Suggested problems 19

Instructor: Alena Erchenko

- 1. For each problem, determine whether the system is under-, over-, or critically damped.
 - (a)

$$u'' + 6u' + 9u = 0,$$
 $u(0) = 1,$ $u'(0) = 1.$

(b)

$$u'' + 4u' + 3u = 0,$$
 $u(0) = 0,$ $u'(0) = -4.$

(c)

$$u'' + 6u' + 10u = 0,$$
 $u(0) = -2,$ $u'(0) = 9.$

2. A mass-spring system is described by the equation

$$5u'' + \gamma u' + ku = F(t),$$

- (a) Suppose the mass originally stretched the spring 2 meters to reach its equilibrium position. What is the spring constant k? (Assume $g = 10m/s^2$ to be the gravitational constant.)
- (b) Suppose k = 20. For what value(s) of γ would this system be **critically damped**?
- (c) Suppose $\gamma = 0$ and k = 45. What is the natural frequency of this system?
- (d) True or false: Suppose $\gamma = 0, k = 5$, and $F(t) = 7 \sin t$, then the mass-spring system is undergoing resonance?
- (e) Suppose $\gamma = 3, k = 1, F(t) = 0$. What is the quasi-frequency of the system?