Fourier series

The Fourier Convergence Theorem

Suppose that f and f^{\prime} are piecewise continuous on the interval $-L<x<L$. Further assume that f is defined outside the interval $-L<x<L$ so that it is a periodic function with a period $T=2 L$, i.e., $f(x+2 L)=f(x)$ for every real number x. Then, f has the Fourier series, $F(x)$, which is given by formula

$$
F(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi x}{L}+b_{n} \sin \frac{n \pi x}{L}\right)
$$

where

$$
\begin{gathered}
a_{0}=\frac{1}{L} \int_{-L}^{L} f(x) d x \\
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n \pi x}{L} d x, \quad n=1,2,3, \cdots \\
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n \pi x}{L} d x, \quad n=1,2,3, \cdots
\end{gathered}
$$

The Fourier series converges to the function given by

$$
F\left(x_{0}\right)= \begin{cases}f\left(x_{0}\right), & \text { if } f \text { is continuous at } x_{0} \\ \frac{\lim _{x \rightarrow x_{0}+} f(x){ }_{x \rightarrow x_{0}-} f(x)}{2}, & \text { if } f \text { is discontinuous at } x_{0}\end{cases}
$$

The Fourier series F is also a periodic function with a period $T=2 L$.

Remark.

Just because a Fourier series could have infinitely many terms does not mean that it will always have that many terms. If a periodic function f can be expressed by finitely many terms normally found in the Fourier series, then f must be the Fourier series of itself.

The following trigonometric identities are very helpful in this topic:

$$
\begin{array}{cc}
\sin (-n \pi)=-\sin (n \pi)=0 & \text { for all integer } n \\
\cos (-n \pi)=\cos (n \pi)=(-1)^{n} & \text { for all integer } n
\end{array}
$$

