Eigenvalues and eigenfunctions

Let us consider a certain two-point boundary value problem

$$
X^{\prime \prime}+\lambda X=0
$$

together with two boundary conditions, where λ is a constant real number.

Definition. The values of λ for which nontrivial solutions $X(x)$ (i.e., $X(x) \not \equiv 0)$ of the above problem exist are called eigenvalues. The corresponding nontrivial solutions are called eigenfunctions.

To find eigenvalues, you need to find values of λ such that NOT BOTH constants c_{1}, c_{2} in the general solution $X(x)$ of the given equation are 0 .
Notice that the general solution has different forms depending on $\lambda<0, \lambda>0$ or $\lambda=0$.

The characteristic equation for the equation $X^{\prime \prime}+\lambda X=0$ is $r^{2}+\lambda=0$. So, $r^{2}=-\lambda$.

The general solution $X(x)$ for different cases:

1. If $\lambda<0$, then $\lambda=-a^{2}$, where $a>0$ real number.

The characteristic equation is $r^{2}=a^{2}$. The roots are $r_{1,2}= \pm a$.
The general solution is

$$
X(x)=c_{1} e^{a x}+c_{2} e^{-a x},
$$

where c_{1}, c_{2} are any constants.
2. If $\lambda>0$, then $\lambda=a^{2}$, where $a>0$ real number.

The characteristic equation is $r^{2}=-a^{2}$. The roots are $r_{1,2}= \pm a i$.
The general solution is

$$
X(x)=c_{1} \cos (a x)+c_{2} \sin (a x),
$$

where c_{1}, c_{2} are any constants.
3. If $\lambda=0$, then the characteristic equation is $r^{2}=0$. The roots are $r_{1}=r_{2}=0$.

The general solution is

$$
X(x)=c_{1}+c_{2} x
$$

where c_{1}, c_{2} are any constants.
For eigenvalue problems, the following trigonometric identities are helpful:

$$
\begin{gathered}
\sin (x)=0 \Rightarrow x=\pi n \quad \text { for all integer } n \\
\cos (x)=0 \Rightarrow x=-\frac{\pi}{2}+\pi n \quad \text { for all integer } n
\end{gathered}
$$

