Linear Homogeneous Equations of the 2nd order with constant coefficients

The general form

$$
\begin{equation*}
a y^{\prime \prime}(t)+b y^{\prime}(t)+c y(t)=0, \tag{1}
\end{equation*}
$$

where a, b, c - constants.
To find the solution, solve the quadratic equation with unknown r :

$$
\begin{equation*}
a r^{2}+b r+c=0 \tag{2}
\end{equation*}
$$

Sign of the discriminant $D=b^{2}-4 a c$ of the equation (2)	Solutions r_{1}, r_{2} of the quadratic equation (2)	Solution of the ODE (1)
$D>0$	two different real solutions $r_{1} \neq r_{2}$ where $r_{1}=\frac{-b+\sqrt{D}}{2 a}$ and $r_{2}=\frac{-b-\sqrt{D}}{2 a}$	$y(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}$ where c_{1}, c_{2} - constants
$D=0$	one repeated real solution $r_{1}=r_{2}=r$ where $r=\frac{-b}{2 a}$	$y(t)=e^{r t} \cdot\left(c_{1}+c_{2} t\right)=c_{1} e^{r t}+c_{2} t e^{r t}$ where c_{1}, c_{2} - constants
$D<0$	two complex conjugate roots $r_{1,2}=\lambda \pm i \mu,$ where $\lambda=\frac{-b}{2 a} \text { and } \mu=\frac{\sqrt{-D}}{2 a}$	$\begin{gathered} y(t)=e^{\lambda t} \cdot\left(c_{1} \cos (\mu t)+c_{2} \sin (\mu t)\right)= \\ =c_{1} e^{\lambda t} \cos (\mu t)+c_{2} e^{\lambda t} \sin (\mu t) \end{gathered}$ where c_{1}, c_{2} - constants

