REDUCTION OF ORDER

We apply the reduction of order method for the following type of problem:
The second order linear homogeneous differential equation

$$
A(t) y^{\prime \prime}+B(t) y^{\prime}+D(t) y=0
$$

where $A(t), B(t), D(t)$ are some functions, has a known solution $y_{1}(t)$. Use the reduction of order to find the general solution of this differential equation.

Solution.

1. Make coefficient 1 in front of $y^{\prime \prime}$ in the given equation, i.e. divide both sides of the equation by $A(t)$.

$$
\begin{equation*}
y^{\prime \prime}+\frac{B(t)}{A(t)} y^{\prime}+\frac{D(t)}{A(t)} y=0 . \tag{1}
\end{equation*}
$$

Therefore, we get an equation in standard form

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 . \tag{2}
\end{equation*}
$$

2. Let us try to find another solution $y_{2}(t)$ of the given equation, which will be linearly independent from $y_{1}(t)$, in the following form

$$
y_{2}(t)=y_{1}(t) v(t), \text { where } v(t) \text { is an unknown function. }
$$

3. Let us compute Wronskian of $y_{1}(t)$ and $y_{2}(t)$ by definition

$$
\begin{gathered}
W\left(y_{1}, y_{2}\right)(t)=\operatorname{det}\left(\begin{array}{cc}
y_{1}(t) & y_{2}(t) \\
y_{1}^{\prime}(t) & y_{2}^{\prime}(t)
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
y_{1}(t) & y_{1}(t) v(t) \\
y_{1}^{\prime}(t) & y_{1}^{\prime}(t) v(t)+y_{1}(t) v^{\prime}(t)
\end{array}\right)= \\
=y_{1}(t)\left(y_{1}^{\prime}(t) v(t)+y_{1}(t) v^{\prime}(t)\right)-y_{1}^{\prime}(t)\left(y_{1}(t) v(t)\right)= \\
=y_{1}(t) y_{1}^{\prime}(t) v(t)+\left(y_{1}(t)\right)^{2} v^{\prime}(t)-y_{1}^{\prime}(t) y_{1}(t) v(t)=\left(y_{1}(t)\right)^{2} v^{\prime}(t)
\end{gathered}
$$

Therefore, we get that

$$
\begin{equation*}
W\left(y_{1}, y_{2}\right)(t)=\left(y_{1}(t)\right)^{2} v^{\prime}(t) \tag{3}
\end{equation*}
$$

4. Let us compute Wronskian by Abel's theorem

$$
W\left(y_{1}, y_{2}\right)(t)=C e^{-\int p(t) d t}
$$

As we need just one solution linearly independent from $y_{1}(t)$, we can put $C=1$. Therefore, we get

$$
\begin{equation*}
W\left(y_{1}, y_{2}\right)(t)=e^{-\int p(t) d t} \tag{4}
\end{equation*}
$$

5. We got two expressions (3) and (4) for Wronskian of y_{1}, y_{2}, therefore they should coincide. We set the two expressions equal to each other to get a differential equation on $v(t)$.

$$
\begin{equation*}
\left(y_{1}(t)\right)^{2} v^{\prime}(t)=e^{-\int p(t) d t} \tag{5}
\end{equation*}
$$

6. Solve the equation (5) to find $v(t)$:

$$
\begin{gathered}
v^{\prime}(t)=\frac{e^{-\int p(t) d t}}{\left(y_{1}(t)\right)^{2}} \\
v(t)=\int \frac{e^{-\int p(t) d t}}{\left(y_{1}(t)\right)^{2}} d t+K, \text { where } K \text { is some constant }
\end{gathered}
$$

We can set K equal to 0 as we need just one $v(t)$, which works. Therefore, we can get

$$
v(t)=\int \frac{e^{-\int p(t) d t}}{\left(y_{1}(t)\right)^{2}} d t
$$

7. After we found $v(t)$, we can write the expression for $y_{2}(t)$ using $v(t)$ we found:

$$
y_{2}(t)=y_{1}(t) v(t)
$$

8. The general solution of the equation has form

$$
y(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t), \text { where } C_{1}, C_{2} \text { are any constants }
$$

