Homework 12 - Solutions

Math 220, Instructor: Alena Erchenko

" $*$)" means that the problem is optional.

1. Check that

$$
\left\{u_{1}=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right), u_{2}=\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right)\right\}
$$

is an orthogonal basis for the plane $x+y+z=0$ in \mathbb{R}^{3}. Find the orthogonal projection of $v=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ onto this plane. Find the distance from the plane to v.

Solution. First, it is easy to see that both vectors lie in the plane $x+y+z=0$. Since this plane is 2-dimensional, it is enough to check that these vectors are linearly independent to check that this is a basis, but that will follow from checking that they are orthogonal. We check

$$
u_{1} \cdot u_{2}=1 \cdot 1+0 \cdot(-2)+(-1) \cdot 1=0
$$

so we indeed have orthogonality.
The projection of v onto the plane, which we denote by \hat{v}, is given by

$$
\hat{v}=\frac{u_{1} \cdot v}{u_{1} \cdot u_{1}} u_{1}+\frac{u_{2} \cdot v}{u_{2} \cdot u_{2}} u_{2}=\frac{-2}{2} u_{1}+\frac{0}{6} u_{2}=-u_{1}=\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right) .
$$

The distance from v to the plane is

$$
\|v-\hat{v}\|=\left\|\left(\begin{array}{l}
2 \\
2 \\
2
\end{array}\right)\right\|=\sqrt{12}=2 \sqrt{3}
$$

2. Apply the Gram-Schmidt algorithm to produce an orthogonal basis of \mathbb{R}^{3} from the basis.

$$
\left\{\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)\right\}
$$

Solution. We set

$$
u_{1}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
$$

Then,

$$
u_{2}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)-\frac{v_{2} \cdot u_{1}}{u_{1} \cdot u_{1}}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{c}
1 / 2 \\
-1 / 2 \\
1
\end{array}\right)
$$

and

$$
u_{3}=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)-\frac{v_{3} \cdot u_{1}}{u_{1} \cdot u_{1}}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)-\frac{v_{3} \cdot u_{2}}{u_{2} \cdot u_{2}}\left(\begin{array}{c}
1 / 2 \\
-1 / 2 \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)-\left(\begin{array}{c}
1 / 2 \\
1 / 2 \\
0
\end{array}\right)-\left(\begin{array}{c}
1 / 6 \\
-1 / 6 \\
1 / 3
\end{array}\right)=\left(\begin{array}{c}
-2 / 3 \\
2 / 3 \\
2 / 3
\end{array}\right) .
$$

Therefore, the resulting orthogonal basis is

$$
\left\{\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
1 / 2 \\
-1 / 2 \\
1
\end{array}\right),\left(\begin{array}{c}
-2 / 3 \\
2 / 3 \\
2 / 3
\end{array}\right)\right\}
$$

3. Is the matrix $M=\left(\begin{array}{cc}1 & 1 \\ 3 & -1\end{array}\right)$ orthogonal?

Solution. M is orthogonal if and only if $M^{T} M=I$. We compute:

$$
\begin{aligned}
M^{T} M & =\left[\begin{array}{cc}
1 & 3 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
3 & -1
\end{array}\right] \\
& =\left[\begin{array}{cc}
6 & -2 \\
-2 & 2
\end{array}\right]
\end{aligned}
$$

which is not the identity matrix so M_{1} is not orthogonal.
Alternatively, if M is orthogonal, then M has orthonormal columns, i.e., column vectors are orthogonal to each other and each column vector has length 1 . The first column is a vector $\bar{v}_{1}=\binom{1}{3}$. The length of \bar{v}_{1} is equal to $\left\|\bar{v}_{1}\right\|=\sqrt{10} \neq 1$. Therefore, M is not orthogonal.
4. Orthogonally diagonalize the matrix $A=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$. That is, find an orthogonal matrix P and diagonal matrix D such that $A=P D P^{T}$.

Solution. We compute that

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
1-\lambda & 1 & 1 \\
1 & 1-\lambda & 1 \\
1 & 1 & 1-\lambda
\end{array}\right|=(1-\lambda)\left|\begin{array}{cc}
1-\lambda & 1 \\
1 & 1-\lambda
\end{array}\right|-\left|\begin{array}{cc}
1 & 1 \\
1 & 1-\lambda
\end{array}\right|+\left|\begin{array}{cc}
1 & 1-\lambda \\
1 & 1
\end{array}\right|
$$

$$
=(1-\lambda)\left(\lambda^{2}-2 \lambda\right)-(-\lambda)+\lambda=-\lambda^{3}+3 \lambda^{2}=\lambda^{2}(3-\lambda)
$$

so the eigenvalues of A are 0 and 3 . Thus, we know that

$$
D=\left(\begin{array}{lll}
3 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

We now need orthonormal bases of the eigenspaces. We first look at E_{3}.

$$
A-3 I=\left(\begin{array}{ccc}
-2 & 1 & 1 \\
1 & -2 & 1 \\
1 & 1 & -2
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 1 & -2 \\
0 & -3 & 3 \\
0 & 3 & -3
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right)
$$

Thus, an orthonormal basis for E_{3} is $\left\{\frac{1}{\sqrt{3}}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\}$. Now, we look at E_{0}.

$$
A-0 I=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right) \sim\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Thus, a basis for E_{0} is $\left\{\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right)\right\}$. Applying Gram-Schmidt, we replace the second vector with

$$
v_{2}-\frac{v_{2} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}=v_{2}-\frac{1}{2} v_{1}=\left(\begin{array}{c}
-1 / 2 \\
-1 / 2 \\
1
\end{array}\right)
$$

to get an orthogonal basis. Thus, $\left\{\frac{1}{\sqrt{2}}\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right), \frac{1}{\sqrt{6}}\left(\begin{array}{c}-1 \\ -1 \\ 2\end{array}\right)\right\}$. Therefore, we can take

$$
P=\left(\begin{array}{ccc}
1 / \sqrt{3} & -1 / \sqrt{2} & -1 / \sqrt{6} \\
1 / \sqrt{3} & 1 / \sqrt{2} & -1 / \sqrt{6} \\
1 / \sqrt{3} & 0 & 2 / \sqrt{6}
\end{array}\right)
$$

5. For any $n \times n$ matrix A, show that there is an orthogonal matrix P and diagonal matrix D such that $A^{T} A=P D P^{T}$.

Solution. We have that $\left(A^{T} A\right)^{T}=A^{T}\left(A^{T}\right)^{T}=A^{T} A$. Thus, this matrix is symmetric so the spectral theorem implies that we can find P and D as desired.
6. Is True or False that the product of symmetric matrices is symmetric. Justify your answer. How does this relate orthogonal diagonalizability?

Solution. False. Take

$$
A=\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right) \quad B=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

then we compute

$$
A B=\left(\begin{array}{ll}
2 & 2 \\
1 & 1
\end{array}\right) \quad(A B)^{T}=\left(\begin{array}{ll}
2 & 1 \\
2 & 1
\end{array}\right)
$$

which are not equal so $A B$ is not symmetric.
This shows that the product of orthogonally diagonalizable matrices might not be orthogonally diagonalizable.
7. (*) Suppose W is a subspace of \mathbb{R}^{n}. Show that the transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ given by

$$
v \mapsto \operatorname{Proj}_{W}(v)
$$

is a linear transformation, where $\operatorname{Proj}_{W}(v)$ is the orthogonal projection of v onto W.
Solution. Every vector $v \in \mathbb{R}^{n}$ can be written uniquely as

$$
v=\hat{v}+v^{\perp}
$$

where $\hat{v}=\operatorname{Proj}_{W}(v) \in W$ and $v^{\perp} \in W^{\perp}$ by the orthogonal decomposition theorem.
Let $c \in \mathbb{R}$ and $v \in \mathbb{R}^{n}$. Then as $c v=c \hat{v}+c v^{\perp}$ and W^{\perp} is also a subspace of \mathbb{R}^{n}, we must have $c \operatorname{Proj}_{W}(v)=c \hat{v}=\operatorname{Proj}_{W}(c v)$ by uniqueness of the orthogonal decomposition.
Similarly, $v+w=\hat{v}+v^{\perp}+\hat{w}+w^{\perp}=\hat{v}+\hat{w}+v^{\perp}+w^{\perp}$. Again, as W and W^{\perp} are both subspaces of \mathbb{R}^{n}, uniqueness of the orthogonal decomposition implies that $\operatorname{Proj}_{W}(v+w)=$ $\hat{v}+\hat{w}=\operatorname{Proj}_{W}(v)+\operatorname{Proj}_{W}(w)$. Thus, we have shown that T is a linear transformation.
Alternatively, choose an orthogonal basis $\left\{u_{1}, \ldots, u_{r}\right\}$ of W. Then $\operatorname{Proj}_{W}(v)=\sum_{i=1}^{r} \frac{u_{i} \cdot v}{u_{i} \cdot u_{i}} u_{i}$. If $w \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$, we have $u_{i} \cdot(c v)=c u_{i} \cdot v$ and $u_{i} \cdot(v+w)=u_{i} \cdot v+u_{i} \cdot w$ by the properties of the dot product so that

$$
\operatorname{Proj}_{W}(c v)=\sum_{i=1}^{r} \frac{u_{i} \cdot(c v)}{u_{i} \cdot u_{i}} u_{i}=\sum_{i=1}^{r} c \frac{u_{i} \cdot v}{u_{i} \cdot u_{i}} u_{i}=c \sum_{i=1}^{r} \frac{u_{i} \cdot v}{u_{i} \cdot u_{i}} u_{i}=c \operatorname{Proj}_{W}(v)
$$

and

$$
\begin{aligned}
\operatorname{Proj}_{W}(v+w) & =\sum_{i=1}^{r} \frac{u_{i} \cdot(v+w)}{u_{i} \cdot u_{i}} u_{i} \\
& =\sum_{i=1}^{r} \frac{u_{i} \cdot v+u_{i} \cdot w}{u_{i} \cdot u_{i}} u_{i} \\
& =\sum_{i=1}^{r} \frac{u_{i} \cdot v}{u_{i} \cdot u_{i}} u_{i}+\sum_{i=1}^{r} \frac{u_{i} \cdot w}{u_{i} \cdot u_{i}} u_{i}=\operatorname{Proj}_{W}(v)+\operatorname{Proj}_{W}(w) .
\end{aligned}
$$

This implies that T is a linear transformation.

