Suggested problems 32

Instructor: Alena Erchenko

- 1. Determine whether the given function is periodic. If so, find its fundamental period.
 - (a) $\sin(5x)$.
 - (b)

$$f(x) = \left\{ \begin{array}{ll} 0, & 2n-1 \leqslant x < 2n, \\ 1, & 2n \leqslant x < 2n+1, \end{array} \right.$$

where $n = 0, \pm 1, \pm 2, \cdots$.

- 2. Find the Fourier series representation of each periodic function.
 - (a) f(x) = 5, -1 < x < 1, f(x+2) = f(x); (b) $f(x) = (\cos x + \sin x)^2$, $-\pi < x < \pi$, $f(x+2\pi) = f(x)$; (c) $f(x) = x^2$, $0 \le x < \pi$, $f(x+\pi) = f(x)$.
- 3. (*optional) Suppose that g is an integrable periodic function with period T.
 - (a) If $0 \leq a \leq T$, show that

$$\int_0^T g(x)dx = \int_a^{a+T} g(x)dx.$$

Hint: Show first that $\int_0^a g(x)dx = \int_T^{a+T} g(x)dx$. In the second integral, consider the change of variable s = x - T.

(b) Show that for any value of a, not necessarily in $0 \leq a \leq T$,

$$\int_0^T g(x)dx = \int_a^{a+T} g(x)dx.$$

(c) Show that for any values of a and b,

$$\int_{a}^{a+T} g(x)dx = \int_{b}^{b+T} g(x)dx.$$

4. (*optional) If f is differentiable and is periodic with period T, show that f' is also periodic with period T. Determine whether

$$F(x) = \int_0^x f(t)dt$$

is always periodic.