Stability of an equilibrium solution of autonomous equations

Consider an autonomous differential equation with initial condition

$$
\begin{equation*}
y^{\prime}=f(y), \quad y\left(t_{0}\right)=y_{0} \tag{1}
\end{equation*}
$$

where f is some function of y and t_{0}, y_{0} are some constants.
How to find equilibrium solutions:

1. Find all constants a such that $f(a)=0$, i.e. solve algebraic equation $f(y)=0$.
2. If a is a constant from previous item, then $y(t)=a$ is an equilibrium solution.

How to classify equilibrium solutions:

1. First, draw a vertical line, y-axis, where we have direction from bottom to the top, i.e. $-\infty$ on the bottom and $+\infty$ on the top. (Example: $a<b<c$). And mark on it all constants which correspond to equilibrium solutions. In our example they are a, b, c. See Figure 1 .

Figure 1
2. For each interval formed by equilibrium solutions on the y-axis define the sign of $f(y)$. To define a sign it is needed to pick any number k between any two numbers corresponding to equilibrium solutions and define if $f(k)$ positive or negative. If $f(k)>0$, then draw an upward arrow on that interval. If $f(k)<0$, then draw a downward arrow on that interval. Make this procedure with every interval on y-axis.

Figure 2
3. Depending on what direction of arrows you see around the point, you call the equilibrium solution either stable, or unstable, or semi-stable.

Stability of an equilibrium solution $\mathrm{y}(\mathrm{t})=\mathrm{a}$	Picture aroun
$y=a$ is (asymptotically) stable	a
$y=a$ is unstable	a
$y=a$ is semistable	a

Example: For Figure 2 we have
(a) $y(t)=c$ is stable;
(b) $y(t)=b$ is unstable;
(c) $y(t)=a$ is semi-stable;

How to define the behavior of the solution with initial condition $y\left(t_{0}\right)=y_{0}$

1. If y_{0} coincide with a number corresponding to some equilibrium solution, then the solution of the initial equation is $y(t)=y_{0}$.
2. If you need to define the behavior as $t \rightarrow+\infty$. Then, mark a place of y_{0} on y-axis on Figure 2. The limit is equal to the number to which the arrow on the interval points to. If the arrow goes to $+\infty$ or $-\infty$, then the limit is $+\infty$ or $-\infty$, respectively.

Example: If we have the picture below, then $\lim _{t \rightarrow \infty} y(t)=a$.

