Classification of Critical points

Critical point $(0,0)$ of linear homogeneous system

$$
\begin{equation*}
\bar{x}^{\prime}=A \bar{x} \tag{1}
\end{equation*}
$$

where $A-2 \times 2$ matrix of numbers such that $\operatorname{det}(A) \neq 0$.

Eigenvalues r_{1}, r_{2} of A	Solution of the system 1	Cases for eigenvalues	Type of the critical point	Behavior of solutions
Two distinct	$\bar{x}(t)=C_{1} \bar{k}_{1} e^{r_{1} t}+C_{2} \bar{k}_{2} e^{r_{2} t}$,	$r_{1}>0, r_{2}>0$	unstable node	all nonzero solutions diverge away from $(0,0)$ to infinite-distance away (the limit does not exist as $t \rightarrow+\infty)$
real eigenvalues	where C_{1}, C_{2} are	$r_{1}<0, r_{2}<0$	asymptotically stable node	all solutions converge to $(0,0)$ as $t \rightarrow+\infty$
r_{1}, r_{2} with eigenvectors \bar{k}_{1}, \bar{k}_{2}, respectively	some constants	$r_{1} \cdot r_{2}<0$	saddle point (unstable)	some trajectories converge to $(0,0)$, others moves to infinite distance away from $(0,0)$ (i.e. for some trajectories the limit does not exist as $t \rightarrow \pm \infty)$

Eigenvalues r_{1}, r_{2} of A	Solution of the system 1	Cases for eigenvalues	Type of the critical point	Behavior of solutions
Complex conjugate eigenvalues $\lambda \pm i \mu$	$\begin{gathered} \bar{x}(t)=C_{1} e^{\lambda t}(\bar{a} \cos (\mu t)-\bar{b} \sin (\mu t))+ \\ +C_{2} e^{\lambda t}(\bar{a} \sin (\mu t)+\bar{b} \cos (\mu t)) \end{gathered}$	$\lambda=0$	center (neutrally stable; NOT asymptotically stable)	all nonzero solutions neither converge to $(0,0)$ nor move to infinite-distant away as $t \rightarrow \pm \infty$
with eigenvectors $\bar{a} \pm i \bar{b}$, respectively	where C_{1}, C_{2} are some constants	$\lambda>0$	spiral point (unstable)	all non-zero solutions spiral away from $(0,0)$ to infinite-distance away as $t \rightarrow+\infty$
		$\lambda<0$	spiral point (asymptotically stable)	all solutions converge to $(0,0)$ as $t \rightarrow+\infty$
Repeated real eigenvalue $r_{1}=r_{2}=r$ with two linearly independent eigenvectors	$\bar{x}(t)=C_{1} \bar{k}_{1} e^{r t}+C_{2} \bar{k}_{2} e^{r t}$ where C_{1}, C_{2} are some constants	$r<0$	asymptotically stable proper node (star point)	all solutions converge to $(0,0)$ as $t \rightarrow+\infty$
$\begin{gathered} \bar{k}_{1}, \bar{k}_{2} \\ \text { i.e. } A=\left(\begin{array}{ll} \alpha & 0 \\ 0 & \alpha \end{array}\right), \end{gathered}$ where $\alpha \neq 0$ (all nonzero vectors are eigenvectors)		$r>0$	unstable proper node (star point)	all nonzero solutions diverge away from $(0,0)$ as $t \rightarrow+\infty$
Repeated real eigenvalue $r_{1}=r_{2}=r$ with only one linearly independent eigenvector \bar{k}	$\begin{gathered} \bar{x}(t)=C_{1} \bar{k} e^{r t}+C_{2}\left(\bar{k} t e^{r t}+\bar{\eta} e^{r t}\right) \\ \text { where }(A-r I) \bar{\eta}=\bar{k} \\ C_{1}, C_{2} \text { are } \\ \text { some constants } \end{gathered}$	$r<0$	asymptotically stable improper node	all solutions converge to $(0,0)$ as $t \rightarrow+\infty$
		$r>0$	unstable improper node	all nonzero solutions diverge away from $(0,0)$ as $t \rightarrow+\infty$

Nonlinear Systems

$$
\left\{\begin{array}{l}
x^{\prime}=F(x, y), \tag{2}\\
y^{\prime}=G(x, y),
\end{array}\right.
$$

where F, g are functions of two variables $x=x(t)$ and $y=y(t)$.
Critical point is a solution of the system

$$
\left\{\begin{array}{l}
x^{\prime}=0, \tag{3}\\
y^{\prime}=0,
\end{array}\right.
$$

i.e. such point (x, y) that

$$
\left\{\begin{array}{l}
F(x, y)=0, \tag{4}\\
G(x, y)=0,
\end{array}\right.
$$

Every solution of the system 4 above is a critical point of the given nonlinear system 2
Let (α, β) be a critical point, then, to define a type of that point, it is needed to use the above table with

$$
A=\left(\begin{array}{ll}
\frac{\partial F}{\partial x}(\alpha, \beta) & \frac{\partial F}{\partial y}(\alpha, \beta) \\
\frac{\partial G}{\partial x}(\alpha, \beta) & \frac{\partial G}{\partial y}(\alpha, \beta)
\end{array}\right)
$$

