Theorem 1 (Principle of superposition). If y_1 and y_2 are solutions of the linear homogeneous equation

y'' + p(t)y' + q(t)y = 0,

then so is $c_1y_1(t) + c_2y_2(t)$ for arbitrary constants c_1 and c_2 .

Theorem 2. Suppose that y_1 and y_2 are two solutions of

$$y'' + p(t)y' + q(t)y = 0.$$

Then

$$y(t) = c_1 y_1(t) + c_2 y_2(t)$$

is the general solution of (or the solutions y_1 and y_2 are said to form a fundamental set of solution of)

$$y'' + p(t)y' + q(t)y = 0$$

if and only if the **Wronskian** of y_1 and y_2 , written as $W(y_1, y_2)(t)$, is not a zero function where

$$W(y_1, y_2)(t) := y_1(t)y_2'(t) - y_1'(t)y_2(t).$$

Theorem 3 (The Existence and Uniqueness Theorem (second order)). Consider the initial value problem

$$y'' + p(t)y' + q(t)y = g(t),$$
 $y(t_0) = y_0, y'(t_0) = y'_0,$

where p, q and g are **continuous** on an **open interval** I, that contains the point t_0 . Also, y_0, y'_0 are some constants. Then there is exactly one solution $y = \phi(t)$ of this problem, and the solution exists throughout the interval I.

Theorem 4 (Abel's Theorem). If y_1 and y_2 are solutions of

$$y'' + p(t)y' + q(t)y = 0,$$

where p and q are continuous on an open interval I, then the Wronskian $W(y_1, y_2)(t)$ is given by

$$W(y_1, y_2)(t) = Ce^{-\int p(t)dt},$$

where C is a certain constant that depends on y_1 and y_2 but not on t. Further,

 $W(y_1, y_2)(t)$

either is zero for all t in I (if C = 0) or else is never zero in I (if $C \neq 0$).