Solve differential equation using Laplace transform

Assume we are given a linear differential equation

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=f(t) \tag{1}
\end{equation*}
$$

where a, b, c-constants, $f(t)$ - some function of t. And we need to find a solution of it such that

$$
\begin{equation*}
y(0)=\alpha, \quad y^{\prime}(0)=\beta \tag{2}
\end{equation*}
$$

The algorithm to solve the differential equation is the following:

1. Take the Laplace transform from both sides of the equation (1). Use the linearity property of Laplace transform to simplify the expression. Also, compute the Laplace transform of $f(t)$. Therefore, you get

$$
\begin{aligned}
& \mathcal{L}\left(a y^{\prime \prime}+b y^{\prime}+c y\right)=\mathcal{L}(f(t)) \\
& a \mathcal{L}\left(y^{\prime \prime}\right)+b \mathcal{L}\left(y^{\prime}\right)+c \mathcal{L}(y)=\mathcal{L}(f(t))
\end{aligned}
$$

2. Then, use the properties that

$$
\mathcal{L}\left(y^{\prime}\right)=s \mathcal{L}(y)-y(0) \quad \text { and } \quad \mathcal{L}\left(y^{\prime \prime}\right)=s^{2} \mathcal{L}(y)-s y(0)-y^{\prime}(0)
$$

So, you get

$$
a\left(s^{2} \mathcal{L}(y)-s y(0)-y^{\prime}(0)\right)+b(s \mathcal{L}(y)-y(0))+c \mathcal{L}(y)=\mathcal{L}(f(t))
$$

3. Distribute the numbers a, b over the terms in the parentheses in the expression above. And plug in the values for $y(0)$ and $y^{\prime}(0)$ from the given initial conditions (2).

$$
\begin{aligned}
& a s^{2} \mathcal{L}(y)-a s y(0)-a y^{\prime}(0)+b s \mathcal{L}(y)-b y(0)+c \mathcal{L}(y)=\mathcal{L}(f(t)) \\
& a s^{2} \mathcal{L}(y)-a s \alpha-a \beta+b s \mathcal{L}(y)-b \alpha+c \mathcal{L}(y)=\mathcal{L}(f(t))
\end{aligned}
$$

4. Express $\mathcal{L}(y)$ as a function of s

$$
\begin{aligned}
& \left(a s^{2}+b s+c\right) \mathcal{L}(y)=\mathcal{L}(f(t))+a s \alpha+a \beta+b \alpha \\
& \mathcal{L}(y)=\frac{\mathcal{L}(f(t))+a s \alpha+a \beta+b \alpha}{a s^{2}+b s+c}
\end{aligned}
$$

5. The solution of the initial value problem is equal to

$$
y(t)=\mathcal{L}^{-1}\left(\frac{\mathcal{L}(f(t))+a s \alpha+a \beta+b \alpha}{a s^{2}+b s+c}\right)
$$

To compute the inverse Laplace transform you need to simplify the function by factoring the denominator if possible and using partial fraction decomposition.

