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Abstract

We investigate multivariate process adjustment policies in the presence of fixed adjustment
costs. A fixed adjustment cost leads to a trade-off between adjusting a process continuously
and allowing the process to drift until a bound is violated. The problem of determining the
best bounded adjustment policy and the optimal bounded adjustment parameter is addressed.
Although the univariate bounded adjustment problem has received interest in the past, there
has been little focus on the multivariate case in the literature. It has been shown that in
the univariate case, the shape of the optimal adjustment policy is a dead band. Determining
the shape of the optimal dead region and the parameter that defines this region in the
multivariate case is a difficult problem. A State-Space model is formulated for the multivariate
bounded process adjustment problem and a Kalman Filter based controller is used. With
the help of simulation, the optimal bounded adjustment parameter is computed for two
specific dead subspace shapes of practical applicability. An investigation of the performance
of the simulation-optimization approach is included as the dimensionality of the observations
increases. Validation of this approach with the only two analytic results available for deadbands
(univariate and bivariate) confirms the accuracy of the optimal solutions found. An illustration
in a semiconductor manufacturing process is presented and MATLAB code that implements
the methods is developed and made available.

KEYWORDS: Multivariate Process Control, Bounded Adjustment, Adjustment Cost,
Optimal Adjustment Policy, Drug dosage management.

1 Introduction

Statistical quality control deals with the application of statistical techniques to monitor and control
processes to ensure that the output obtained meets certain preset criteria. If the process does not
perform as desired, adjustments are made to the controllable inputs to bring the process to a state
of statistical control. The monitoring aspect of quality control is often termed Statistical Process
Control (SPC) and the adjustment aspect is more commonly known as Engineering Process Control
(EPC) or Automatic Process Control (APC). Economic considerations have long been part of the
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SPC/EPC methodology where the objective is to control the process such that the costs incurred
in operating the process are minimized.

Usually, a cost is associated with the quality characteristic(s) of interest being off-target. This
cost is often assumed to be quadratic and proportional to the squared deviation from target. In
certain situations, in addition to the off-target cost, there exists a fixed cost for adjusting the process
when it is off-target. This is referred to as a fixed adjustment cost. For example, overhauling a
running machine may result in a fixed cost irrespective of the condition of the machine. The
presence of this fixed cost affects the type of control policy that is optimal from an economic point
of view.

In classical control problems, an adjustment is made to the process at each discrete time point
when the process is off-target. With the fixed adjustment cost, making an adjustment at each of
these time points may not be the optimal control policy. Instead, an adjustment is made when
some criterion is met. For example, if there is a single quality characteristic of interest and a
single controllable input, the criterion may specify that an adjustment be made to the controllable
input when the response (quality characteristic) exceeds a certain pre-defined bound. This is more
commonly referred to as the univariate bounded adjustment problem. Below, we review the previous
work on this problem. In this article, our objective is to investigate similar bounded adjustment
problems in the multivariate setting, i.e. when there are multiple quality characteristics of interest
and multiple inputs that can be used to control the process.

The univariate bounded adjustment problem was studied as early as 1963 by Box and Jenkins.
In their paper, Box and Jenkins [2] discuss the “machine tool control problem” where a machine is
mass producing components and a quality characteristic is measured periodically. A fixed cost of
making an adjustment to the machine was assumed. They showed that the optimal control policy
that minimizes the costs of being off-target and making adjustments has the form of a dead band,
which is a set of symmetric bound lines around the desired target. The optimal policy is to adjust
if the one-step-ahead minimum mean squared error (MMSE) forecast of the quality characteristic
does not fall in the dead band.

Crowder [5] considers the univariate bounded adjustment problem for the finite horizon case.
A dynamic programming approach is used to find the optimal adjustment strategy. It is shown
that in the finite horizon case, the optimal policy has time-varying limits. Box and Jenkins used a
renewal process argument to derive the optimal adjustment policy for the machine tool problem.
Crowder shows that the limits increase as end of the process nears and hence it is less likely that
an adjustment will be made near the end of run. The short-run limits are shown to be dependent
on the length of the production run and the use of infinite-horizon limits for a short-run problem
is shown to increase the total cost.

Box and Kramer [1] extend the methodology to the case where observations are taken at specified
sampling intervals and there is a cost of taking an observation. Jensen and Vardeman [11] consider
the finite-horizon model in the presence of adjustment errors and deterministic drift in addition
to a fixed adjustment cost. They show that the optimal policy in this case also is a deadband of
upper and lower action limits that depend on the parameters that define the process. In addition,
they show that even with zero adjustment cost, the optimal policy is a deadband in the presence
of adjustment errors. Luceño et al. [12] present a numerical method that minimizes the overall
expected cost of taking an observation, making and adjustment and being off-target. This method
computes the optimal sampling interval, the bound limits and the average adjustment interval in
the univariate bounded adjustment problem with fixed adjustment costs and sampling costs.

Del Castillo and Göb [7] consider a bivariate bounded adjustment problem with a quality vector
consisting of two responses and an input vector of two controllable inputs. With the help of
approximations, they derive the optimal adjustment policy for the bivariate case.
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It is important to point out that all of the above methods consider the univariate bounded ad-
justment problem where there is one response and one input, with the exception of Del Castillo and
Göb [7] who consider a bivariate problem. No authors have considered higher dimensional bounded
adjustment problems. However, in many practical applications in industry we are forced to deal
with multiple quality characteristics and multiple inputs to adjust the process. Healthcare presents
another set of interesting applications where multiple responses need to be jointly considered. Doyle
III et al. [8] consider a Run-to-run control approach for diabetes management where the maximum
and minimum glucose levels of patients need to be controlled by adjusting the insulin timing and
quantity. They note that a multivariate control approach should be designed to solve the problem;
however, univariate controllers are used for each input since they state that the effects of the inputs
are relatively decoupled. Good et al. [9] consider the general drug dosage adjustment problem and
show how a run-to-run control approach can be better than existing control algorithms in use via a
case study on the control of anticoagulant medication. In such drug therapy management problems
where there is a fixed cost of applying a medication or treatment, a bounded adjustment policy that
recommends “control” only when certain health indicators (e.g. maximum glucose level in the case
of diabetes) exceed certain bounds would be useful in minimizing the overall cost of medication as
well as the discomfort suffered by the patient.

It must be noted that an analytical solution to the general multivariate bounded adjustment
problem where the shape of the optimal region is also found is a difficult problem. In this paper,
instead, we focus our attention on two specific the multivariate bounded adjustment policies with
given shapes and optimize the parameters given the form of the policy. We do not consider sampling
costs in this paper.

The paper is organized as follows. In Section 2, we describe the bounded adjustment problem
in more detail and outline the univariate dead band policy and propose two multivariate policies
that we investigate. Section 3 discusses the approach that we adopt to solve the multivariate
bounded adjustment problem. The simulation approach that is used is described in Section 4. This
section includes validation results for our method compared to the only two instances where analytic
results have previously been derived (univariate and bivariate). Computational requirements of the
simulation-optimization method as the dimensionality increases are also analyzed. To show the
practical applicability of the approach presented in this paper, we provide a case study with a
multivariate problem in Section 5.

2 Bounded Adjustment Problem

Usually, in standard control problems, an off-target cost is incurred when the quality characteristic
deviates from a target, or equivalently, when the deviations from target Y deviate from zero. Often,
this cost is assumed to be proportional to the square of the deviation from target. However, in
certain processes, a fixed cost may be incurred each time an adjustment is made to the process.
This is particularly true in discrete part industries, for instance, in metal part, electronics or in
semiconductor manufacturing, as pointed out by Box and Luceño [4]. In these industries, to make
an adjustment it may be necessary to stop a machine to dismount and re-mount a part or change
a tool that wears (e.g., polishing pads in a polishing process in semiconductor manufacturing).
This will result in a fixed cost independent of the magnitude of the adjustment. Control problems
with fixed adjustment costs have also been discussed in healthcare, in particular, in therapies that
require constant monitoring of a patient’s health like insulin administration [8].

The fixed cost adds complexity to the control policy that needs to be applied to optimally
control the process. In the absence of fixed costs, we are familiar with the notion of continuously
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2.1 Univariate Dead Band

adjusting the process (at discrete time intervals) when the process is off-target. In such cases, the
optimal control is derived based on some criterion, for example, minimizing the mean squared error
(MSE) of the forecast of Y or minimizing the variance of the adjustments made. In the presence of
fixed costs, the optimal control policy depends on the costs involved and the procedure to find this
optimal policy involves minimizing a loss function that accounts for the cost for being off-target
and the fixed adjustment costs.

Below, we briefly describe the univariate bounded adjustment problem and the optimal adjust-
ment policy for this problem. We then outline the multivariate problem and discuss two bounded
adjustment policies that we consider in this paper for controlling the process.

2.1 Univariate Dead Band

The univariate bounded adjustment problem was first studied in a seminal paper by Box and
Jenkins [2]. They consider the machine tool control problem where a machine mass produces
components and some quality characteristic of the component is of interest. Let Y denote deviations
of the quality characteristic from its target. A cost is incurred whenever Y is off target (off zero)
and this cost is assumed to be proportional to the square of the deviation from target, with the
proportionality constant defined by a parameter CT , a positive constant. In addition, a fixed
adjustment cost CF is sustained each time an adjustment is made. CF is assumed to be independent
of the magnitude of the adjustment made. This fixed cost can be thought of as the price that is to
be paid in changing the settings of the controllable inputs or the cost of replacing a part etc.

Box and Jenkins showed that the shape of the optimal bounded adjustment policy in the
univariate case was a dead band, characterized by a parameter L. They use dynamic programming
to show that the optimal control policy is to adjust when the absolute value of the forecast of the
quality characteristic exceeds L, i.e. when |Ŷ | ≥ L. A renewal reward process argument was used
to show that the optimal value of the parameter L is obtained by minimizing the long run expected
loss given by:

Loss =
CTE(

∑
t Y

2
t )

AAI
+

CF
AAI

(1)

where AAI is the average adjustment interval which is defined as the average number of periods
between two adjustments.

Box and Jenkins [2] also show that the optimal L depends on the costs via the ratio CF
CT

and
they provide a short table with optimal parameter values for various values of this ratio. Box and
Luceño [4] extend this table further using simulation techniques and employ a numerical method
in [12]. We discuss these tables in more detail in a later section.

2.2 Multivariate Bounded Adjustment Policies

We now consider extension of the univariate deadband adjustment case to the case a process is
multivariate with both a vector quality characteristic Y ∈ <p and a vector of adjustment variables
U ∈ <q. Such situations arise frequently in industries such as semiconductor manufacturing where
multiple quality characteristics are measured and multiple input settings need to be adjusted to
control the process. We consider the general MIMO (Multiple Input Multiple Output) process
adjustment problem in the presence of fixed adjustment costs.

Let us assume that the process is monitored at discrete time points t, t = 1, 2, . . . . Let Yt

denote the observed vector of deviations from target of the quality characteristics of interest to
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2.2 Multivariate Bounded Adjustment Policies

the process engineer. The process engineer wishes to control the process in order to minimize the
deviations from target. This is done by adjusting the vector of controllable factor by amounts
denoted by U ∈ <q, at discrete time intervals. Let us assume that an adjustment Ut−1 ∈ <q
is applied after observing Yt−1 and before observing Yt. We assume a state space formulation,
where the adjustments affect the unobserved state Z. We further assume that the process has no
dynamics, i.e. the effect of a control applied to the state after t−1 manifests itself in the observation
made at time t.

As noted earlier, due to the presence of fixed costs of adjustment, it may not be optimal, in
terms of total cost, to adjust the process at every time period. Hence a bounded multivariate
adjustment policy is required to guide the process engineer and determine when an adjustment
needs to be made. We note that if the fixed cost CF = 0, the optimal policy in the multivariate
case also is to adjust at each time period.

Two issues need to be addressed for the bounded adjustment problem. The first one deals with
the type of policy that is used to trigger an adjustment and the second one deals with determining
the optimal adjustment parameter for the policy that would minimize the average cost inclusive of
adjustment and off-target costs. In the univariate case, the optimal policy was shown by Box and
Jenkins to be a dead band where an adjustment is triggered when the forecast of the characteristic
exceeds a certain width of the band. In the general multivariate case, the shape of the optimal dead
region is not clear. Below, we outline two policies that we consider to be reasonable for bounded
adjustment. We discuss an approach that finds the optimal parameter for each of these policies
in the next section. It must be noted that the multivariate bounded adjustment problem is a
considerably difficult one and it may not be possible to find an analytical solution such as the one
given by [2] for the univariate case.

The multivariate bounded adjustment policies that we consider are as follows:

1. Quadratic Form (Ellipsoidal)
Here we consider a policy where an adjustment is made after the observation at time t (and
before time t+ 1) if the following condition is met:

(Ŷt+1)
′B1(Ŷt+1) ≥ H (2)

where Ŷt+1 is the minimum mean square error (MMSE) one-step-ahead Kalman filter-base
forecast of the deviations from target (different targets for each variable are possible) and B1

is an arbitrary p × p positive definite matrix associated with this policy (Policy 1) based on
process considerations. The adjustment dead region in this case is an ellipsoid in <p.

2. Box Form (Polyhedral)
The adjustment policy here is a direct extension of the univariate dead band into
p−dimensional space. The policy triggers an adjustment when the following condition is
met:

bi.|Ŷ(i)
t+1| ≥

√
H for any i, i = 1, . . . , p (3)

where Ŷ
(i)
t+1 is the ith component of the deviation from target vector at t + 1 and bi is a

process related parameter corresponding to the ith dimension of the quality vector. The
bi’s are specified in the form of a vector B2 (corresponding to Policy 2) by the user based
on process considerations. The above condition implies that an adjustment is made when
any component Y(i) of the quality vector Y violates the univariate dead band on the one-
dimensional subspace specified by i (in other words, the i−axis).
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Note we use the same notation H to denote either bound regardless of the form of the adjusting
policy (ellipsoidal or polyhedral). In the rest of the paper, it will be made clear which of the
two policies we are talking about when we refer to H. The ellipsoidal form is probably easier to
implement in practice in a non-automated form, as it calls for an adjustment when a scalar quantity
violates its bound. It could be implemented with an “adjustment chart” similar to those proposed
by Box and Luceño [4] in the univariate case.

In the next section, we describe the multivariate approach to finding the best bounded adjust-
ment policy among the two policies considered above. We discuss the process model, the MMSE
predictions using a Kalman filter, and the methodology for finding the optimal bound parameter
of each of the two adjustment policies.

3 Multivariate Approach

A State-Space model is formulated for the process and the control action, when the bounded
adjustment policy triggers an adjustment, is computed based on a Kalman Filter estimate of the
one-step-ahead forecast of Y. We show the equivalence of this approach with a multivariate EWMA
controller and compute the corresponding EWMA parameter in a special case.

3.1 Process Model

The State-Space model with control that is used is as follows:

Yt = AZt + αt

Zt = Zt−1 + Ut−1 + βt (4)

where

• Yt is a p× 1 vector of observations (deviations from target);

• Zt is the q × 1 state vector;

• Ut is a q × 1 vector of adjustments to the controllable factors;

• αt is a p× 1 vector that corresponds to a multivariate normal white noise series ∼ N(0,Σα);

• βt is a q × 1 vector that corresponds to a multivariate white noise series ∼ N(0,Σβ), (the
sequence of αt’s and βt’s are assumed to be uncorrelated)

• A is a p× q matrix that relates the observation to the state.

The State-Space formulation models the internal process dynamics that relate the state variables
specified by Z to the observations specified by Y. The inputs to the process, specified by U
are assumed to affect the state of the process via the state equation. The process dynamics are
specified by the measurement equation that relates the state vector to the measurement vector. The
multivariate white noise β represents the drift in the state Z and α represents the measurement error
in the observation Y. The control Ut−1 is applied after the measurement Yt is taken and before
Yt+1 is observed. It is assumed that given the initial state of the process Z0, the measurements
Y1,Y2, . . . ,Yt up to time t and the inputs U1,U2, . . . ,Ut, estimates of the state and output of
the process in the future can be computed. In the next subsection, we briefly describe the use
of Kalman Filtering to compute the estimates of the state and output. The control action to be
applied depends on the estimates as will be shown below.
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3.2 Kalman Filter Based Estimation and Control

3.2 Kalman Filter Based Estimation and Control

The control strategy is based on the estimation of the state using a Kalman filter. A Kalman Filter
(KF) is a recursive data processing algorithm that uses the observations of a state-space system to
estimate the state, filtering the observational noise. A very large body of literature exists on Kalman
filters, see [13] and [16] for an introduction. While other heuristic methods for estimation of the
state (and hence, for control), such as an exponentially weighted moving average (EWMA) could
be used as well, they would lack general optimality properties. In contrast, the Kalman Filter
is known to yield the optimal reconstruction and prediction of the state Zt given the observed
{Ut} and {Yt} assuming the model is as in (4). If the errors are normally-distributed, the KF is
MMSE optimal, if the errors are not normal the KF still provides the best linear estimator [6]. An
interesting relation shown in appendix A and B is that if in (4) the covariance matrices are diagonal
and the state and observation vectors are of the same dimension (p = q), the KF has exactly the
form of an EWMA of the observations (with a particular choice of smoothing parameter).

The steps used to predict the state and the observations in the multivariate State-Space approach
can be summarized as follows. Starting with an initial value for the state vector, say Ẑ0, observations
of the quality vector Y (dev. from target) are made at discrete time intervals. At each time interval
t, the posterior estimate of the state Ẑt is computed based on the measurement Yt using a KF.
This, in turn, is used to construct a one-step-ahead prior estimate Ẑ−t+1 of the state. This prior state

estimate is used to compute a one-step-ahead prior estimate Ŷ−t+1 = AẐ−t+1. Once the measurement

at time t+ 1 is made, the posteriori estimate of the state vector at t+ 1 (Ẑt) is computed and the
procedure repeats itself for the next time period. Meinhold and Singpurwalla [14], Crowder [5], and
Del Castillo [6] provide more details regarding the Kalman Filter and its application to statistical
quality control.

If Y is a vector of deviations from target and if there exist only quadratic off-target costs, the
optimal control to be applied at every time period t is

Ut = −Ẑt (5)

where Ẑt is the KF estimate of the state vector at t. This is easily justified by examining the
state equation since setting Ut = −Ẑt would make the one-step-ahead estimate Ẑt+1 = 0 and
hence Ŷt+1 = AẐt = 0. When fixed adjustment costs are also present, this controller needs to be
modified. We use instead any of the two control decision rules in section 2 and apply (5) only at
the time instances when the rule indicates so, otherwise we let the process run uncontrolled. Note
that the deadband control decision rules use the prediction of the observations, but these are also
obtained from the KF prediction of the state, since from the observation equation we have that
Ŷt+1 = AẐt+1.

We would like to point out that the KF estimate of the observations based on the Kalman Filter
is equivalent to an EWMA-based forecast. We show in Appendix A that the following relation holds
for the one-step-ahead estimate of Y obtained using the Kalman Filter:

Ŷt = AKYt + (I−AK)Ŷ−t

where K is the q × p steady state Kalman gain matrix (refer Appendix A for definition) and Ŷ−t
is the a priori estimate of the measurement vector prior to the measurement at time t. This can
be rewritten as follows:

Ŷt = ∆Yt + (I−∆)Ŷ−t (6)

7



3.3 Multivariate Loss Function

where ∆ = AK. Thus the one-step-ahead prediction (without control) is given by a vector
EWMA with parameter ∆ = AK.

We also consider a special case of the above when the covariance matrices Σα and Σβ, and
A are diagonal and the measurement and state vector are of the same dimension, i.e. p = q. In
Appendix B, we show that it is possible to compute the EWMA parameter analytically.

3.3 Multivariate Loss Function

Extending the univariate loss function in (1) to the multivariate case, the total cost incurred has
two components - (1) the cost of being off-target, say LTt , which is assumed to be quadratic, and
(2) the fixed cost of making adjustments, say LF , where LTt = Y′tCTYt at each time period t and
LF = CF each time an adjustment is made. Note that Yt denotes a vector of deviations from the
target. Then, the overall expected loss for an infinite time-period run can be written as

L = E(
∑

LTt) + E(LF ) (7)

For computational purposes, we can estimate L per unit time interval with L̂ (thus L̂ is the
overall loss per time unit) in a finite-horizon run of N time periods as follows:

L̂ =
∑
t Y′

tCTYt

N +
CF × N̂A

N
(8)

where N̂A is the actual number of adjustments made during the run. Note that E(LF ) = CF ×
E(NA), where NA is a random variable that represents the number of adjustments made in a run.

For the univariate deadband adjustment problem, Box and Jenkins [2] pointed out that the
optimal deadband parameter depends on the ratio CF

CT
of the fixed cost to the off-target quadratic

cost (note that in the univariate case, CT is a scalar and hence we can divide by this quantity). In
the multivariate setting, we use the form of the loss function in (8) to derive an analogous result.

From (8):

L = E[
∑

(Y′tCTYt)] + CF × E(NA)

The expectation of the quadratic form above is obtained by noting that E(Y′tCTYt) =
µ′Yt

CTµYt
+ trace(CTΣYt) = trace(CTΣYt) where µYt

is the mean and ΣYt is the covariance
matrix of the vector Yt. Note that we have chosen Yt to represent the deviation from target of the
response and hence µYt

= 0. Thus we see that the average loss in the multivariate setting depends

on the ratio CF
trace(CTΣYt )

.

We use either of the two control schemes introduced earlier (polyhedral or ellipsoidal) and
minimize the loss function L̂ with respect to the deadband control parameter H using a simulation
approach described next. The simulation approach provides estimates of the two expected values
present in L, given that obtaining closed-form expressions for these expectations in the general
dimensional case appears to be a formidable problem (see [7]).

4 Simulation-Based Optimization

We use simulation to determine the optimal bound parameter for a given policy and process. The
simulation was implemented in Matlab and takes input parameters that define the State-Space
model in (4).
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4.1 Algorithm

4.1 Algorithm

The simulation-optimization algorithm is as follows. Given input parameters A, Σα, Σβ, CF and
CT , the simulation tries to find the best policy among the two policies described in 2.2 and the
value of H that minimizes the overall cost of being off-target and of making adjustments. This
is done by optimizing the loss function in (7) with respect to the bounded adjustment parameter
H. It is assumed that the model parameters A, Σα, Σβ have been estimated from past process
data (maximum likelihood methods for this task are described in Shumway and Stoffer [15] ch. 4).
Designing a multivariate bounded chart without the cost parameters CF and CT in case they are
hard to estimate is described in section 5.2 below.

A Matlab function simulates the State-Space model for a large number of time periods, say N .
At each time period, the state and measurement vectors for the next time period are estimated
using the Kalman Filter, the condition specified by the bounded adjustment policy is checked and
an adjustment, given by (5), is made if the condition is violated. The Kalman Filter estimation is
implemented using Matlab’s kalman function that is part of the Control System toolbox.

The optimization routine consists of a search routine that searches over a one-dimensional grid
for the optimal value of H. The routine is programmed to stop after a pre-defined tolerance
condition on the current value of the cost function. A pre-specified required percentage difference
on the cost can be specified so that the algorithm will stop the line search if the percentage (p.c.)
difference between the current cost function and the minimum cost so far exceeds this required p.c.
difference.

The computational time to find the optimum bound H∗ is not affected too strongly by the
dimensionality of the control problem: regardless of the dimensionality, the optimization is univari-
ate, as the control policies have only one parameter, the bound H∗. For a fixed number of periods
N , the time to simulate the process depends on the multivariate random generator algorithm used.
Also, the computations in the Kalman gain require a p× p inverse where p is the no. of responses
and for large p may become a bottleneck. Table 1 shows the results of running our implementation
of the simulation-based line search optimization over H using Matlab on a 4GHz 4-core iMac. The
total time to obtain H∗ is shown in seconds and scaled by using the time for p = 3 as the unit.
Since the optimization is stopped when the percentage difference exceeds 5%, it makes more sense
to look at the computing time per search point, since as p increases the algorithms searches over
more values of H. The values Hmax indicate what was the largest value tried until the stopping
criteria of the algorithm; since the step size was 0.5 there were twice these many search points.
The last two columns therefore show the computational time per search point in seconds and scaled
relative to the p = 3 case. As it can be seen, the increase in total computing time is in good part due
to the longer searches needed as p increases, since H∗ will typically be higher for p higher. The per
point times begin to increase faster than linearly when the inverse operations (O(p3)) become the
bottleneck. We point out,however, that this optimization is done off-line, only once. The operation
of the resulting multivariate bounded controller does not requires major computational effort and
can be done on-line regardless the dimensionality of p or q.

The Matlab code muBoundS implements the optimization routine to find H∗ and is available for
download from the Engineering Statistics and Machine Learning Laboratory at the Pennsylvania
State University: http://sites.psu.edu/engineeringstatistics/computer-codes/. More in-
formation on the use of the different options of the optimization routine such as the termination
conditions can be found in the README.txt file at the same location.
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4.2 Validation

p Hmax total time scaled total search points time/point scaled per point

3 11.50 8.75 1.00 23 0.38 1.00
5 13.50 11.02 1.26 27 0.41 1.08

10 18.50 16.06 1.84 37 0.43 1.13
20 23.50 22.58 2.58 47 0.48 1.26
40 37.00 48.58 5.55 74 0.65 1.71
70 62.50 122.03 13.95 125 0.97 2.55

100 90.00 245.09 28.01 180 1.36 3.58
150 136.50 642.90 73.47 273 2.35 6.18

Table 1: Computational effort for finding the optimal bound H∗ as a function of p, the dimension of
the observation vector. Unscaled times in secs. Parameters used were p = q, A = Σα = Σβ = CT =
B1 = Ip, CF = 10, N = 2500 (first 500 eliminated), 50 replicates, ellipsoidal policy. The search on
H used a grid size equal to 0.5, and stopped when the percentage difference in cost exceeded 5%
(see text).

4.2 Validation

Since the optimization approach is based on simulation, it is important to validate its results
comparing against analytic ones. There exist analytic expressions for the loss function only in the
univariate and bivariate cases, and in this section we compare our approach against these two cases.
In the univariate case, our code was validated comparing against the model originally considered
by Box and Jenkins. Box and Luceño [4] augment the table in [2] and provide additional optimal
bounded adjustment parameters and corresponding AAI’s for various values of the cost ratios CF

CT
.

Below, we repeat this table, adding columns for the optimal H computed from the standardized
bound L

λσa
in [4], and the optimal H and AAI obtained using the State-Space model with Kalman

Filter based estimation.
We see from Table 2 on the following page that the simulation code using the State-Space model

with Kalman Filter-based estimation was able to validate the AAI and the MSD reported by [4]
(using the optimal bound parameter supplied by [4]). The columns of the table are as follows. BL
Hopt and BL AAI refer to the optimal value of H (computed from their optimal parameter L) and
the AAI at this optimal value respectively as given by [4]. The optimal values computed by our
simulation code, using the polyhedral scheme, are given by Hopt and AAI. The minimum value of
the cost function at our Hopt is given by LHopt .

In order to verify that our simulation code can match the [4] results exactly, we computed the
AAIBL Hopt , mean squared deviation MSDBL Hopt and cost LBL Hopt using our simulation code at
the optimal value BL Hopt given by [4]. These were compared with BL AAI and MSDBL provided
by [4] and we see that there is a very close match. In addition, we see that there is a good match
between our simulation’s optimal cost LHopt and the minimum cost computed using BL Hopt. Hence
we conclude that our simulation code is error-free as far as the univariate case is concerned.

However, we note that the optimal H computed by our simulation optimization differs slightly
from the optimal value reported by [4]. We investigated this further with the help of extensive
simulation runs. In a simulation experiment with N = 10, 000, shown in Figure 1 on page 12,
we see that the cost function is very flat near the optimum. This leads us to the conclusion that
the small difference in optimal values of H between our simulation and the ones provided by [4] is
primarily due to the stochastic nature of simulation runs; a different random number seed may very
well have resulted in an optimum that is closer to the value reported by these authors. It is also
worth mentioning here that our simulation runs used a finite-horizon of 10, 000 time periods and this
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4.2 Validation

RA CF BL
Lopt

λσa
BL Hopt Hopt BL AAI AAI AAIBL Hopt LBL Hopt LHopt MSDBL MSDBL Hopt

1 0.25 0.93 0.22 0.28 2.6 2.9 2.57 1.13 1.13 1.04 1.04
2 0.5 1.23 0.38 0.4 3.5 3.7 3.54 1.22 1.22 1.08 1.07
3 0.75 1.43 0.51 0.48 4.3 4.1 4.28 1.29 1.28 1.11 1.11
4 1 1.59 0.63 0.64 4.9 5.0 4.97 1.33 1.33 1.14 1.13
5 1.25 1.72 0.74 0.76 5.5 5.6 5.54 1.38 1.38 1.16 1.16
10 2.5 2.17 1.18 1.1 7.8 7.4 7.85 1.57 1.57 1.25 1.25
20 5 2.70 1.82 2.0 11.0 11.8 11.06 1.83 1.83 1.38 1.38
30 7.5 3.05 2.33 2.4 13.5 13.9 13.47 2.04 2.03 1.48 1.49
40 10 3.33 2.77 2.55 15.5 14.6 15.50 2.22 2.21 1.58 1.58
50 12.5 3.55 3.15 2.9 17.3 16.3 17.43 2.37 2.36 1.65 1.64
60 15 3.75 3.52 3.3 19.0 18.2 19.17 2.51 2.49 1.73 1.71
70 17.5 3.92 3.84 3.7 20.6 19.9 20.68 2.62 2.62 1.78 1.77
80 20 4.07 4.14 4.0 21.9 21.5 21.92 2.74 2.73 1.83 1.84
90 22.5 4.21 4.43 4.3 23.2 22.8 23.26 2.87 2.84 1.9 1.89
100 25 4.34 4.71 4.9 24.5 25.6 24.52 2.96 2.94 1.95 1.94
200 50 5.28 6.97 6.7 34.7 33.9 35.00 3.81 3.78 2.38 2.36
300 75 5.91 8.73 9.1 42.4 44.8 42.68 4.45 4.41 2.7 2.68
400 100 6.40 10.24 9.9 49.0 48.5 49.43 5.00 4.94 2.98 2.96
500 125 6.81 11.59 11.2 55 54.5 55.21 5.49 5.42 3.2 3.22
600 150 7.14 12.74 13.1 60 62 60.24 5.91 5.86 3.43 3.41
700 175 7.45 13.88 14.0 65 67 66.24 6.31 6.25 3.63 3.6
800 200 7.72 14.89 14.7 69 70 70.33 6.69 6.62 3.8 3.79
900 225 7.98 15.92 15.5 74 73 74.93 7.04 6.96 4 3.97
1000 250 8.21 16.85 16.4 77 77 77.53 7.39 7.29 4.15 4.17
2000 500 9.88 24.40 21.8 110 102 110 10.09 9.94 5.5 5.47
3000 750 11.02 30.36 27.0 135 127 138 11.93 11.83 6.53 6.51
4000 1000 11.85 35.11 33.0 155 151 158 13.79 13.56 6.63 7.39

Table 2: Validation: comparison with univariate results in [4].

may skew the results a little. However, given the amount of computing time that each optimization
run takes (approximately 5 hours on a multi-processor Linux cluster) with this horizon, we argue
that a longer run is unwarranted.

Del Castillo and Göb [7] provide results for a bivariate bounded adjustment problem. We
validated our Matlab code against the analytical results provided by these authors. They use a
bounded adjustment policy that uses a rotated square with half side length Λ as the dead area.
Hence our Matlab code was modified to use the rotated square as the dead area instead of the
polyhedral or ellipsoidal regions.

The model used for validation purposes was a special case of the model in reference [7] with
Θ = 0 in that paper. The resulting process is a bivariate random walk. The parameters of our

State-Space approach were adjusted to match the values in [7]. We have A = I, Σβ =

(
100 10ρ
10ρ 1

)
and αt = 0 (complete state information).

Table 3 shows the results obtained by [7] and the corresponding results from our Matlab code.
In the table, C ′ represents the relative fixed adjustment cost, ρ is the standardized correlation
between the elements of the bivariate white noise series, “C-G AAI” refers to the AAI at the
optimum obtained by [7] and “SS AAI” refers to the AAI value obtained by our State-Space based
simulation. The simulations were performed for the case where ρ = 0.6. The agreement for Λ∗ ≥ 2
is very good (for the single case where Λ∗ ≤ 2, [7] used certain approximations that put their result
and not ours in doubt.)
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Figure 1: Univariate Cost Function with N = 10, 000

C ′ |ρ| Λ∗ C-G AAI SS AAI SE

1 .6 1.21 2.11 1.63 0.0012

4 .6 2.73 4.12 4.08 0.0059

7 .6 3.33 5.47 5.44 0.0079

10 .6 3.74 6.51 6.48 0.0111

20 .6 4.64 9.17 9.14 0.0227

50 .6 6.11 14.47 14.45 0.0284

80 .6 7.01 18.30 18.24 0.0378

100 .6 7.47 20.47 20.46 0.0445

400 .6 11.04 41.13 41.42 0.1331

700 .6 12.89 54.64 54.80 0.1846

1000 .6 14.22 65.55 66.55 0.2631

Table 3: Validation: comparisons with the bivariate process results in [7].

5 An illustration in a semiconductor manufacturing processing
step

In this section, we demonstrate the approach that we have outlined in the previous sections using
a simulated multivariate model based on a Vertical Diffusion Furnace process in the semiconductor
manufacturing industry. In this process, material is deposited on a batch of silicon wafers (usually
around 125-150 wafers) and the objective is to maintain a uniform thickness of the deposited
material on wafers in each of the zones of the furnace. This is done by controlling the temperature
and deposition time. The fixed cost of adjustment in such a process is usually the impact on
throughput time of making an adjustment. For example, if a certain amount of time is needed to
reach the set temperature, this has a direct impact on the throughput of the tool. The process

12



5.1 Bounded Adjustment With Costs

therefore has three responses and two inputs. The objective is to control the process and bring the
responses to desired target values by adjusting these two inputs. Note that the parameters chosen
below for the simulation case study do not reflect the actual parameters of the modeled process.

We investigate the performance of the ellipsoidal and polyhedral policies as given by (2) and (3)
respectively. From a practical standpoint, we try to take into account the fact that the user may
not have complete information on all the costs involved but may still wish to control the process
using a bounded adjustment policy for other reasons such as stability of the process. Hence we
present two cases - the first case is where the cost information is readily available and the user can
obtain the optimal adjustment parameter for each policy as shown in 5.1; the second case is where
the cost information is not available (or is incomplete) and the user can pick an adjustment policy
and adjustment parameter based on the MSD and AAI values as explained in 5.2. The software
developed can handle both these cases and we refer the reader to the software documentation for
details regarding the implementation.

The parameters of the model that we use in this simulation case study are as follows:

A =

 1 2
2 1
2 3

 , Σα =

 4 4 3
4 6 5
3 5 6

 , Σβ =

[
2 1
1 2

]

CT =

 4 2 1
2 2 2
1 2 4

 , B1 =

 1 0 0
0 1 0
0 0 1

 , B2 =
1√
3

 1
1
1

 (9)

Note that the selection of B2 was made so that each of the three responses have equal weights
and ‖B2‖ = 1. However, this may not be the case always and this parameter can be changed; the
current example is only an illustration.

5.1 Bounded Adjustment With Costs

We first consider the problem of determining the minimum cost optimal bound parameter H for
various values of CF . As an illustration of the algorithm’s performance for the case of the Ellipsoidal
policy (referred to as Policy 1), Figure 2 on the following page depicts the cost along the line search
path for various values of H. The minimum for this case (CF = 60) is at 12.1. The series labeled
“True Cost” represents the cost obtained from simulation for various values of H. In order to find
the minimum, a cubic function (series labeled “Fitted Cost”) was fit to these simulated data points.
The minimum was obtained by minimizing this cubic function. The equation for the cubic function
is also shown in Figure 2 on the next page.
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5.1 Bounded Adjustment With Costs

Ellipsoidal Policy, C F = 60
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Figure 2: Search path for Ellipsoidal Policy with CF = 60

Table 4 provides the optimal bound parameter Hopt, AAI, MSD and minimum cost for various
values of CF while the other parameters are held constant at the values specified in (9). As we
can see, the optimal bound parameter Hopt increases with CF , this behavior is the same as in
the univariate case and lends itself to the same reasoning that the higher fixed cost of making an
adjustment makes it profitable to let the process drift more before an adjustment is made.

It is also interesting to note from Figure 2 that the time it takes until the specified percentage
cost difference (5% in this case) is achieved is significantly higher than in the case of the Polyhedral
policy that we shall examine below.

CF Hopt AAI MSD Cost

10 0.9 1.05 91.55 584.3

20 3.7 1.17 91.79 592.9

30 6.4 1.27 92.1 600.9

40 8.0 1.32 92.35 608.8

50 11.3 1.42 93.02 617.5

60 12.1 1.44 93.11 624.3

70 14.5 1.51 93.13 628.7

80 15.8 1.55 93.37 635.4

90 17.2 1.58 94.06 644.9

100 19.7 1.65 94.38 650.4

Table 4: Multivariate Results for Policy 1 (Ellipsoidal)

Table 5 on the following page shows the results from the optimization using the Polyhedral
bounded adjustment policy for various values of the fixed cost CF . In addition to the optimal
parameter Hopt, the AAI, MSD and minimum cost are also provided. The search path of the line
search that was used is illustrated in Figure 3 on the next page.
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5.2 Bounded Adjustment Without Costs

Polyhedral Policy, C F = 60
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Figure 3: Search path for Polyhedral Policy with CF = 60

A third order polynomial regression function was fit to the simulated data points (labeled as
“True Cost”). The minimum cost was obtained by minimizing this cubic function, the optimum
value of the bound parameter in this case (CF = 60) is given by Hopt = 2.46 (from Table 5).

CF Hopt AAI MSD Cost

10 0 1 91.43 584.1

20 0.8 1.2 91.86 592.9

30 1.35 1.28 92.12 600.94

40 1.7 1.34 92.41 608.92

50 2.25 1.42 92.77 616

60 2.46 1.45 93.07 623.86

70 2.85 1.51 93.42 630.94

80 3.03 1.53 93.5 637

90 3.5 1.6 94.05 644.4

100 3.81 1.64 94.37 650.92

Table 5: Multivariate Results for Policy 2 (Polyhedral)

The behavior of the two adjustment schemes, polyhedral and ellipsoidal, is qualitatively similar:
as the adjustment cost CF decreases, the width of the adjusting bound Hopt → 0 implying more
frequent adjustments (so AAI → 1), i.e., both control policies appear to converge to a MMSE
controller that calls for an adjustment at every point in time t using the KF estimate.

5.2 Bounded Adjustment Without Costs

Consider the case where the user does not have any information on the fixed or off-targets costs
involved but is still interested in implementing a multivariate bounded adjustment policy. Often,
in industry, process engineers do not wish to adjust the process very often due to concerns that
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this may make the process unstable. It may also be the case that the fixed cost of adjustment is
negligible but a bounded adjustment policy is still preferred due to the same reason.

To account for the case where the cost information is not readily available or the fixed cost is
not significant, we make use of the same methodology to obtain results that will aid the process
engineer in selecting an appropriate policy based on preferred MSD and AAI values.

Table 6 provides the AAI and MSD with bounded adjustment using the Ellipsoidal policy
(Policy 1) for various values of H. From this table, the user can choose the value of H based on
the MSD and AAI values that are most acceptable.

H AAI MSD

1 1.05 91.6

2 1.1 91.62

3 1.15 91.87

4 1.19 91.92

5 1.22 91.62??

10 1.38 92.35

20 1.65 94.6

30 1.9 96.61

40 2.14 98.85

50 2.37 101.28

H AAI MSD

60 2.6 103.62

70 2.83 106.21

80 3.06 108.59

90 3.28 111

100 3.49 113.49

200 5.58 137.61

300 7.57 160.03

400 9.47 181.89

500 11.27 204.07

1000 20.16 307.42

Table 6: Finding a bound limit without costs: AAI and MSD for Policy 1 (ellipsoid)

Table 7 does the same for the case where the bounded adjustment policy used is the Polyhedral
policy (Policy 2). Using Table 6 and Table 7, a process engineer can determine which policy is
preferable and select the corresponding value of H. Tables that estimate AAI and MSD without
cost information are also generated with the aforementioned MATLAB code.

H AAI MSD

1 1.22 91.91

2 1.38 92.67

3 1.53 92.75

4 1.66 94.68

5 1.8 95.45

10 2.42 101.44

20 3.57 114.62

30 4.67 127.24

40 5.73 139.18

50 6.74 151.5

H AAI MSD

60 7.76 163.02

70 8.78 174.14

80 9.76 185.74

90 10.72 196.45

100 11.63 208.3

200 20.85 315.33

300 29.93 419.75

400 38.43 522.47

500 47.23 622.55

1000 89.03 1121.34

Table 7: Finding a bound limit without costs: AAI and MSD for Policy 2 (polyhedral)

6 Conclusions

The general multivariate bounded process adjustment problem in the presence of a fixed adjust-
ment cost and quadratic off-target cost was studied with the help of a State-Space model and
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the optimal adjustments have been computed with a Kalman Filter estimator. Two adjustment
policies - ellipsoidal (quadratic) and polyhedral (box) - were investigated as possible choices for a
dead region within which an adjustment is not made. Simulation-based optimization was used to
compute the optimal adjustment parameter for each of these two policies given that closed-form
expressions for the expectations in the loss function are not available in the general-dimensional
case. A Matlab code for the optimization of these deadband adjustment problems was developed
and made available. The method was validated against the only two cases where analytic expres-
sions exist for the expectations in the loss function (a one and a two dimensional process). The
methodology applied to a general dimensional problem was illustrated with application to a semi-
conductor manufacturing process (applications in drug delivery in healthcare were also reviewed
in the paper). Methodology was provided for finding the best adjustment deadband bound in the
practical case where cost information is not readily available.

This paper developed optimal adjustment strategies for two given shapes of the adjustment
region that are of practical interest and demonstrated its applicability. Further work is required to
determine the shape of the optimal dead region, a difficult problem which is beyond the scope of
the current paper.
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Appendix A Equivalence of EWMA to Kalman Filter

The equivalence of the EWMA to a Kalman Filter is derived in this appendix. The steady-state
matrices for the usual Kalman Filter estimation problem are:

K∞ = K = PA′(APA′ + Σα)−1

P∞ = P = P + Σβ − PA′(APA′ + Σα)−1AP (A.1)

The steady state above is always reached for arbitrary A and arbitrary positive semidefinite and
symmetric Σα and Σβ (see [10] proposition 13.1, p. 390). If Ut−1 = 0,

Ẑt = Ẑ−t +Kt(Yt −AẐ−t )

In steady state we have that

Ẑt = Ẑ−t +K(Yt −AẐ−t )

Ẑt = KYt + (I−KA)Ẑ−t

and

Ŷt = AẐt = AKYt +A(I−KA)Ẑ−t
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By re-arranging the last term,

Ŷt = AKYt + (I−AK)AẐ−t

and since Ŷ−t = AẐ−t , the above reduces to:

Ŷt = AKYt + (I−AK)Ŷ−t

Hence,

Ŷt = ∆Yt + (I−∆)Ŷ−t (A.2)

where ∆ = AK.
Therefore, the one-step ahead prediction (without control) is given by a vector EWMA with

parameter ∆ = AK. �

Appendix B Special Case: Computing EWMA parameter from
State-Space Model

To establish the equivalence of the Kalman Filter and EWMA estimates, we consider a special case
with p = q, A, P diagonal, Σα = αI, Σβ = βI. We first find ∆ = AK, the EWMA parameter in
(A.2), by solving the steady state Kalman Filter equations (A.1). We then compare the ∆ we obtain
with the EWMA parameter for the prediction equation obtained using the IMA time series form of
the State-Space model. Let A = D = {dij : dij = 0 if i 6= j}, i, j = 1, . . . , q, a diagonal q× q square
matrix with dii as the ith diagonal element. Similarly, let P = {pij : pij = 0 if i 6= j}, i, j = 1, . . . , q,
a diagonal q × q square matrix with pii as the ith diagonal element. Finally, let Σα = αI and
Σβ = βI be diagonal covariance matrices for the random error terms αt and βt. Using the Kalman
Filter equations, we have from (A.1),

P∞ = P = P + Σβ − PA′(APA′ + Σα)−1AP

i.e.

Σβ = PA′(APA′ + Σα)−1AP

Substituting the values for A, P , Σα, Σβ and equating elements in the matrices on the two sides,
we obtain

β =
p2iid

2
ii

d2iipii + α

which reduces to a quadratic equation in pii. On solving this equation we have

pii =
β ±

√
β2 + 4αβ

d2ii

2
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From (A.1), we have

∆ = AK = APA′(APA′ + Σα)−1

= AΣβ(AP )−1

= diag(
β

pii
) (B.1)

We now obtain the EWMA parameter using an alternative approach. The model in (4) can be
written as a vector IMA(1,1) process as follows:

(1−B)Yt = (I− (I− Γ)B) εt

where matrix Γ is diagonal. The EWMA parameter is given by Θ = (I − Γ). The EWMA
prediction equation for this model is given by ([3], page 151):

Ŷt = ΛYt + (I− Λ)Ŷt−1

where Λ = I − Θ = Γ. The elements γii of the diagonal matrix Γ can be computed using the
results presented in [3], page 129:

γ2ii
1− γii

=
β

α
a′iai

where a′i is the ith row of the matrix A = D and hence a′iai = d2ii. The above reduces to a quadratic
equation in γii which can be solved to yield:

γii =

−d2iiβ
α ±

√
d4iiβ

2

α2 + 4
d2iiβ
α

2

=
2β

β ±
√
β2 + 4αβ

d2ii

=
β

pii

Thus we have

Γ = diag(
β

pii
) = AK = ∆ (B.2)

Therefore, from (B.1) and (B.2), we see that the EWMA parameter obtained using the two
methods is exactly the same. �.
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