Summary for Lectures 4-5

Math 232, Alena Erchenko

We also see that there are applications of the double integral similar to those of the standard integral. For example, the area of a region R is given by

$$
\operatorname{area}(R)=\iint_{R} 1 d A
$$

and the average value of $f(x . y)$ over a region R is given by

$$
\frac{1}{\operatorname{area}(R)} \iint_{R} f(x, y) d A
$$

Finally, the mass of a flat object with mass density $\rho(x, y)$ has total mass

$$
m=\iint_{R} \rho(x, y) d A
$$

Following this theme, there is a slight generalization of average value which is the weighted average value of f with respect to a weight $\rho(x, y)$ given by

$$
\bar{f}=\frac{\iint f(x, y) \rho(x, y) d A}{\iint \rho(x, y) d A}
$$

A special case of this is the center of mass of a flat lamina with mass density $\rho(x, y)$. This is given by the point (\bar{x}, \bar{y}) where

$$
\bar{x}=\frac{1}{m} \iint x \rho(x, y) d A \quad \text { and } \quad \bar{y}=\frac{1}{m} \iint y \rho(x, y) d A
$$

are the average values of x, y and $m=\iint \rho(x, y) d A$ is the mass. We also have the moment of inertia of an object of mass density $\rho(x, y)$ about an axis is given by

$$
I=\iint d^{2}(x, y) \rho(x, y) d A
$$

where $d(x, y)$ is the distance from (x, y) to the axis of rotation. In the specific case when the axis is just the origin, then $d^{2}=x^{2}+y^{2}$. Finally, we can describe probability by a probability density function $\rho(x, y)$ as a function of the random variables x, y. Then, the probability over any region is the integral of $\rho(x, y)$ over that region. Note that the integral over all values should be 1 and ρ should be a non-negative function. The expected value of x is $E(x)=\bar{x}$ using the formula above with $m=1$ (the same holds for y).

Applications of double integrals in Calculus, 7th Edition, by James Stewart, are in Section 15.5

