To find eigenvalues and eigenvectors of a matrix

Let A be a matrix 2×2, whose eigenvalues and eigenvectors we would like to find.

Find eigenvalues:

1. Compute matrix $A-r I$, where $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and r is an unknown number.
2. Compute $\operatorname{det}(A-r I)$ in terms of r.
3. Solve the equation $\operatorname{det}(A-r I)=0$ for r. The solutions are exactly the eigenvalues of the matrix A.

Find eigenvectors:

Let $r=r_{1}$ be an eigenvalue for A.

1. Compute $A-r_{1} I$.
2. Compute the product $\left(A-r_{1} I\right)\binom{x_{1}}{x_{2}}$.
3. Find a nonzero solution of the linear system

$$
\left(A-r_{1} I\right)\binom{x_{1}}{x_{2}}=\binom{0}{0},
$$

i.e. find nonzero pair of numbers x_{1}, x_{2}.
4. A vector $\bar{x}=\binom{x_{1}}{x_{2}}$ is an eigenvector for the matrix A for the eigenvalue $r=r_{1}$.

If you have several eigenvalues, then repeat the procedure of finding eigenvectors for every eigenvalue.

