Summary for Lectures 1-3

Math 232, Alena Erchenko

We are now working with double integrals

$$
\iint_{R} f(x, y) d A
$$

which compute the volume under the graph of $f(x, y)$ over the region R. The precise definition is similar to the one-dimensional case. In practice, we compute these integrals by integrating

$$
\int_{x_{\min }}^{x_{\max }} S(x) d x
$$

where $x_{\min }$ is the minimum x-value on $R, x_{\max }$ is the maximum x-value on R, and $S(t)$ is the area under the curve obtained by intersecting the graph with the plane $x=t$. Thus,

$$
S(x)=\int_{y_{1}(x)}^{y_{2}(x)} f(x, y) d y
$$

where $y_{1}(x)$ and $y_{2}(x)$ are the min and max values of y in R when x is fixed. We could do the same by taking slices in y and then integrating over curves with respect to x. In good cases (functions that we will consider), these two integrals are the same and both are equal to $\iint_{R} f(x, y) d A$.

The technical statement is Fubini's theorem which says that this holds if f is bounded on R, discontinuous on a finite number of smooth curves, and the iterated integrals all exist.

How to compute double integrals using polar coordinates.

Polar coordinates are given by $x=r \cos \theta$ and $y=r \sin \theta$. The important point to remember about polar coordinates is that integration element becomes $r d r d \theta$. To set up the bounds, look at a fixed value of θ and the \max / min values of r as in the standard case.

$$
\iint_{R} f(x, y) d A=\int_{\theta_{\text {min }}}^{\theta_{\text {mas }}} \int_{r_{1}(\theta)}^{r_{2}(\theta)} f(r \cos \theta, r \sin \theta) r d r d \theta
$$

