∗.
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Figure 1: Sample t-distribution

2. l ≥ Bl, u > Bu: Here, the value of u from (17) does not satisfy the constraint u ≤ Bu.

So to find the smallest interval, we set u = Bu and l = F−1
t [Ft(Bu) − φ]. Note that

because of the feasibility check in equation (14), Ft(Bu) − φ is never less than zero.

Now if the new value of l ≥ Bl, then [l = F−1
t (F (Bu) − φ), u = Bu] is the smallest

interval satisfying all constraints. Otherwise, if the new l < Bl, then the problem for

the given x∗ is infeasible.

3. l < Bl, u ≤ Bu: Here, the value of l from (16) does not satisfy the constraint l ≥ Bl.

So, to get the smallest interval, we set l = Bl and u = F−1
t [Ft(Bl) + φ]. Here, because

of the feasibility check in equation (15), Ft(Bl) + φ is never greater than one. Now if

the new value of u ≤ Bu, then [l = Bl, u = F−1
t (Ft(Bl) + φ)] is the smallest interval

satisfying all constraints. Otherwise, if the new u > Bu, then the problem for the given

x∗ is infeasible.

4. l < Bl, u > Bu: In this case, the problem for the given x∗ is infeasible, as no interval

[l, u] that satisfies the constraints l ≥ Bl and u ≤ Bu will contain an area under the

p.d.f. curve at least equal to φ.

The analysis of these cases provides a solution algorithm for the tolerance control problem.

This is summarized in the algorithm in figure 3 to compute the values of l and u that give the

minimum bound, u− l, for a given x∗. The algorithm is used within a nonlinear optimization

program that searches in the space of (x∗1...x
∗
k) to find the setting that gives the smallest
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Figure 2: Four possible cases for constraints on the bounds
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Figure 3: Algorithm to determine smallest interval [l, u] for a given x∗ under given constraints

8



Control Factors Response
x1 x2 Replicate 1 Replicate 2

-1 -1 7.52 8.12
1 -1 12.37 11.84

-1 1 13.55 12.35
1 1 16.48 15.32

-1.414 0 8.63 9.44
1.414 0 14.22 12.57

0 -1.414 7.90 7.33
0 1.414 16.49 17.40
0 0 15.73 17.00

Table 1: Design and experimental data [Khuri et al. (1987)] for example in section 2.3

(u− l) under the given constraints. Note that if there are no constraints on l and u, then the

optimization problem reduces to finding the value of x∗ that gives the minimum posterior

variance. The optimization problem then can be reformulated as:

min
x∗1...x∗k

σ2
y∗ s.t., x∗1...x

∗
k ∈ <.

In this case, the smallest interval [l, u] can be found at any x∗ using equations (16) and (17).

We note that it is frequently the case where several settings (x∗1...x
∗
k) satisfy the constraints of

the tolerance problem, and this set of feasible solutions need not be convex or even connected.

As the feasible regions maybe non-convex and even disconnected, it is recommended to run

the nonlinear search algorithm in the space of (x∗1...x
∗
k) using multiple starting points to

avoid local optimums.

The examples below illustrate the method. In the first example, we illustrate how the set

of feasible solutions (x∗1...x
∗
k) may be formed by disconnected subsets. Our second example

in section 2.4 presents a real manufacturing experiment.

2.3 Example 1: Two controllable factors

In this example, the data we use is taken from Khuri and Cornell [Khuri et al. (1987)], and is

shown in table 1. The goal of the experiment was to investigate the effect of two controllable

factors on a single response. As the response in this example is yield, a higher value of

the response is desired. In the table, the factors are given in coded variables determined

by a rotatable central composite design (CCD). The data shows observed responses for two

replicates of each treatment combination. Based on the two replicates of the experiment,

the model fitted to the data using the parameter estimates shown in equation (10) is given
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by,

ŷ = 16.3647 + 1.6753x1 + 2.7651x2 − 0.3337x1x2 − 2.4637x2
1 − 1.9310x2

2. (18)

Note that the models are different when only one of the replicates is used. The model using

only the first replicate is given by

ŷ = 15.7296 + 1.9608x1 + 2.7862x2 − 0.4800x1x2 − 1.9851x2
1 − 1.6000x2

2, (19)

while the model using only the second replicate is given by

ŷ = 16.9999 + 1.3897x1 + 2.7440x2 − 0.1875x1x2 − 2.9423x2
1 − 2.2621x2

2. (20)

As the treatment combinations for both the replicates are identical, it is noted that the co-

efficients in equation (18) are the average of the respective coefficients in equations (19) and

(20). It is assumed that the goal of the experiment is to find the value of the controllable

factors in the interval [−1, 1], while at the same time setting tolerance or specification limits

[l, u] on the response with the desired probability of conformance. As higher values of the

response are desirable in this example, it is important to set a lower bound Bl on the value

of l. In addition, since the optimization finds the smallest interval u − l, operating at the

optimal set point (x∗1...x
∗
k) not only gives the desired probability of conformance, but also

the least variation in the response under the given constraints.

The dots in figure 4 represent all feasible x∗ computed at points on a grid spaced 0.05

apart in the region {x∗1 ∈ [−1, 1], x∗2 ∈ [−1, 1]} using the algorithm shown in figure 3. Figure 4

shows four cases based on different values of Bl, Bu and φ. The figure is plotted using the

data from both replicates and the corresponding model in equation (18). Figure 5 shows the

feasible x∗ for two of those cases using just the data from replicate 1 and the corresponding

model in equation (19), and figure 6 shows the feasible x∗ for the same two cases as in figure 5

using just the data from replicate 2 and the corresponding model in equation (20). It can

be seen from these figures that:

1. The feasible region need not be convex as shown in figure 4 for the case where Bl = 13,

Bu = 20 and φ = 0.99. It is noted that depending on the data and the constraints, the

feasible region may even be disconnected.

2. For the case where Bl = 13, Bu = 20 and φ = 0.99, the feasible set is empty when only

replicate 1 (figure 5) is used or when only replicate 2 (figure 6) is used. However, when

both replicates are used, although the posterior mean of y∗ at a given x∗ is the average

of the posterior means of the two replicates, the posterior standard deviation of y∗ is

less than that of either of the replicates. Therefore, the feasible region in figure 4 is

not empty when both replicates are used for Bl = 13, Bu = 20 and φ = 0.99.
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Figure 4: Feasible region for different constraints using both replicates

3. As expected in all cases, for the same values of Bl and Bu the feasible region is larger

as the constraint on the value of the probability of conformance φ decreases.

The optimization is performed using both replicates of the data and is presented in table 2

for different combinations of Bl, Bu and φ. Note that the value of x∗ that gives the minimum

posterior variance for the response is obtained by solving the optimization problem without

any constraints on l and u, i.e., by setting Bl = −∞ and Bu = ∞. In this example, when

the posterior variance of the response is minimized, the smallest interval (u − l) obtained

is 6.8967 for φ = 0.99, 4.9194 for φ = 0.95, and 4.0241 for φ = 0.90. It can be seen from

table 2 that the smallest interval obtained in all the cases is equal to or very close to the

smallest possible interval without any constraints on l and u, for the respective values of φ.

This is because the region with the desired high posterior mean also has the lowest posterior

variance for the response, as can be seen in the plots shown in figure 7. However, this need

not always be the case as demonstrated in our next example.
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Figure 5: Feasible region under different constraints using replicate 1
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Figure 6: Feasible region under different constraints using replicate 2

Bl Bu φ optimal x∗1 optimal x∗2 optimal (u− l) l u

13 20 0.99 0.9365 0.6291 6.8967 13.1032 19.9999
12 ∞ 0.99 0.7661 0.8281 6.8967 13.5077 20.4044
14 22 0.99 0.3596 0.9878 6.9218 14.0000 20.9218
13 20 0.95 0.7722 0.8224 4.9194 14.4857 19.4051
12 ∞ 0.95 -0.8022 0.7931 4.9194 12.1663 17.0857
14 22 0.95 0.8308 0.7631 4.9194 14.3702 19.2896
13 20 0.90 0.8269 0.7674 4.0241 14.8264 18.8505
12 ∞ 0.90 -0.8048 0.7904 4.0241 12.6002 16.6243
14 22 0.90 0.6204 0.9422 4.0241 15.1397 19.1639

Table 2: Optimization results for constructing tolerances for example in section 2.3
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Figure 7: Posterior mean and standard deviation of the response for example in section 2.3

2.4 Example 2: Three controllable factors

This example uses machining data from Taraman (1974) and is presented in table 3. There

are 3 controllable factors - cutting speed (x1), feed (x2) and depth of cut (x3), and three

responses - surface roughness (R), tool life (T ) and cutting force (F ). Table 3 gives the

values of the controllable factors in [−1, 1] coded form based on a central composite design.

The table also shows the logarithm of the observed responses, which are used for modelling

because it is expected, based on prior knowledge of the process [Taraman (1974)], that the

log scaled response is better suited to fit a linear statistical model of the form shown in

equation (3). In this section the proposed approach for tolerance control is demonstrated for

the response, tool life (T). Based on the given data, the model fit to the log of the response,

y = log(T ), is

ŷ = 3.5009− 0.3031x1 − 0.0922x2 − 0.0915x3 + 0.0483x2
1 + 0.0416x2

2 + 0.0682x2
3 (21)

Based on the above model, the optimal tolerance interval can be computed for any given

value of Bl , Bu and φ. In this example, when the posterior variance of the response is

minimized, the smallest interval (u− l) obtained is 0.8297 for φ = 0.99, 0.6040 for φ = 0.95,

and 0.4980 for φ = 0.90. The optimization results for a few combinations of these constraints

are given in table 4. As the optimization is performed using the log of the tool life as the

response, the table also shows the results transformed back into the original variable. Thus,

for example, with a constraint on l of Bl = 40 and on u of Bu = 100, the smallest tolerance

interval that can be set is a tool life of [40, 73.46] minutes with a 95% conformance. It can

also be seen from table 4 that not all combinations are feasible. For example, with a value of

Bl = 45 and no constraint on u for tool life, there is no feasible solution at 99% conformance,
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Figure 8: Posterior mean and standard deviation of the response for example in section 2.4

but there are feasible solutions at 95% or lower conformance. It is noted that unlike in the

previous example the smallest interval (u− l) here is different for different values of Bl and

Bu, for the same value of φ. This is because the region with the desired high posterior mean

does not provide low posterior variance. Hence, as the constraints on l and u get tighter,

the optimal interval (u − l) is larger. This can be seen in the scatter plots of the posterior

mean and variance shown in figure 8. In the figure, the darker circles show regions with high

magnitudes for both the posterior mean and standard deviation. In the plot the posterior

mean is high at the corner point (−1,−1,−1), but the posterior standard deviation is also

high in this region. Thus as the constraint Bl on the lower bound is increased, the optimal

solution moves closer to the corner point, causing an increase in the posterior standard

deviation and consequently resulting in a wider tolerance interval. Using the results from

this example, it is possible to choose a setting (x∗1, x
∗
2, x

∗
3) where the tool life is obtained

within the optimal tolerance intervals at the required probability of conformance. However,

the performance of the other two responses, surface finish (R) and cutting force (F ), at

this setting is not known. The next section extends the Bayesian method for constructing

simultaneous tolerance intervals to multiple response systems.

3 Multiple Response Systems

Here, it is assumed that there are q responses or quality characteristics of interest that

depend on one or more of k controllable factors. It is assumed that each of the q responses

is of the form

yj = x′jβj + εj, (22)

14



x1 x2 x3 R(CLA µ in.) T (min) F (lbs) log(R) log(T ) log(F )

-1 -1 -1 88 70 53 4.4773 4.2485 3.9703
1 -1 -1 76 29 48 4.3307 3.3673 3.8712

-1 1 -1 259 60 100 5.5568 4.0943 4.6052
1 1 -1 194 28 92 5.2679 3.3322 4.5218

-1 -1 1 105 64 76 4.6540 4.1589 4.3307
1 -1 1 82 32 74 4.4067 3.4657 4.3041

-1 1 1 270 44 155 5.5984 3.7842 5.0434
1 1 1 250 24 150 5.5215 3.1781 5.0106
0 0 0 123 35 82 4.8122 3.5553 4.4067
0 0 0 136 31 85 4.9127 3.4340 4.4427
0 0 0 130 38 83 4.8675 3.6376 4.4188
0 0 0 121 35 85 4.7958 3.5553 4.4427

-1.414 0 0 159 52 88 5.0689 3.9512 4.4773
1.414 0 0 115 23 80 4.7449 3.1355 4.3820

0 -1.414 0 77 40 50 4.3438 3.6889 3.9120
0 1.414 0 324 28 129 5.7807 3.3322 4.8598
0 0 -1.414 114 46 68 4.7362 3.8286 4.2195
0 0 1.414 215 33 124 5.3706 3.4965 4.8203

-1.414 0 0 139 46 87 4.9345 3.8286 4.4659
1.414 0 0 111 27 78 4.7095 3.2958 4.3567

0 -1.414 0 61 37 49 4.1109 3.6109 3.8918
0 1.414 0 340 34 130 5.8289 3.5264 4.8675
0 0 -1.414 128 41 71 4.8520 3.7136 4.2627
0 0 1.414 232 28 123 5.4467 3.3322 4.8122

Table 3: Design and experimental data for machining example in section 2.4 [Taraman
(1974)]
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Bl Bu φ optimal x∗1 optimal x∗2 optimal x∗3 optimal (u− l) l u

Transformed Response: log (Tool Life in min.)
log(45) ∞ 0.99 Infeasible
log(40) log(100) 0.99 -1.0000 -0.8471 -0.9385 0.8598 3.6889 4.5486
log(45) ∞ 0.95 -1.0000 -0.8533 -0.9465 0.6264 3.8067 4.4331
log(40) log(100) 0.95 -0.8687 -0.6983 -0.7361 0.6079 3.6889 4.2968
log(45) ∞ 0.90 -0.9845 -0.7429 -0.8020 0.5071 3.8067 4.3138
log(40) log(100) 0.90 -0.7669 -0.6668 -0.6874 0.4988 3.6889 4.1876

Original Response: Tool Life in min.
45 ∞ 0.99 Infeasible
40 100 0.99 -1.0000 -0.8471 -0.9385 54.4992 40.0008 94.5000
45 ∞ 0.95 -1.0000 -0.8533 -0.9465 39.1903 45.0017 84.1920
40 100 0.95 -0.8687 -0.6983 -0.7361 33.4635 40.0008 73.4643
45 ∞ 0.90 -0.9845 -0.7429 -0.8020 29.7222 45.0017 74.7239
40 100 0.90 -0.7669 -0.6668 -0.6874 25.8637 40.0008 65.8645

Table 4: Optimization results for constructing tolerances for example in section 2.4

identical regressors unrelated regressors
uncorrelated errors All the yj have the same set of

regressors, xj = x, and the er-
ror terms εj are uncorrelated be-
tween the responses

Different yj may have a different
set of regressors, i.e., xj is dif-
ferent for different j, and the er-
ror terms εj are uncorrelated be-
tween the responses

correlated errors All the yj have the same set of
regressors, xj = x, and the error
terms εj are correlated between
the responses

Different yj may have a different
set of regressors, i.e., xj is differ-
ent for different j, and the error
terms εj are correlated between
the responses

Table 5: Categories of models for multiple response systems

where xj is a (pj × 1) vector of regressors, βj is a (pj × 1) vector of model parameters and εj

is the error term for response yj. Denote by Σ the (q× q) variance-covariance matrix of the

error terms. Note that if all the responses have identical regressors, then xj = x for all j, and

if the error terms εj are uncorrelated between the responses, then Σ is a diagonal matrix.

There are four different ways to model multiple response systems based on the regressors

present in the models for the individual responses and the correlation of the error terms

between the responses, as summarized in table 5. The Bayesian posterior predictive density

depends on how the multiple responses are modelled and is discussed below.

3.1 Bayesian Predictive Density

For the cases where the error term εj is uncorrelated between the responses, i.e., Σ is di-

agonal, each of the q responses can be modelled independently from the data, regardless of
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whether the responses have identical regressors or not. As in the single response case, it is

assumed that there is data from an experiment with n runs. The observed responses from

the experiment are denoted by (n × 1) vectors yj, where j = {1...q}, and the correspond-

ing design matrices are denoted by Xj. It is noted that Xj = X for all j if the responses

are modelled with identical regressors. When Σ is diagonal, the joint posterior probability

of conformance at a new setting {x∗1...x∗k} for the q responses y∗ = (y∗1...y
∗
q ) is simply the

product of the marginal posterior probabilities of conformance of the individual responses.

Thus, given the data Y = (y1...yq),

p(y∗ ∈ V |x∗j∀j,Y) ≡ p(y∗1 ∈ [l1, u1], y
∗
2 ∈ [l2, u2]...y

∗
q ∈ [lq, uq]|x∗j∀j,Y) (23)

=

q∏
j=1

p(y∗j ∈ [lj, uj]|x∗j ,yj), (24)

where V is the region enclosed by [li, ui]∀ i. Therefore, for the diffuse priors described by

equations (6), (7) and (8), each of the p(yj ∈ [lj, uj]|x∗j ,yj) is obtained from the c.d.f. of the

t-distribution shown in equation (9).

Equations (23) and (24) do not hold if the error terms are correlated, i.e., Σ is non-

diagonal. In such cases, the responses can be modelled as either Standard Multivariate

Regression (SMR) or Seemingly Unrelated Regression (SUR), where the former assumes

that all the response models have the same set of regressors, i.e., Xj = X ∀j and the

latter assumes that each response model may have different regressors. For the SMR case,

the joint posterior probability distribution is given by a multivariate T-distribution [Press

(1982)]. That is, given the (n × p) design matrix X, and the (n × q) response data matrix

Y, the posterior density at a future set of observations given by (p× 1) vector x∗ is

y∗|x∗,Y ∼ T q
ν (B′x∗,H−1), (25)

where ν = n− p− q + 1,

B = (X′X)−1X′Y, (26)

H =
νS−1

1 + x∗′(X′X)−1x∗
, (27)

and

S = (Y −XB)′(Y −XB). (28)

For the SUR case, the posterior predictive density has to be computed by Gibbs sampling.

Percy (1992) shows how a sample of the posterior observation y∗ can be obtained from its

posterior distribution using Gibbs sampling.
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3.2 Optimization

It is assumed that the objective function is to find the setting (x∗1...x
∗
k) that minimizes

some given function, A, such that the posterior probability of conformance of each response,

p(y∗i ∈ [li, ui]|x∗i ,yi) is at least φi, where the φi’s are decided by the plant engineer or

designer. Here also, each of the li’s and ui’s may be constrained to lie within given bounds.

For example, the objective function A =
∏

i(ui−li) finds the smallest (in terms of volume) q-

dimensional cuboid that satisfies the given constraints. The function A could also be chosen

such that different weights are given to the bounds on different responses. The objective

function in this case is formulated as,

min
x∗1...x∗k

A =

q∏
i=1

(ui − li)

s.t.,

p(l1 ≤ y∗1 ≤ u1|x∗1,y1) ≥ φ1

p(l2 ≤ y∗2 ≤ u2|x∗2,y2) ≥ φ2

... ≥ ...

p(lq ≤ y∗q ≤ uq|x∗q,yq) ≥ φq

li ≥ Bli , ∀i = {1...q}
ui ≤ Bui

, ∀i = {1...q}
x∗1...x

∗
k ∈ <.

For a given x∗i , if the error terms are uncorrelated, the smallest interval [li, ui] for each re-

sponse yi can be found using the marginal posterior distribution (y∗i |x∗i ,yi) and the algorithm

previously shown in figure 3. As all the (ui − li) > 0, this also gives the smallest value of

A =
∏

i(ui − li) for that x∗. This is true for any A that is an increasing function of each

(ui − li). The algorithm for finding the smallest A for a given x∗i is used within a nonlinear

optimization program that searches within the space of the feasible (x∗1...x
∗
k) to find the set-

ting that gives the smallest value of A. The methodology is illustrated by an example in the

next section.

If the error terms are correlated, then a nonlinear optimization program that searches in

the feasible space of both (x∗1...x
∗
k) and [l, u] must be used to solve the optimization problem

for both the SMR and the SUR models. It is noted that depending on the size of the problem,

the optimization could be tedious especially in the SUR case.
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3.3 Multiple response example

This example uses the machining data from Taraman (1974) shown in table 3 to simulta-

neously set tolerances on all the three responses. Once again, the log of the responses are

used for modelling, where y1 = log(R), y2 = log(T ), and y3 = log(F ). The response models

obtained are,

ŷ1 = 4.8773− 0.0960x1 + 0.5336x2 + 0.1429x3 − 0.0216x2
1 + 0.0543x2

2 + 0.0969x2
3, (29)

ŷ2 = 3.5009− 0.3031x1 − 0.0922x2 − 0.0915x3 + 0.0483x2
1 + 0.0416x2

2 + 0.0682x2
3, (30)

ŷ3 = 4.4260− 0.0332x1 + 0.3391x2 + 0.2092x3 − 0.0019x2
1 − 0.0208x2

2 + 0.0522x2
3. (31)

Figure 9 shows the feasible x∗ plotted on a grid spaced 0.1 apart in the region {x∗1 ∈
[−1, 1], x∗2 ∈ [−1, 1], x∗3 ∈ [−1, 1]}, assuming a desired probability of conformance φi = 0.80 ∀ i

for four different cases:

1. All the three responses have constraints on l and u. Here, surface roughness has

a constraint Bu = 120, tool life has a constraint Bl = 35, and cutting force has a

constraint Bu = 60. Note that all the constraints are one-sided as it is desired that

the surface roughness be as low as possible, tool life be as high as possible and cutting

force be as low as possible.

2. Only the surface roughness response is constrained with a value of Bu = 120.

3. Only the tool life response is constrained with a value of Bl = 35.

4. Only the cutting force response is constrained with a value of Bu = 60.

As expected, from figure 9, it is seen that the feasible region itself is much smaller when

constraints are imposed on all the three responses simultaneously. Table 6 shows the results

of the optimization to set simultaneous tolerance limits on all the responses for different

combinations of the constraints. Here the objective function used is A =
∏

i(ui − li), where

[li, ui] is the tolerance limit on response i in the logarithmic scale. Thus for example, in

the table, at a desired value of probability of conformance φi = 0.9 ∀i, and with constraints

Bu = 110 on surface roughness, Bl = 45 on tool life and Bu = 90 on cutting force, the

optimal setting of the controllable factors obtained is [−0.9309,−0.8317,−0.8001] where the

tolerance limit on surface roughness is [71.8, 110.0], on tool life is [45.0, 74.8], and on cutting

force is [53.7, 58.4]. Thus, using the methodology proposed it is possible to set simultaneous

tolerances on multiple responses with a desired probability of conformance.

For the multiple response case, the solution to the optimization problem also depends

on the choice of the user-defined function A. For example, suppose there are two responses.
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Figure 9: Feasible Regions for φi = 0.8 ∀i for multiple response example in section 3.3

Suppose response 1 gives the smallest interval (ua
1 − la1) = 1 at the setting x∗a and the

smallest interval (ub
1 − lb1) = 2 at the setting x∗b , and response 2 gives the smallest interval

(ua
2 − la2) = 1.2 at the setting x∗a and the smallest interval (ub

2 − lb2) = 0.5 at the setting x∗b .

Assuming A =
∏

i(ui − li), the value of A at x∗a is 1.2 and at x∗b is 1.0. In other words,

the solution at x∗a is sub-optimal given the better value of A at x∗b . If instead, we assume

A =
∑

i(ui − li), then the value of A at x∗a is 2.2 and at x∗b is 2.5. Therefore, the solution at

x∗b is now inferior than the solution at x∗a for the multiple response problem.
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4 Discussion

A Bayesian method was proposed to set tolerance limits on one or more responses to provide

a given desired probability of conformance, and to determine at the same time the optimal

settings of the control factors that the response(s) depend on. The method not only gives

the tolerance interval that satisfies the constraints on the mean and the probability of con-

formance, but also finds the smallest such interval in case of single response systems, and

the smallest value of a given function of the intervals for multiple response systems. This

ensures that the quality characteristics or responses that adhere to the specification also

have the smallest variation between themselves. The proposed method was illustrated by

two examples for single responses systems and an example for a multiple response system.

Some additional comments on the method are given below:

1. As the posterior predictive distribution of the response depends on the observed data,

the solution to the tolerance control problem is also dependant on it. As seen in the

example in section 2.3, the optimization problem had a non-empty feasible region when

data from both the replicates was used, but had empty feasible regions when only one

of the replicates was used. Thus, when additional experimental data are used in any

of the examples presented, it is possible to get smaller tolerance regions that satisfy

the given constraints.

2. In the previous sections, it was assumed that the controllable factors can be set to

desired values by the user. However, in practice, there are errors associated with these

settings. This error is also transmitted to the response which could result in a lower

probability of conformance of the response φr to the calculated tolerance region, than

what was originally constrained by φ. The reduced probability of conformance φr can

be estimated if the distribution of the errors in the control factors is known.

Suppose lo and uo are the calculated tolerance limits at the desired setting of the

controllable factors xo = (xo
1...x

o
k) as a result of the optimization, then assuming that

the jth controllable factor is normally distributed with a variance of σ2
j about the setting

xo
j , it is possible to represent the actual value of the controllable factor as x̃j = xo

j + zj,

where zj ∼ N(0, σ2
j ). Thus, we have the actual settings of the controllable factors

x̃ = xo + z, where x̃ = (x̃1...x̃k) and z = (z1...zk). The posterior distribution of

the response for a single response system given the actual setting of the controllable

factors p(y∗|x̃,y) is given by equation (9). If x̃ is known then the reduced probability

of conformance φr is given by p(y∗ ∈ [lo, uo]|x̃,y), and can be computed from the c.d.f.

of the t-distribution. However, as the actual value of x̃ is not known because of the
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random component z, the value of φr is computed by taking the expected value with

respect to z:

φr = Ez [p(y∗ ∈ [lo, uo]|x̃,y)] . (32)

In the above equation, the expected value can be estimated by simulation using the

steps below:

(a) Choose sufficiently large N. Set count = 1.

(b) Generate z(count) by sampling from the distribution zj ∼ N(0, σ2
j ) ∀j.

(c) Set x̃(count) = xo + z(count).

(d) Compute p(y∗ ∈ [lo, uo]|x̃(count),y).

(e) Set count = count + 1. Repeat steps a, b and c until count > N .

(f) Estimate the expected value using the Weak Law of Large Numbers (WLLN):

lim
N→∞

1

N

N∑
i=1

[p(y∗ ∈ [lo, uo]|x̃(i),y)] = Ez [p(y∗ ∈ [lo, uo]|x̃,y)] . (33)

It is noted that if large variations in the controllable factors are expected, then the

reduced probability of conformance φr may be considerably less than φ. In such cases,

it is recommended that the user is conservative in choosing φ during the optimization

to obtain the tolerance limits.

For multiple response systems, the reduced probability of conformance can similarly

be obtained for each response by taking the expected value of the marginal posterior

probability of conformance p(y∗i ∈ [loi , u
o
i ]|x̃i,yi) with respect to the corresponding zi.
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