Suggested problems 32

Instructor: Alena Erchenko

1. Determine whether the given function is periodic. If so, find its fundamental period.
(a) $\sin (5 x)$.
(b)

$$
f(x)= \begin{cases}0, & 2 n-1 \leqslant x<2 n \\ 1, & 2 n \leqslant x<2 n+1\end{cases}
$$

where $n=0, \pm 1, \pm 2, \cdots$.
2. Find the Fourier series representation of each periodic function.
(a) $f(x)=5, \quad-1<x<1, \quad f(x+2)=f(x)$;
(b) $f(x)=(\cos x+\sin x)^{2}, \quad-\pi<x<\pi, \quad f(x+2 \pi)=f(x)$;
(c) $f(x)=x^{2}, \quad 0 \leqslant x<\pi, \quad f(x+\pi)=f(x)$.
3. (*optional) Suppose that g is an integrable periodic function with period T.
(a) If $0 \leqslant a \leqslant T$, show that

$$
\int_{0}^{T} g(x) d x=\int_{a}^{a+T} g(x) d x
$$

Hint: Show first that $\int_{0}^{a} g(x) d x=\int_{T}^{a+T} g(x) d x$. In the second integral, consider the change of variable $s=x-T$.
(b) Show that for any value of a, not necessarily in $0 \leqslant a \leqslant T$,

$$
\int_{0}^{T} g(x) d x=\int_{a}^{a+T} g(x) d x
$$

(c) Show that for any values of a and b,

$$
\int_{a}^{a+T} g(x) d x=\int_{b}^{b+T} g(x) d x
$$

4. (*optional) If f is differentiable and is periodic with period T, show that f^{\prime} is also periodic with period T. Determine whether

$$
F(x)=\int_{0}^{x} f(t) d t
$$

is always periodic.

