How to solve an initial value problem for a linear homogeneous system

Assume we need to solve the initial value problem

$$
\bar{x}^{\prime}(t)=\left(\begin{array}{cc}
a & b \tag{1}\\
c & d
\end{array}\right) \bar{x}(t), \quad x(h)=\binom{f}{g},
$$

where a, b, c, d, h, f, g are given numbers.
Step 1. Make change of variable

$$
T=t-h .
$$

Step 2. Solve the initial value problem

$$
\bar{y}^{\prime}(T)=\left(\begin{array}{cc}
a & b \tag{2}\\
c & d
\end{array}\right) \bar{y}(T), \quad y(0)=\binom{f}{g}
$$

1. Find eigenvalues of the matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.
2. Find eigenvectors corresponding to the eigenvalues from the previous item.
3. Find the general solution (with some constants C_{1}, C_{2}) for the system

$$
\bar{y}^{\prime}(T)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \bar{y}(T)
$$

!!! Notice that the vector-function $\bar{y}(T)$ depends on T.
4. Plug the initial condition

$$
\bar{y}(0)=\binom{f}{g}
$$

into the solution from the previous item, i.e.
plug $T=0$ in the solution from the previous item and make it equal to $\binom{f}{g}$.
You will get a system of two equations (USE BOTH EQUATIONS!) with C_{1}, C_{2}. Find constants C_{1}, C_{2} which satisfy the system (there exist unique constants).
5. Write the particular solution $\bar{y}(T)$ with the constants C_{1}, C_{2} replaced by their values, which you found in the previous item.

Step 3. Plug $t-h$ instead of T in the solution $\bar{y}(T)$ of the initial value problem 2. The expression you get is equal to the solution $\bar{x}(t)$ of the initial problem 1 .

