Summary for Lectures 16-18

Math 232, Alena Erchenko

Our final topic of this course will be to understand surface integrals. We want to integrate functions and vector fields over a surface S in space. Thus, we need to understand what an area form $d S$ on a surface looks like (similar to $d s$ in line integral). In particular, we want area $(S)=\iint_{S} d S$. To actually set this up and compute it, we need to parameterize the surface as

$$
\vec{r}(u, v)=\langle x(u, v), y(u, v), z(u, v)\rangle
$$

where (u, v) lie in some region R in the plane then we have

$$
d S=\left|\vec{r}_{u} \times \vec{r}_{v}\right| d u d v
$$

and our integral will become a double integral over the region of space in which u and v vary. That is,

$$
\iint_{S} f d S=\iint_{R} f(x(u, v), y(u, v), z(u, v))\left|\vec{r}_{u} \times \vec{r}_{v}\right| d u d v
$$

where $(u, v) \in R$.
We can also use this to define the flux \vec{F} of a vector field through a surface S. To set up this integral, we must choose a direction in which we will consider the flux positive (we had to do this also for curves in the plane). This amounts to choosing a direction that the unit normal vector \hat{n} must point at each point. We call this choosing an orientation of S. The flux is then defined as

$$
\iint_{S} \vec{F} \cdot \hat{n} d S
$$

with $d S$ as above. This integral again measures the flow rate through S if \vec{F} is a velocity vector field. To compute, we again take a parameterization $\vec{r}(u, v)$. Then, we have that

$$
\iint_{S} \vec{F} \cdot \hat{n} d S=\iint_{S} \vec{F}(u, v) \cdot \pm\left(\vec{r}_{u} \times \vec{r}_{v}\right) d u d v
$$

where the \pm sign is determined by whether or not $\vec{r}_{u} \times \vec{r}_{v}$ points in the same direction as our choice of direction for the normal vector (you can check it at a single point). We sometimes use the shorthand notation $\hat{n} d S=d \vec{S}$ and write the integral as $\iint_{S} \vec{F} \cdot d \vec{S}$.

Sections 16.6and 16.7 in Calculus, 7th Edition, by James Stewart

