Suggested problems 14

Instructor: Alena Erchenko

1. Determine the longest interval in which the given initial value problem is certain to have a unique solution

$$(t+2)y'' - \sin(t)y' + \frac{ty}{t-4} = \frac{e^{2t}}{t}, \qquad y(-1) = 0, \qquad y'(-1) = 1.$$

- 2. Find the Wronskian of the given pair of functions
 - (a) e^{2t} , e^{-3t} ; (b) $e^t \sin(t)$, $e^t \cos(t)$.
- 3. Let y_1 and y_2 be two solutions to the linear equation

$$2t^2y'' - ty' - y = 0.$$

A constant multiple of which function is the Wronskian of y_1 and y_2 .

- 4. Let y_1, y_2 be two solutions to the equation ty'' 2y' y = 0.
 - (a) Determine the Wronskian $W(y_1, y_2)$ of y_1 and y_2 .
 - (b) If $W(y_1, y_2)(2) = 1$, then determine $W(y_1, y_2)(3)$.