Linear Homogeneous Equations of the 2nd order with constant coefficients

The general form

$$ay''(t) + by'(t) + cy(t) = 0,$$
(1)

where a, b, c - constants.

To find the solution, solve the quadratic equation with unknown r:

$$ar^2 + br + c = 0.$$
 (2)

Sign of the discriminant		
$D = b^2 - 4ac$	Solutions r_1, r_2 of the quadratic equation (2)	Solution of the ODE (1)
of the equation (2)		
D > 0	two different real solu- tions $r_1 \neq r_2$, where $r_1 = \frac{-b + \sqrt{D}}{2a}$ and $r_2 = \frac{-b - \sqrt{D}}{2a}$	$y(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t},$ where c_1, c_2 - constants
D = 0	one repeated real solu- tion $r_1 = r_2 = r$, where $r = \frac{-b}{2a}$	$y(t) = e^{rt} \cdot (c_1 + c_2 t) = c_1 e^{rt} + c_2 t e^{rt},$ where c_1, c_2 - constants
D < 0	two complex conjugate roots $r_{1,2} = \lambda \pm i\mu$, where $\lambda = \frac{-b}{2a}$ and $\mu = \frac{\sqrt{-D}}{2a}$	$y(t) = e^{\lambda t} \cdot (c_1 \cos(\mu t) + c_2 \sin(\mu t)) =$ $= c_1 e^{\lambda t} \cos(\mu t) + c_2 e^{\lambda t} \sin(\mu t),$ where c_1, c_2 - constants