Even and odd functions

1. An even function is any function f such that

$$
f(-x)=f(x)
$$

for all x in its domain.
2. An odd function is any function f such that

$$
f(-x)=-f(x)
$$

for all x in its domain.
3. $f(x)=0$ is the only function that is both even and odd.

The Fourier Cosine Series

If f is an even periodic function with period $2 L$, then its Fourier series $F(x)$ is a cosine series

$$
F(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L},
$$

where

$$
\begin{gathered}
a_{0}=\frac{2}{L} \int_{0}^{L} f(x) d x \\
a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L}, \quad \text { for } n=1,2,3, \ldots
\end{gathered}
$$

All $b_{n}=0$ for $n=1,2, \ldots$

The Fourier Sine Series

If f is an odd periodic function with period $2 L$, then its Fourier series $F(x)$ is a sine series

$$
F(x)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L}
$$

where

$$
b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L}, \quad \text { for } n=1,2,3, \ldots
$$

All $a_{n}=0$ for $n=0,1,2, \ldots$

