Mechanical Vibrations

A mass-spring system undergoing free vibration (i.e. without a forcing function) is described by the equation:

$$mu'' + \gamma u' + ku = 0,$$

where $m > 0, \gamma \ge 0, k > 0$.

The behavior of the system is determined by the magnitude of the damping coefficient γ relative to m and k.

1. Undamped system (when $\gamma = 0$)

Displacement: $u(t) = C_1 \cos \omega_0 t + C_2 \sin \omega_0 t$

<u>Oscillation</u>: Yes, <u>periodic</u> (at natural frequency $\omega_0 = \sqrt{\frac{k}{m}}$)/ <u>simple harmonic motion</u> <u>Notes</u>: Steady oscillation with constant amplitude $R = \sqrt{C_1^2 + C_2^2}$.

- 2. Underdamped system (when $D = \gamma^2 4mk < 0$) <u>Displacement</u>: $u(t) = C_1 e^{\lambda t} \cos \mu t + C_2 e^{\lambda t} \sin \mu t$ <u>Oscillation</u>: Yes, quasi-periodic (at quasi-frequency μ) <u>Notes</u>: Exponentially-decaying oscillation
- 3. Critically Damped system (when D = γ² 4mk = 0)
 <u>Displacement</u>: u(t) = C₁e^{rt} + C₂te^{rt}
 <u>Oscillation</u>: No
 Notes: The mass could cross its equilibrium position at most once
- 4. Overdamped system (when $D = \gamma^2 4mk > 0$)

Displacement: $u(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}$ Oscillation: No

Notes: The mass could cross its equilibrium position <u>at most once</u>