Solutions and Wronskian

Theorem 1 (Principle of superposition). If y_{1} and y_{2} are solutions of the linear homogeneous equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

then so is $c_{1} y_{1}(t)+c_{2} y_{2}(t)$ for arbitrary constants c_{1} and c_{2}.

Theorem 2. Suppose that y_{1} and y_{2} are two solutions of

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 .
$$

Then

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

is the general solution of (or the solutions y_{1} and y_{2} are said to form a fundamental set of solution of)

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

if and only if the Wronskian of y_{1} and y_{2}, written as $W\left(y_{1}, y_{2}\right)(t)$, is not a zero function where

$$
W\left(y_{1}, y_{2}\right)(t):=y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)
$$

Theorem 3 (The Existence and Uniqueness Theorem (second order)). Consider the initial value problem

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t), \quad y\left(t_{0}\right)=y_{0}, \quad y^{\prime}\left(t_{0}\right)=y_{0}^{\prime},
$$

where p, q and g are continuous on an open interval I, that contains the point t_{0}. Also, y_{0}, y_{0}^{\prime} are some constants. Then there is exactly one solution $y=\phi(t)$ of this problem, and the solution exists throughout the interval I.

Theorem 4 (Abel's Theorem). If y_{1} and y_{2} are solutions of

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0,
$$

where p and q are continuous on an open interval I, then the Wronskian $W\left(y_{1}, y_{2}\right)(t)$ is given by

$$
W\left(y_{1}, y_{2}\right)(t)=C e^{-\int p(t) d t}
$$

where C is a certain constant that depends on y_{1} and y_{2} but not on t. Further,

$$
W\left(y_{1}, y_{2}\right)(t)
$$

either is zero for all t in I (if $C=0$) or else is never zero in I (if $C \neq 0$).

