
Homework 12 - Solutions

Math 220, Instructor: Alena Erchenko

“(*)” means that the problem is optional.

1. Check that u1 =

 1
0
−1

 , u2 =

 1
−2
1


is an orthogonal basis for the plane x + y + z = 0 in R3. Find the orthogonal projection of

v =

1
2
3

 onto this plane. Find the distance from the plane to v.

Solution. First, it is easy to see that both vectors lie in the plane x+y+z = 0. Since this plane
is 2-dimensional, it is enough to check that these vectors are linearly independent to check that
this is a basis, but that will follow from checking that they are orthogonal. We check

u1 · u2 = 1 · 1 + 0 · (−2) + (−1) · 1 = 0

so we indeed have orthogonality.

The projection of v onto the plane, which we denote by v̂, is given by

v̂ =
u1 · v
u1 · u1

u1 +
u2 · v
u2 · u2

u2 =
−2

2
u1 +

0

6
u2 = −u1 =

−1
0
1

 .

The distance from v to the plane is

‖v − v̂‖ =

∥∥∥∥∥∥
2

2
2

∥∥∥∥∥∥ =
√

12 = 2
√

3.

2. Apply the Gram-Schmidt algorithm to produce an orthogonal basis of R3 from the basis.
1

1
0

 ,

1
0
1

 ,

0
1
1





Solution. We set

u1 =

1
1
0

 .

Then,

u2 =

1
0
1

− v2 · u1
u1 · u1

1
1
0

 =

 1/2
−1/2

1


and

u3 =

0
1
1

− v3 · u1
u1 · u1

1
1
0

− v3 · u2
u2 · u2

 1/2
−1/2

1

 =

0
1
1

−
1/2

1/2
0

−
 1/6
−1/6
1/3

 =

−2/3
2/3
2/3

 .

Therefore, the resulting orthogonal basis is
1

1
0

 ,

 1/2
−1/2

1

 ,

−2/3
2/3
2/3



3. Is the matrix M =

(
1 1
3 −1

)
orthogonal?

Solution. M is orthogonal if and only if MTM = I. We compute:

MTM =

[
1 3
1 −1

] [
1 1
3 −1

]
=

[
6 −2
−2 2

]
which is not the identity matrix so M1 is not orthogonal.

Alternatively, if M is orthogonal, then M has orthonormal columns, i.e., column vectors are
orthogonal to each other and each column vector has length 1. The first column is a vector

v̄1 =

(
1
3

)
. The length of v̄1 is equal to ‖v̄1‖ =

√
10 6= 1. Therefore, M is not orthogonal.

4. Orthogonally diagonalize the matrix A =

1 1 1
1 1 1
1 1 1

. That is, find an orthogonal matrix P

and diagonal matrix D such that A = PDP T .

Solution. We compute that

det(A− λI) =

∣∣∣∣∣∣
1− λ 1 1

1 1− λ 1
1 1 1− λ

∣∣∣∣∣∣ = (1− λ)

∣∣∣∣1− λ 1
1 1− λ

∣∣∣∣− ∣∣∣∣1 1
1 1− λ

∣∣∣∣+

∣∣∣∣1 1− λ
1 1

∣∣∣∣



= (1− λ)(λ2 − 2λ)− (−λ) + λ = −λ3 + 3λ2 = λ2(3− λ)

so the eigenvalues of A are 0 and 3. Thus, we know that

D =

3 0 0
0 0 0
0 0 0

 .

We now need orthonormal bases of the eigenspaces. We first look at E3.

A− 3I =

−2 1 1
1 −2 1
1 1 −2

 ∼
1 1 −2

0 −3 3
0 3 −3

 ∼
1 0 −1

0 1 −1
0 0 0



Thus, an orthonormal basis for E3 is

 1√
3

1
1
1

. Now, we look at E0.

A− 0I =

1 1 1
1 1 1
1 1 1

 ∼
1 1 1

0 0 0
0 0 0



Thus, a basis for E0 is


−1

1
0

 ,

−1
0
1

. Applying Gram-Schmidt, we replace the second

vector with

v2 −
v2 · v1
v1 · v1

v1 = v2 −
1

2
v1 =

−1/2
−1/2

1


to get an orthogonal basis. Thus,

 1√
2

−1
1
0

 , 1√
6

−1
−1
2

. Therefore, we can take

P =

1/
√

3 −1/
√

2 −1/
√

6

1/
√

3 1/
√

2 −1/
√

6

1/
√

3 0 2/
√

6

 .

5. For any n × n matrix A, show that there is an orthogonal matrix P and diagonal matrix D
such that ATA = PDP T .

Solution. We have that (ATA)T = AT (AT )T = ATA. Thus, this matrix is symmetric so the
spectral theorem implies that we can find P and D as desired.

6. Is True or False that the product of symmetric matrices is symmetric. Justify your answer.
How does this relate orthogonal diagonalizability?



Solution. False. Take

A =

(
2 0
0 1

)
B =

(
1 1
1 1

)
then we compute

AB =

(
2 2
1 1

)
(AB)T =

(
2 1
2 1

)
which are not equal so AB is not symmetric.

This shows that the product of orthogonally diagonalizable matrices might not be orthogonally
diagonalizable.

7. (*) Suppose W is a subspace of Rn. Show that the transformation T : Rn → Rn given by

v 7→ ProjW (v)

is a linear transformation, where ProjW (v) is the orthogonal projection of v onto W.

Solution. Every vector v ∈ Rn can be written uniquely as

v = v̂ + v⊥

where v̂ = ProjW (v) ∈ W and v⊥ ∈ W⊥ by the orthogonal decomposition theorem.

Let c ∈ R and v ∈ Rn. Then as cv = cv̂ + cv⊥ and W⊥ is also a subspace of Rn, we must have
cProjW (v) = cv̂ = ProjW (cv) by uniqueness of the orthogonal decomposition.

Similarly, v + w = v̂ + v⊥ + ŵ + w⊥ = v̂ + ŵ + v⊥ + w⊥. Again, as W and W⊥ are both
subspaces of Rn, uniqueness of the orthogonal decomposition implies that ProjW (v + w) =
v̂ + ŵ = ProjW (v) + ProjW (w). Thus, we have shown that T is a linear transformation.

Alternatively, choose an orthogonal basis {u1, . . . , ur} of W. Then ProjW (v) =
∑r

i=1
ui·v
ui·ui

ui. If
w ∈ Rn and c ∈ R, we have ui · (cv) = cui · v and ui · (v +w) = ui · v + ui ·w by the properties
of the dot product so that

ProjW (cv) =
r∑

i=1

ui · (cv)

ui · ui
ui =

r∑
i=1

c
ui · v
ui · ui

ui = c
r∑

i=1

ui · v
ui · ui

ui = cProjW (v)

and

ProjW (v + w) =
r∑

i=1

ui · (v + w)

ui · ui
ui

=
r∑

i=1

ui · v + ui · w
ui · ui

ui

=
r∑

i=1

ui · v
ui · ui

ui +
r∑

i=1

ui · w
ui · ui

ui = ProjW (v) + ProjW (w).

This implies that T is a linear transformation.


