Fourier series

The Fourier Convergence Theorem

Suppose that f and f’ are piecewise continuous on the interval —L < x < L. Further
assume that f is defined outside the interval —L < x < L so that it is a periodic function
with a period T'= 2L, i.e., f(x +2L) = f(zx) for every real number x. Then, f has the

Fourier series, F'(z), which is given by formula
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The Fourier series converges to the function given by

f(zo), if f is continuous at zg
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if f is discontinuous at xg
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The Fourier series F' is also a periodic function with a period T'= 2L.

Remark.

Just because a Fourier series could have infinitely many terms does not mean that it will
always have that many terms. If a periodic function f can be expressed by finitely many
terms normally found in the Fourier series, then f must be the Fourier series of itself.

The following trigonometric identities are very helpful in this topic:

sin(—nm) = —sin(nw) =0 for all integer n

cos(—nm) = cos(nmw) = (—1)" for all integer n



