How to draw odd and even extensions of a given function

Assume you are given a function $f(x)$ on an interval $0<x<L$.
Example: Let $f(x)=1-x^{2}, \quad 0<x<1$.

1. Draw the given function $f(x)$ on the given interval (Check if the end points included or not!!!)

2. If you need to draw EVEN extension of $f(x)$: Reflect the picture of $f(x)$ you have on $0<x<L$ with respect to y-axis on the interval $-L<x<0$. The union of your $f(x)$ on $0<x<L$ and its reflection with respect to y-axis on $-L<x<0$ is an even extension.

3. If you need PERIODIC EVEN extension of $f(x)$: Traslate the picture you got in the previous item along x-axis by $2 L$ left/right.

4. If you need to draw ODD extension of $f(x)$: Reflect the picture of $f(x)$ you have on $0<x<L$ with respect to y-axis on the interval $-L<x<0$. Then, reflect the picture you got on $-L<x<0$ with respect to x-axis. The union of your $f(x)$ on $0<x<L$ and the result after applying the reflection with respect to x-axis on $-L<x<0$, adding points $(0,0),(L, 0),(-L, 0)$ is an odd extension.

5. If you need PERIODIC ODD extension of $f(x)$: Traslate the picture you got in the previous item along x-axis by $2 L$ left/right.

