Homework 12 - Solutions

Math 220, Instructor: Alena Erchenko

"(*)" means that the problem is optional.

1. Check that

$$\left\{ u_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, u_2 = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \right\}$$

is an orthogonal basis for the plane x + y + z = 0 in \mathbb{R}^3 . Find the orthogonal projection of $v = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ onto this plane. Find the distance from the plane to v.

Solution. First, it is easy to see that both vectors lie in the plane x+y+z=0. Since this plane is 2-dimensional, it is enough to check that these vectors are linearly independent to check that this is a basis, but that will follow from checking that they are orthogonal. We check

$$u_1 \cdot u_2 = 1 \cdot 1 + 0 \cdot (-2) + (-1) \cdot 1 = 0$$

so we indeed have orthogonality.

The projection of v onto the plane, which we denote by \hat{v} , is given by

$$\hat{v} = \frac{u_1 \cdot v}{u_1 \cdot u_1} u_1 + \frac{u_2 \cdot v}{u_2 \cdot u_2} u_2 = \frac{-2}{2} u_1 + \frac{0}{6} u_2 = -u_1 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}.$$

The distance from v to the plane is

$$||v - \hat{v}|| = \left\| \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix} \right\| = \sqrt{12} = 2\sqrt{3}.$$

2. Apply the Gram-Schmidt algorithm to produce an orthogonal basis of \mathbb{R}^3 from the basis.

$$\left\{ \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\1 \end{pmatrix} \right\}$$

Solution. We set

$$u_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}.$$

Then,

$$u_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{v_2 \cdot u_1}{u_1 \cdot u_1} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1/2 \\ -1/2 \\ 1 \end{pmatrix}$$

and

$$u_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} - \frac{v_3 \cdot u_1}{u_1 \cdot u_1} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} - \frac{v_3 \cdot u_2}{u_2 \cdot u_2} \begin{pmatrix} 1/2 \\ -1/2 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 1/2 \\ 1/2 \\ 0 \end{pmatrix} - \begin{pmatrix} 1/6 \\ -1/6 \\ 1/3 \end{pmatrix} = \begin{pmatrix} -2/3 \\ 2/3 \\ 2/3 \end{pmatrix}.$$

Therefore, the resulting orthogonal basis is

$$\left\{ \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1/2\\-1/2\\1 \end{pmatrix}, \begin{pmatrix} -2/3\\2/3\\2/3 \end{pmatrix} \right\}$$

3. Is the matrix $M = \begin{pmatrix} 1 & 1 \\ 3 & -1 \end{pmatrix}$ orthogonal?

Solution. M is orthogonal if and only if $M^TM = I$. We compute:

$$M^{T}M = \begin{bmatrix} 1 & 3 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 3 & -1 \end{bmatrix}$$
$$= \begin{bmatrix} 6 & -2 \\ -2 & 2 \end{bmatrix}$$

which is not the identity matrix so M_1 is not orthogonal.

Alternatively, if M is orthogonal, then M has orthonormal columns, i.e., column vectors are orthogonal to each other and each column vector has length 1. The first column is a vector $\bar{v}_1 = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$. The length of \bar{v}_1 is equal to $||\bar{v}_1|| = \sqrt{10} \neq 1$. Therefore, M is not orthogonal. \square

4. Orthogonally diagonalize the matrix $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$. That is, find an orthogonal matrix P and diagonal matrix D such that $A = PDP^T$.

Solution. We compute that

$$\det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 1 & 1 \\ 1 & 1 - \lambda & 1 \\ 1 & 1 & 1 - \lambda \end{vmatrix} = (1 - \lambda) \begin{vmatrix} 1 - \lambda & 1 \\ 1 & 1 - \lambda \end{vmatrix} - \begin{vmatrix} 1 & 1 \\ 1 & 1 - \lambda \end{vmatrix} + \begin{vmatrix} 1 & 1 - \lambda \\ 1 & 1 \end{vmatrix}$$

$$= (1 - \lambda)(\lambda^2 - 2\lambda) - (-\lambda) + \lambda = -\lambda^3 + 3\lambda^2 = \lambda^2(3 - \lambda)$$

so the eigenvalues of A are 0 and 3. Thus, we know that

$$D = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

We now need orthonormal bases of the eigenspaces. We first look at E_3 .

$$A - 3I = \begin{pmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & -2 \\ 0 & -3 & 3 \\ 0 & 3 & -3 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

Thus, an orthonormal basis for E_3 is $\left\{ \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$. Now, we look at E_0 .

$$A - 0I = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Thus, a basis for E_0 is $\left\{ \begin{pmatrix} -1\\1\\0 \end{pmatrix}, \begin{pmatrix} -1\\0\\1 \end{pmatrix} \right\}$. Applying Gram-Schmidt, we replace the second vector with

$$v_2 - \frac{v_2 \cdot v_1}{v_1 \cdot v_1} v_1 = v_2 - \frac{1}{2} v_1 = \begin{pmatrix} -1/2 \\ -1/2 \\ 1 \end{pmatrix}$$

to get an orthogonal basis. Thus, $\left\{ \frac{1}{\sqrt{2}} \begin{pmatrix} -1\\1\\0 \end{pmatrix}, \frac{1}{\sqrt{6}} \begin{pmatrix} -1\\-1\\2 \end{pmatrix} \right\}$. Therefore, we can take

$$P = \begin{pmatrix} 1/\sqrt{3} & -1/\sqrt{2} & -1/\sqrt{6} \\ 1/\sqrt{3} & 1/\sqrt{2} & -1/\sqrt{6} \\ 1/\sqrt{3} & 0 & 2/\sqrt{6} \end{pmatrix}.$$

5. For any $n \times n$ matrix A, show that there is an orthogonal matrix P and diagonal matrix D such that $A^TA = PDP^T$.

Solution. We have that $(A^TA)^T = A^T(A^T)^T = A^TA$. Thus, this matrix is symmetric so the spectral theorem implies that we can find P and D as desired.

6. Is **True** or **False** that the product of symmetric matrices is symmetric. Justify your answer. How does this relate orthogonal diagonalizability?

Solution. False. Take

$$A = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

then we compute

$$AB = \begin{pmatrix} 2 & 2 \\ 1 & 1 \end{pmatrix} \qquad (AB)^T = \begin{pmatrix} 2 & 1 \\ 2 & 1 \end{pmatrix}$$

which are not equal so AB is not symmetric.

This shows that the product of orthogonally diagonalizable matrices might not be orthogonally diagonalizable. \Box

7. (*) Suppose W is a subspace of \mathbb{R}^n . Show that the transformation $T:\mathbb{R}^n\to\mathbb{R}^n$ given by

$$v \mapsto \operatorname{Proj}_W(v)$$

is a linear transformation, where $\text{Proj}_{W}(v)$ is the orthogonal projection of v onto W.

Solution. Every vector $v \in \mathbb{R}^n$ can be written uniquely as

$$v = \hat{v} + v^{\perp}$$

where $\hat{v} = \operatorname{Proj}_{W}(v) \in W$ and $v^{\perp} \in W^{\perp}$ by the orthogonal decomposition theorem.

Let $c \in \mathbb{R}$ and $v \in \mathbb{R}^n$. Then as $cv = c\hat{v} + cv^{\perp}$ and W^{\perp} is also a subspace of \mathbb{R}^n , we must have $c\operatorname{Proj}_W(v) = c\hat{v} = \operatorname{Proj}_W(cv)$ by uniqueness of the orthogonal decomposition.

Similarly, $v + w = \hat{v} + v^{\perp} + \hat{w} + w^{\perp} = \hat{v} + \hat{w} + v^{\perp} + w^{\perp}$. Again, as W and W^{\perp} are both subspaces of \mathbb{R}^n , uniqueness of the orthogonal decomposition implies that $\operatorname{Proj}_W(v + w) = \hat{v} + \hat{w} = \operatorname{Proj}_W(v) + \operatorname{Proj}_W(w)$. Thus, we have shown that T is a linear transformation.

Alternatively, choose an orthogonal basis $\{u_1, \ldots, u_r\}$ of W. Then $\operatorname{Proj}_W(v) = \sum_{i=1}^r \frac{u_i \cdot v}{u_i \cdot u_i} u_i$. If $w \in \mathbb{R}^n$ and $c \in \mathbb{R}$, we have $u_i \cdot (cv) = cu_i \cdot v$ and $u_i \cdot (v+w) = u_i \cdot v + u_i \cdot w$ by the properties of the dot product so that

$$\operatorname{Proj}_{W}(cv) = \sum_{i=1}^{r} \frac{u_{i} \cdot (cv)}{u_{i} \cdot u_{i}} u_{i} = \sum_{i=1}^{r} c \frac{u_{i} \cdot v}{u_{i} \cdot u_{i}} u_{i} = c \sum_{i=1}^{r} \frac{u_{i} \cdot v}{u_{i} \cdot u_{i}} u_{i} = c \operatorname{Proj}_{W}(v)$$

and

$$\operatorname{Proj}_{W}(v+w) = \sum_{i=1}^{r} \frac{u_{i} \cdot (v+w)}{u_{i} \cdot u_{i}} u_{i}$$

$$= \sum_{i=1}^{r} \frac{u_{i} \cdot v + u_{i} \cdot w}{u_{i} \cdot u_{i}} u_{i}$$

$$= \sum_{i=1}^{r} \frac{u_{i} \cdot v}{u_{i} \cdot u_{i}} u_{i} + \sum_{i=1}^{r} \frac{u_{i} \cdot w}{u_{i} \cdot u_{i}} u_{i} = \operatorname{Proj}_{W}(v) + \operatorname{Proj}_{W}(w).$$

This implies that T is a linear transformation.