Nonhomogeneous Linear Equations. Method of Undetermined coefficients

The general form

$$
\begin{equation*}
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=g(t) . \tag{1}
\end{equation*}
$$

The solution has form

$$
y(t)=y_{h}(t)+Y(t),
$$

where $Y(t)$ is any specific function that satisfies the nonhomogeneous equation (1) and $y_{h}(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t)$ is a general solution of the corresponding homogeneous equation

$$
\begin{equation*}
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=0 \tag{2}
\end{equation*}
$$

$\left(C_{1}, C_{2}\right.$ are arbitrary constants and y_{1}, y_{2}-linear independent solutions of the homogeneous equation (2), i.e. the Wronskian $\left.W\left(y_{1}, y_{2}\right) \neq 0\right)$

If $g(t)$ is a sum of several functions, i.e.

$$
g(t)=g_{1}(t)+g_{2}(t)+\cdots+g_{n}(t)
$$

then any solution of the equation 1 has form

$$
Y(t)=Y_{1}(t)+Y_{2}(t)+\cdots+Y_{n}(t),
$$

where

$$
\begin{gathered}
Y_{1}(t) \text { is a solution of } y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g_{1}(t), \\
Y_{2}(t) \text { is a solution of } y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g_{2}(t), \\
\vdots \\
Y_{n}(t) \text { is a solution of } y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g_{n}(t) .
\end{gathered}
$$

To solve the equation of the form

$$
\begin{equation*}
a y^{\prime \prime}(t)+b y^{\prime}(t)+c y(t)=g(t) \tag{3}
\end{equation*}
$$

where a, b, c-constants and $g(t)$ is a sum of functions of a special form.
Step 1 Find the general solution $y_{h}(t)$ of the homogeneous equation with constant coefficients

$$
a y^{\prime \prime}(t)+b y^{\prime}(t)+c y(t)=0 .
$$

Step 2

Find a specific solution $Y(t)$ of the equation 3.
First, break down $g(t)$ into a sum of functions $g_{i}(t)$ such that they have one of the forms listed in the table.
Find a specific solution $Y_{i}(t)$ of the equation

$$
\begin{equation*}
a y^{\prime \prime}(t)+b y^{\prime}(t)+c y(t)=g_{i}(t) \tag{4}
\end{equation*}
$$

by using the method of undetermined coefficients, i.e. try to find a solution in the form listed in the table.
Let $Y(t)$ be equal to the sum of all $Y_{i}(t)$.

Step 3

The solution of the equation (3) is $y(t)=y_{h}(t)+Y(t)$.

How to find a solution for the equation (4)

Let r_{1}, r_{2} be the solutions of the quadratic equation

$$
\begin{equation*}
a r^{2}+b r+c=0 \tag{5}
\end{equation*}
$$

The form of $g_{i}(t)$	The form of the solution $Y_{i}(t)$
Polynomial of order n : $P_{n}(t)=a_{0} t^{n}+a_{1} t^{n-1}+\cdots+a_{n}$	$Y_{i}(t)=t^{s}\left(A_{0} t^{n}+A_{1} t^{n-1}+\cdots+A_{n}\right),$ where $s=\left\{\begin{array}{lll} 0, & \text { if } & r_{1} \neq 0 \text { and } r_{2} \neq 0 ; \\ 1, & \text { if } & r_{1}=0 \text { and } r_{2} \neq 0 ; \\ 1, & \text { if } & r_{1} \neq 0 \text { and } r_{2}=0 ; \\ 2, & \text { if } & r_{1}=0 \text { and } r_{2}=0 \end{array}\right.$
Polynomial of order n multiplied by $e^{\alpha t}$: $P_{n}(t) e^{\alpha t}=\left(a_{0} t^{n}+a_{1} t^{n-1}+\cdots+a_{n}\right) e^{\alpha t}$	$Y_{i}(t)=t^{s}\left(A_{0} t^{n}+A_{1} t^{n-1}+\cdots+A_{n}\right) e^{\alpha t}$ where $s=\left\{\begin{array}{lll} 0, & \text { if } & r_{1} \neq \alpha \text { and } r_{2} \neq \alpha ; \\ 1, & \text { if } & r_{1}=\alpha \text { and } r_{2} \neq \alpha ; \\ 1, & \text { if } \quad r_{1} \neq \alpha \text { and } r_{2}=\alpha ; \\ 2, & \text { if } \quad r_{1}=\alpha \text { and } r_{2}=\alpha . \end{array}\right.$
Polynomial of order n multiplied by $e^{\alpha t} \sin (\beta t)$ or $e^{\alpha t} \cos (\beta t)$: $\begin{gathered} P_{n}(t) e^{\alpha t} \sin (\beta t)= \\ =\left(a_{0} t^{n}+a_{1} t^{n-1}+\cdots+a_{n}\right) e^{\alpha t} \sin (\beta t) \end{gathered}$ or $\begin{gathered} P_{n}(t) e^{\alpha t} \cos (\beta t)= \\ =\left(a_{0} t^{n}+a_{1} t^{n-1}+\cdots+a_{n}\right) e^{\alpha t} \cos (\beta t) \end{gathered}$	$\begin{array}{r} Y_{i}(t)=t^{s} e^{\alpha t}\left[\left(A_{0} t^{n}+A_{1} t^{n-1}+\cdots+A_{n}\right) \cos (\beta t)+\right. \\ \left.+\left(B_{0} t^{n}+B_{1} t^{n-1}+\cdots+B_{n}\right) \sin (\beta t)\right] \end{array}$ where $s=\left\{\begin{array}{lll} 0, & \text { if } & r_{1,2} \neq \alpha \pm i \beta \\ 1, & \text { if } & r_{1,2}=\alpha \pm i \beta \end{array}\right.$

