Exact Equation

Consider an equation

$$
M(x, y)+N(x, y) y^{\prime}=0 .
$$

To check if the equation exact:

1. Write the equation in the differential form

$$
M(x, y) d x+N(x, y) d y=0 .
$$

2. Check if the following equality is true:

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the equality is true then the equation is exact. Otherwise, the equation is not exact.

How to solve exact equation:

1. We want to find a function $f(x, y)$ such that

$$
\frac{\partial f}{\partial x}=M(x, y) \quad \text { and } \quad \frac{\partial f}{\partial y}=N(x, y) .
$$

2. First, compute the following integral with respect to x :

$$
f(x, y)=\int M(x, y) d x+C_{1}(y)
$$

where $C_{1}(y)$ is an unknown function of y.
3. Second, compute the following integral with respect to y :

$$
f(x, y)=\int N(x, y) d y+C_{2}(x)
$$

where $C_{2}(x)$ is an unknown function of x.
4. We have two expressions of the same $f(x, y)$ but with the unknown functions $C_{1}(y)$ and $C_{2}(x)$. Find the expressions of $C_{1}(y), C_{2}(x)$ from the following equality, which you get from two expressions of $f(x, y)$:

$$
\int M(x, y) d x+C_{1}(y)=\int N(x, y) d y+C_{2}(x)
$$

Keep in mind that $C_{1}(y)$ depends only on y, so there is no x in its expression. Similarly, $C_{2}(x)$ depends only on x, so there is no y in its expression.
5. Now, you know $C_{1}(y)$. So, you find $f(x, y)$ by plugging it in the formula for $f(x, y)$:

$$
f(x, y)=\int M(x, y) d x+C_{1}(y)
$$

6. The general implicit solution of the initial differential equation is

$$
f(x, y)=C
$$

where C is a constant.
7. If you need to find a solution of the initial value problem, i.e. such that $y\left(x_{0}\right)=y_{0}$, then plug in x_{0} instead of x and y_{0} instead of y in the equation

$$
f(x, y)=C .
$$

So, you can find the corresponding C, i.e. the solution of the initial value problem is

$$
f(x, y)=f\left(x_{0}, y_{0}\right)
$$

