Classification of Critical points

Critical point $\left(0,0\right)$ of linear homogeneous system

$$\bar{x}' = A\bar{x},\tag{1}$$

where A- 2 × 2 matrix of numbers such that $det(A) \neq 0$.

Eigenvalues r_1, r_2 of A	Solution of the system 1	Cases for eigenvalues	Type of the critical point	Behavior of solutions
Two distinct	$\bar{x}(t) = C_1 \bar{k}_1 e^{r_1 t} + C_2 \bar{k}_2 e^{r_2 t},$	$r_1 > 0, r_2 > 0$	unstable node	all nonzero solutions diverge away from $(0,0)$ to infinite-distance away
real eigenvalues	where C_1, C_2 are	$r_1 < 0, r_2 < 0$	asymptotically stable node	(the limit does not exist as $t \to +\infty$) all solutions converge to $(0,0)$
r_1, r_2 with eigenvectors \bar{k}_1, \bar{k}_2 , respectively	some constants	$r_1 \cdot r_2 < 0$	saddle point (unstable)	$\begin{array}{c} \text{as } t \to +\infty \\ \hline \text{some trajectories} \\ \text{converge to } (0,0), \\ \text{others moves to infinite} \end{array}$
				distance away from $(0,0)$ (i.e. for some trajectories the limit does not exist as $t \to \pm \infty$)

Eigenvalues r_1, r_2 of A	Solution of the system 1	Cases for eigenvalues	Type of the critical point	Behavior of solutions
Complex conjugate eigenvalues $\lambda \pm i\mu$	$\bar{x}(t) = C_1 e^{\lambda t} (\bar{a} \cos(\mu t) - \bar{b} \sin(\mu t)) + C_2 e^{\lambda t} (\bar{a} \sin(\mu t) + \bar{b} \cos(\mu t))$	$\lambda = 0$	center (neutrally stable; NOT asymptotically stable)	all nonzero solutions neither converge to $(0,0)$ nor move to infinite-distant away as $t \to \pm \infty$
with eigenvectors $\bar{a} \pm i\bar{b}$, respectively	where C_1, C_2 are some constants	$\lambda > 0$	spiral point (unstable)	all non-zero solutions spiral away from $(0,0)$ to infinite-distance away as $t \to +\infty$
		$\lambda < 0$	spiral point (asymptotically stable)	all solutions converge to $(0,0)$ as $t \to +\infty$
Repeated real eigenvalue $r_1 = r_2 = r$ with two linearly independent eigenvectors	$\bar{x}(t) = C_1 \bar{k}_1 e^{rt} + C_2 \bar{k}_2 e^{rt}$ where C_1, C_2 are some constants	r < 0	asymptotically stable proper node (star point)	all solutions converge to $(0,0)$ as $t \to +\infty$
\bar{k}_1, \bar{k}_2 i.e. $A = \begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix}$, where $\alpha \neq 0$ (all nonzero vectors are eigenvectors)		r > 0	unstable proper node (star point)	all nonzero solutions diverge away from $(0,0)$ as $t \to +\infty$
Repeated real eigenvalue $r_1 = r_2 = r$ with only one linearly _	$\bar{x}(t) = C_1 \bar{k} e^{rt} + C_2 (\bar{k} t e^{rt} + \bar{\eta} e^{rt}),$ where $(A - rI)\bar{\eta} = \bar{k},$ C_1, C_2 are	r < 0	asymptotically stable improper node	all solutions converge to $(0,0)$ as $t \to +\infty$
independent eigenvector \bar{k}	some constants	r > 0	unstable improper node	all nonzero solutions diverge away from $(0,0)$ as $t \to +\infty$

$$\begin{cases} x' = F(x, y), \\ y' = G(x, y), \end{cases}$$

$$(2)$$

where F, g are functions of two variables x = x(t) and y = y(t).

 ${\bf Critical \ point}$ is a solution of the system

$$\begin{cases} x' = 0, \\ y' = 0, \end{cases}$$
(3)

i.e. such point (x, y) that

$$F(x, y) = 0,$$

 $G(x, y) = 0,$
(4)

Every solution of the system 4 above is a critical point of the given nonlinear system 2

Let (α, β) be a critical point, then, to define a type of that point, it is needed to use the above table with

$$A = \begin{pmatrix} \frac{\partial F}{\partial x}(\alpha,\beta) & \frac{\partial F}{\partial y}(\alpha,\beta) \\ \\ \frac{\partial G}{\partial x}(\alpha,\beta) & \frac{\partial G}{\partial y}(\alpha,\beta) \end{pmatrix}.$$