Integrating factor method for the linear first order equation

Linear first order equation

$$
\begin{equation*}
A(t) \frac{d y}{d t}+B(t) y=Q(t) \tag{1}
\end{equation*}
$$

1. Divide both sides of equation (1) by $A(t)$ to get coefficient 1 in front of $\frac{d y}{d t}$

$$
\begin{equation*}
\frac{d y}{d t}+\frac{B(t)}{A(t)} y=\frac{Q(t)}{A(t)} \tag{2}
\end{equation*}
$$

2. Multiply both sides of equation (2) by $\mu(t)$

$$
\begin{equation*}
\mu(t) \frac{d y}{d t}+\frac{B(t)}{A(t)} \mu(t) y=\frac{Q(t)}{A(t)} \mu(t) \tag{3}
\end{equation*}
$$

3. The integrating factor

$$
\mu(t)=e^{\int \frac{B(t)}{A(t)} d t}
$$

Compute $\mu(t)$.
4. If you use $\mu(t)$ from the previous item, equation (3) becomes

$$
\frac{d(\mu(t) y)}{d t}=\frac{Q(t)}{A(t)} \mu(t)
$$

5. The solution is

$$
y(t)=\frac{\int \frac{Q(t)}{A(t)} \mu(t) d t+C}{\mu(t)}
$$

where C is a constant which depends on initial condition. Compute $y(t)$.
6. If you want such a solution that $y(a)=b$, then plug a instead of t and b instead of y in the expression for $y(t)$. Find the expression for C in terms of a, b.

