
1

Modeling and Optimization of Straggling Mappers

F. Farhat, D. Zad Tootaghaj, A. Sivasubramaniam, M. T. Kandemir, C. R. Das

Computer Science and Engineering, Pennsylvania State University, University Park, USA

{fuf111,dxz149,anand,kandemir,das}@cse.psu.edu

Abstract—MapReduce framework is widely used to

parallelize batch jobs since it exploits a high degree of multi-

tasking to process them. However, it has been observed that,

when the number of mappers increases, the map phase can take

much longer than expected. This paper analytically shows that

stochastic behavior of mapper nodes has a negative effect on the

completion time of a MapReduce job, and continuously

increasing the number of mapper nodes can degrade the overall

performance. We analytically capture the effects of stragglers

(delayed mappers) problem on the performance. Based on

observed delayed exponential CDF of response time of mappers,

we then model the map phase by means of hardware, system and

application parameters. Mean sojourn time (MST), the time

needed to sync the completed map tasks at one reducer, is

mathematically formulated. Following that, we optimize MST by

finding the task inter-arrival rate to each mapper node. Optimal

mapping problem leads to equilibrium property investigated for

many types of inter-arrival and service time distributions in a

heterogeneous datacenter. Our experimental results show the

performance and important parameters of the different types of

schedulers. We also show that, in the case of mixed deterministic

and stochastic schedulers, there is an optimal scheduler that can

always achieve the lowest MST.

I. INTRODUCTION

MapReduce has become a popular paradigm for structuring
large scale parallel computations in the datacenter. By
decomposing the computation into (one or more) Map and
Reduce phases, the work within each phase can be
accomplished in parallel without worrying about data
dependencies, and it is only at the boundaries between these
phases where one needs to worry about issues such as data
availability and dependency enforcement. At the same time,
with the possibility of elastically creating tasks of different
sizes within each phase, these computations can adjust
themselves to the dynamic capacities available in the
datacenter. There has been a lot of prior work in the past
decade to leverage this paradigm for different applications
[1,2,3], as well as in the systems substrate needed to efficiently
support their execution at runtime [4,5,6].

While each phase is embarrassingly parallel, the
inefficiencies in MapReduce execution manifest at the
boundaries between the phases as data exchanges and
synchronization stalls to ensure completion of the prior phases.
One of these inefficiencies is commonly referred to as the
“straggler problem” of mappers -- where a reduce phase has to
wait until all mappers have completed their work [4]. Even if
there is one such straggler (in the mappers), the entire
computation is consequently slowed down. Prior work
[7,8,9,10] has identified several reasons for such stragglers
including load imbalance, scheduling inefficiencies, data
locality, communication overheads, etc. There have also been
efforts looking to address one or more of these concerns to

mitigate the straggler problem [7,8,11,12,13]. While all these
prior efforts are important, and useful to address this problem,
we believe that a rigorous set of analytical tools is needed in
order to: (i) understand the consequences of stragglers on the
performance slowdown in the MapReduce execution, (ii) be
able to quantify this slow-down as a function of different
hardware (processing speed, communication bandwidth, etc.),
system (scheduling policy, task to node assignment, data
distribution, etc.), and application (data size, computation
needs, etc.) parameters, (iii) study the impact of different
scaling strategies (number of processing nodes, the
computation to communication and data bandwidths, tasks per
node, etc.) on this slowdown, (iv) undertake “what-if” studies
for different alternatives (alternate scheduling policies, task
assignments to nodes, etc.) beyond what is available to
experiment with on the actual platform/system, and (v) use
such capabilities for a wide range of optimizations -- determine
resources (nodes, their memory capacities, etc.) to provision for
the MapReduce jobs, the number of tasks to create and even
adjust dynamically, the assignment of these tasks to different
kinds of nodes (since datacenters could have heterogeneous
servers available at a given time), adjust the scheduling
policies, run redundant versions of the tasks based on the trade-
offs between estimated wait times and additional resources
mandated, run a MapReduce computation with a budgetary
(performance, power, cost) constraint, etc.

However, there are no rigorous analysis tools available
today with these capabilities for modeling and understanding
the straggler problem in MapReduce computations for the
purposes listed above. This paper intends to fill this critical
void by presenting a novel analytical model for capturing the
waiting time at the end of the Map phase due to any straggling
mappers. We also demonstrate the benefits of having such a
tool with a few case studies. Specifically, this paper makes the
following contributions towards presenting and exploiting an
analytical model for the stragglers in MapReduce
computations:

 We demonstrate that a delayed exponential distribution can
be used to capture the service time of the map tasks at a
given node. We then show that with such service times at
each node, the aggregate completion time of mapper tasks
across all the nodes of the cluster also follows a delayed
exponential distribution. This is validated (less than 5%
least square error) against a spectrum of mapper completion
times of 10 production workloads published in prior
research.

 With this result, we develop a closed-form queuing model
of the time expended (the Mean Sojourn Time) before a
reducer node can begin its part of the computation, i.e.,
waiting time for all mappers to finish. Parameterized by the
arrival rate of the mappers, the delayed exponential service
times and the number of nodes, this model helps

2

conveniently study the impact of different parameters --
whether job characteristics, hardware capabilities or system
operation -- on the delays before a reducer can start.

 This model can be used for a variety of purposes as
explained above. In this paper, we specifically illustrate a
use case. We show how the model can be used to schedule
map tasks on different (possibly heterogeneous) nodes of a
datacenter cluster to reduce the Mean Sojourn Time. This is
demonstrated to be much more effective than how the
JobTracker does it today in the Hadoop distribution.

II. BACKGROUND AND RELATED WORK

In this section we describe how MapReduce [4] works, and
explain the straggler problem that affects the efficiency of the
framework negatively. We also discuss the related work.

A. MapReduce Framework

MapReduce framework [4] is a programming environment
that can be used to execute data-intensive jobs. This framework
can be applied to a large class of algorithms known as
MapReduce Class (MRC) [14] with high levels of parallelism
and low job completion times. Open-source Hadoop
MapReduce is a fault-tolerant scalable implementation built
upon Hadoop file system (HDFS) [5].

Figure 1 shows a high-level view of the MapReduce
framework. A job in this framework arrives with some ‘mean
rate’, and is partitioned into ‘map’ tasks. More specifically
JobTracker module in Hadoop assigns map/reduce tasks to
TaskTracker nodes. Each map task tracker node (called mapper
node) has threads to perform the map tasks (called mappers).
Once the map tasks are completed, a set of intermediate
key/value pairs is generated and passed to the associated
reducer node in the shuffling stage. Each reducer node may
receive values with the same intermediate key assigned to that
node. Each reducer node employs reduce task trackers (called
reducers) to compute and merge the received intermediate
values. After finishing the reduce phase, the final values are
merged into the HDFS storage again.

Reducer

Lo
a

d
 D

a
ta

Lo
a

d
 f

ro
m

 D
is

k

to
 M

e
m

o
ry

M
a

p
Lo

ca
l

S
o

rt
C

o
m

b
in

e
 &

W

ri
te

 o
n

 D
is

k

M
e

rg
e

Lo
a

d
 f

ro
m

 D
is

k

to
 M

e
m

o
ry

R
e

d
u

ce
C

o
m

b
in

e
 &

W

ri
te

 o
n

 D
is

k

StorageStorage

Mapper

Shuffle

Split

λ1

Join

.

.

.

Shuffle

λNm

.

.

.
.
.
.

.

.

.

Join

Join

Join

Shuffleλ2λ

Lo
a

d
 D

a
ta

Lo
a

d
 f

ro
m

 D
is

k

to
 M

e
m

o
ry

M
a

p
Lo

ca
l

S
o

rt
C

o
m

b
in

e
 &

W

ri
te

 o
n

 D
is

k

Mapper

Lo
a

d
 D

a
ta

Lo
a

d
 f

ro
m

 D
is

k

to
 M

e
m

o
ry

M
a

p
Lo

ca
l

S
o

rt
C

o
m

b
in

e
 &

W

ri
te

 o
n

 D
is

k

Mapper

Reducer

M
e

rg
e

Lo
a

d
 f

ro
m

 D
is

k

to
 M

e
m

o
ry

R
e

d
u

ce
C

o
m

b
in

e
 &

W

ri
te

 o
n

 D
is

k

Reducer

M
e

rg
e

Lo
a

d
 f

ro
m

 D
is

k

to
 M

e
m

o
ry

R
e

d
u

ce
C

o
m

b
in

e
 &

W

ri
te

 o
n

 D
is

k

Fig. 1. MapReduce framework including map, shuffle, and reduce phases.

For example, in a word-count application, the mapper
node counts the frequency of each word in its received text in
the map phase and, then calculates and sends corresponding

tuple () to reducer node in the

shuffle phase. If , and , on
average words go to each reducer node. For example,
words that begin with letter “A” go to 1

st
 reducer node, words

that begin with letters “B, C or D” (having balanced number of
words for each) go to 2

nd
 reducer node, etc. It is important to

note that the map and shuffle phases may overlap. Each reducer
node calculates the total frequency of its words by summing the
counts in reduce phase, as reducer node does

∑

()

()

.

For a reducer to start its execution, all mappers that have
data to send to that reducer should finish sending. During
execution, one may observe various imbalances across
mappers, due to resource contention in a mapper node,
unbalanced jobs scheduled on mapper nodes or heterogeneity
across computational resources [8]. Clearly, the start time of a
reduce job is dictated by slowest mapper, that is, the slowest
mapper determines how soon a reduce task can start its
execution. One of the major reasons for excessively long
execution latencies of MapReduce jobs is stragglers, i.e., some
cluster nodes that complete their assigned tasks in a time longer
than usual. Node hardware failure, resource contention of tasks
running on a node, and limited resource availability on a node
can make it a straggler.

B. Related Work

The mathematical modeling of MapReduce framework has
recently been researched in studies such as [15,16,17,18]. The
main difference between these models and our work is that the
prior models are not sufficiently rigorous in handing the
stragglers problem. Also, most of the published studies assume
deterministic execution times for mappers and reducers. Li et al
[15] introduce an analytical model for I/O cost, number of I/O
requests, and startup cost in Hadoop. They also propose a hash-
based mechanism to allow incremental processing and in-
memory processing of frequent keys. They investigate the best
merge factor for MapReduce jobs larger than memory size.

Ananthanarayanan et al [11] show that stragglers can slow
down small jobs by as much as 47%. They propose a system
called Dolly for cloning small jobs. They also claim that a
delay assignment can improve resource contention initiated by
cloning. However, this method does not work for stragglers of
large tasks. In [16], the authors try to find an analytical model
of MapReduce to minimize the execution time and find optimal
map granularity. In comparison, [17] presents a performance
model to estimate the cost of map and reduce functions in
MapReduce. However, the model assumes that all mappers
finish at the same time and they do not consider the stochastic
behavior of execution times of mappers and reducers. Krevat et
al [18] proposed a simple analytical model for MapReduce and
compared the performance results of MapReduce with other
similar frameworks in some good conditions.

LATE [7] tries to optimize MapReduce performance in a
heterogeneous cluster by restarting slow tasks in fast mapper
nodes, and Tarazu [12] addresses the poor performance of
MapReduce in heterogeneous clusters and shows that the
traffic contention between remote tasks is the main problem in
heterogeneous clusters. Motivated by this, they then propose a

3

communication aware and dynamic load balancing technique to
reduce the network traffic contention between remote tasks and
the shuffling stage. SkewTune [19] manages interactively skew
of non-uniform input data of user-defined applications at
runtime. It finds an idle node in the cluster and assigns slow
task to that node. Ananthanarayanan et al. [8] discuss the main
causes of the outliers (stragglers) and, based on an identified
cause, they propose to restart or duplicate the task at the
beginning of their lifetime. Scarlett [13] replicates popular
blocks in different machine’s memory to reduce interference
with running jobs.

Ananthanarayanan et al. [8] propose Mantri to reduce the
effect of outliers of Bing clusters, where outliers’ duration is
compared to the duration of the median task in some figures
fractionally. Also, e.g. the analysis of the workloads [9] from
various research clusters, OpenCloud, M45 and WebMining,
shows stragglers runtime to median task duration has a nearly
delayed exponential distribution. Similarly, Chen et al. [10]
evaluate the task lengths for Cloudera and Facebook workloads
and reach similar conclusions. Tan et al [20] propose a
coupling scheduler in MapReduce based on an analytical
approach also modeling FIFO and fair scheduler with an index
range for delay distribution tail. Under some circumstances,
this scheduler delay distribution can have better performance
than a fair scheduler, as its index is one order lower.

Lin et al [21] try to address map and shuffle overlapping
challenge in MapReduce. They demonstrate that the optimal
solution is NP-hard in offline mode and they suggest
MaxSRPT and SplitSRPT schedulers for online mode reaching
optimal scheduling. MaxSRPT is comparable to optimal
scheduling when the “remaining map task” to “remaining
shuffle task” ratio is small and SplitSRPT performance is good
when the ratio is near one. Condie et al [22] change the
MapReduce framework to support pipelining between map,
shuffle and reduce phases. There are some compiler-based
architecture [23,24] for SQL-like queries in MapReduce
framework to setup and speedup the execution of computation
on large data sets. They work on computational DAG (directed
acyclic graph) of large data sets queries and they need multiple
rounds of MapReduce to be optimized.

C. Delayed Exponential Distribution

We start by giving the mathematical definition of Delayed
Exponential Distribution since it is heavily used in our model.

Definition 1: For a delayed exponential distribution with rate
and offset , () is cumulative distribution function (CDF)
and () is probability density function (PDF) as follows:

 () {

 ()
 (()) () (1)

 () {

 ()
 () () (2)

where () is unit step function. Figure 2(a) shows the
cumulative distribution of a delayed exponential function.
Figure 2(b) shows a probability density function of delayed
exponential distribution.

An important observation is that the completion times of
map tasks exhibit a delayed exponential distribution [8,9,10].
In fact, we show in the next section that delayed exponential
distribution is nearly coincident with empirical data derived
from some other papers. As illustrated in Figure 2(b), most of

mappers finish their tasks right after threshold, but a fraction of
mappers finish their tasks after a long time. Since reducers can
start only after completion of all their map tasks, they will be
delayed because of their delayed mappers.

(a)

(b)

Fig. 2. CDF (a) and PDF (b) of delayed exponential distribution.

The intrinsic properties of architecture-level heterogeneity
(e.g., big core versus small core) can further magnify the
impact of stragglers. In this paper, we analytically model
stragglers and show their effect on the end-to-end delay. We
also optimize the delay using scheduling algorithms that make
the execution look more homogeneous.

III. MAP PHASE MODELING

This section gives the assumptions we make and explains
the parameters used in our model. The delayed exponential
distribution is justified in each sub-section based on general
knowledge and real observations, and the response time
distribution of mapper nodes is proved analytically and verified
using the available data.

A. Assumptions

A MapReduce job (e.g., word count) can be seen as a set of
tasks that must be completed to get the desire results (e.g., the
frequency of each word). In our model, we assume that the
different jobs are submitted to the system with a mean rate or
we can say the jobs have a total mean inter-arrival time. The
mean inter-arrival rate of the job can be interpreted as the
average number of CPU instructions coming to the system per
second and it is denoted by parameter as shown in Figure 1.
A job comes to the MapReduce framework as a bunch of tasks
and then they are split into map tasks with the nearly equal
number of instructions and sent to mapper nodes by the
scheduler. There are mapper nodes which receive map
tasks respectively with the probabilities

.

Alternately, given a scheduler, map tasks are sent to
mapper node. In other words, the mean inter-arrival rate of the

task to mapper node is where ∑

 .

TABLE I. NOTATION USED IN OUR FORMULATIONS.

Parameter Notation Explanation

Number of mapper nodes

()
 The number of nodes in the

datacenter assigned for map tasks

Mean task inter-arrival rate to

 mapper node

 The average rate of the tasks

coming to mapper node

Mean service rate of

mapper node ()

 The average rate of the tasks

departing from mapper node

Mean job inter-arrival rate or
total inter-arrival rate

 ∑

Unit step function () () {

Unit impulse function () () ()
Offset of delayed exponential

for mapper node

 The minimum amount of time

required to complete a task

Response time of all map tasks The required time to finish all

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Time

D
e
la

y
e
d
 E

x
p
o
n
e
n
ti
a
l
D

is
tr

ib
u
ti
o
n
 (

C
D

F
)

T = 100, Lambda = 0.01

0 200 400 600 800 1000
0

0.002

0.004

0.006

0.008

0.01

Time

D
e
la

y
e
d
 E

x
p
o
n
e
n
ti
a
l
D

is
tr

ib
u
ti
o
n
 (

P
D

F
)

T = 100, Lambda = 0.01

4

(random variable) map tasks by all mapper nodes

Response time of mapper

node (random variable)

 The required time to finish a task

by mapper node

Mean response rate of

mapper node

 The average required time to

finish a task by mapper node

A mapper node may run multiple map tasks. Mapper node
is modeled as a single queue with a mean service rate of , i.e.,
on an average, it can service tasks concurrently. The
completion time of each mapper node is independent of the
other mapper nodes, but the completion time of a map task may
be dependent on the completion time of the other map tasks
that reside in the same mapper node. Communication links
(arrows in Figure 1) are assumed to have a nearly-deterministic
delay or containing routers with a nearly-deterministic service
rate. Small variances across communication link delays add a
nearly-constant delay overhead on all end-to-end delay, and
this overhead is small compared to the computation delay. This
is because routing service rate is much higher than any
map/reduce task service rate, and shuffling phase has overlap
with map phase of MapReduce. Table I shows the notation
used in this paper.

B. Mapper Node as a Single Queue

Mapper node can be modeled as a FCFS (first-come first-
served) infinite-buffer single queue. The distribution of
response time of a mapper node is a function of the inter-arrival
rates (with a mean of) as well as their service rates (with a
mean of). In our model we investigate delayed exponential
service rate. Later in Section 5, we study different distributions
for task inter-arrival time and mapper node service time. Note
that, we are not restricted to a simple M/M/1 queue; we
investigate the other inter-arrival rates and service rates that
correspond to other potential scenarios in modern datacenters
like Gamma distribution or Erlang-k distribution as a general
rational form of job inter-arrival time distribution in datacenters
[25].

The clock rate of mapper node has a periodic characteristic
and is proportional to service rate () with a linear
deterministic coefficient (say), i.e., most instructions can be
executed successively with a time difference not less than

 and other instructions that involve memory or I/O

requests can have an even longer time difference from the
previous instructions. Thus the distribution of clock rate is
 () where () () , and the distribution of service
rate for different instructions is exponential, as assumed by
many prior papers [26,27,28]. The distribution of summation of
these two random variables is equivalent to the convolution ()
of these two distributions. The resulting service rate of a
mapper node is thus a delayed exponential PDF which can be
expressed as follows:

 () ()

 () () (3)

where is the minimum time required to execute an
instruction. Naturally each map task contains a number of
instructions (say), each having a minimum time to execute.
Therefore, the total service time of a map task is longer
than ∑

 giving the offset of the delayed exponential

distribution in the service times. Note that the different mapper
nodes can have different service rates (s) and offset times
(s) which can make a datacenter heterogeneous. As far as the
running job is concerned, we need only these parameters (
and) of each mapper node to derive our desired scheduler.
As a result, the delayed exponential service time is a

generalization of the exponential service time and we show
below that it matches with real data.

C. Response Time of a Mapper Node

Response time (completion time) of a mapper node is the
time required for its map tasks to wait in the mapper node
buffer (queue) plus the time required to service them. In
Lemma 1, we show that, given the delayed exponential service
time of each mapper node, the total completion time of map
tasks has a delayed exponential property. To show this, the
following lemmas are crucial.

Lemma 1: Delayed exponential service rate approximately
results in delayed exponential response time for a mapper node.
(See [29] for the proof).

Lemma 2: Given the distribution of response time of each
mapper node is delayed exponential, the completion time of all
mapper nodes (tasks) across the cluster also has a delayed
exponential CDF. (See [29] for the proof).

D. Validation of Delayed Exponential Completion Time

We show that our defined delayed exponential distribution
matches with the empirical completion times of map tasks that
have been published in prior studies. We use the CDFs of
published completion times of different MapReduce
applications (Table II) and try to fit a delayed exponential
distribution on this data represented by the following function:

(()) ()  

TABLE II. CURVE-FITTING OF THE COMPLETION TIMES OF THE

PUBLISHED DATA TO DELAYED EXPONENTIAL DISTRIBUTION.

Benchmark Reference Exponential Rate ()
Least Square

Error

Bing Search Engine [8] 0.894498571 0.04861312

Facebook [10] 0.011891914 0.04178871

Cloudra Customer (a) [10] 0.014479546 0.05567882

Cloudra Customer (b) [10] 0.037436986 0.01997069

Cloudra Customer (c) [10] 0.009922954 0.03162061

Cloudra Customer (d) [10] 0.01703502 0.03640228

Cloudra Customer (e) [10] 0.025387299 0.04502734

OpenCloud [9] 0.459106034 0.04565715

M45 [9] 0.232328761 0.05662841

WebMining [9] 1.154299592 0.01424641

Note that the offset time (constant for an application) can
be directly taken from the empirical data, and it is only the
mean response rate () that we need to estimate. Newton’s
method for fast convergence has been used to find the response
rate that reduces the mean square error of the fit. As shown in
Table II, the least square error is not greater than 5% across all
those workloads, strengthening our rationale for modeling
completion times as a delayed exponential distribution. Table
III lists important parameters and their values used in our
subsequent experiments. These values are based on the data
from the prior studies listed in Table II.

TABLE III. PARAMETER VALUES USED IN EXPERIMENTS.

Parameter Range

Total mean inter-arrival time () 0.1s-2s

Mean service time () 0.5s-2s

Offset time () 0.1s-100s

Mean response time () 0.5s-1000s

Utilization () 0.1-0.95

5

E. Mean Sojourn Time at a Reducer

Mean sojourn time (MST) at a reducer represents the
average time required to synchronize all completed map tasks
before a reducer can start its execution. Assuming uniform
mapping from mapper nodes to reducer nodes via
homogeneous hash-based (key, value) pair mechanism, there is
no difference amongst the delay of all paths from mapper
nodes to a reducer node, and thus we can choose one of them
without loss of generality. MST can be a reasonable metric to
represent the mean delay from job split to merge in a reducer as
a fraction of the end-to-end delay of a MapReduce job.

Definition 2 (Mean Sojourn Time): Given general CDFs of
independent and identically distributed (i.i.d) response times of

mapper nodes as
() (

) , using

maximum order statistics (MOS), the required time for
synchronization of the completed map tasks at reducer (

)

is the maximum of the response times of all mapper nodes, i.e.,

we can find
 (

) as:

() (

) ∏ (
)

 ∏

()

  

The corresponding PDF can be easily expressed as follows:

()

()
() ∑

()

()

  

The following equations (Eq.7 and Eq.9) are used in our
next formulations. The expected value of random sojourn time
(MST) using the inclusion–exclusion principle [30] can be
expressed respect to expected value of minimum of random
response times of every subset of mapper nodes as follows:

 {
} { (

)}

 ∑ {() ∑ { (

)}

}

 



Further, MST can be expressed in other ways, with respect
to distribution of random response time of each mapper node
using Eq.5 as:

 ∫
()

∫

(∏ (

)

)

 

And using Eq.6 we have:

 ∫

() (∑

()

()

)

 ∑ ∫

()

()

()

 



Note that, the mean sojourn time (MST) is dependent on

response time CDF of each mapper node ((
)), and it

depends on the inter-arrival rate and service rate of each
mapper node. For heterogeneous queues with general form
distribution of response time, we are not aware of any
published closed-form formulations, bound or approximation
for the MST. However, in the case of two homogeneous
queues, there is an approximation and lower/upper bounds
[31]. To our knowledge, the exponentially distributed response
time of heterogeneous queues has no closed formula, no
approximation, and no bound. In fact, only for exponentially

distributed response time of homogeneous queues (M/M/1
queues with the same μ), there are some approximations and
boundaries in the statistics literature [32]. We derive the MST
closed formula for the mapper nodes as M/M/1 queues using
MOS in Lemma 3.

Lemma 3: Given M/M/1 mapper nodes with arrival rate and
 service rate where , using maximum order
statistics, the MST of map tasks in a reducer is (proof in [29]):

 ∑ {() ∑

∑ (

)

}





As an example, Figure 3(a) gives the sensitivity of the mean
sojourn time to the total mean inter-arrival rate to the system,
when the service rate of each mapper node is and the
number of mapper nodes is . When the inter-arrival
rate of the job increases, the mean sojourn time at a reducer
homographically tends to infinity, if the number of mapper
nodes is fixed. Figure 3(b) gives an intuition about the variation
of MST (Eq.9) versus the number of mapper nodes of the
system (), when the service rate of each mapper node is
 and the total inter-arrival rate to the system is constant
(). When the number of mapper nodes increases, if the
total mean inter-arrival rate is fixed, the mean sojourn time
tends to (()) asymptotically, where is the number of
mapper nodes. Intuitively, there is a logarithmic algorithm to
sync and merge completed tasks in one place, when a
sync/merge operation can only happen between two completed
tasks.

(a)

(b)

Fig. 3. MST with respect to total mean inter-arrival rate (a) and the number
of mapper nodes (b).

Based on the discussion above, MST is the average time
necessary to synchronize completed map tasks before reducer
phase. As such, it can be expressed using the response times of
each mapper node. We aim to minimize MST with respect to
job mapping and number of mappers.

IV. POTENTIAL USES OF THE MODEL

To optimize performance of a datacenter running a
MapReduce job, we need the performance model of the
datacenter. Using the performance model, critical parameters
such as response time or throughput of the MapReduce job can
be optimized and a corresponding scheduler can be obtained.
One of the important decisions that datacenter designers need
to make is whether to employ homogeneous or heterogeneous
nodes. As far as our formulation is concerned, the difference
between two options is uniform (

) versus

non-uniform (
) service rates. We envision

three potential uses of our model with respect to architecture,
system and application parameters of a heterogeneous
datacenter:

0 5 10 15 20 25
4

5

6

7

8

9
Mean Sojourn Time vs. Total Inter-Arrival Rate

Total Inter-Arrival Rate

M
e
a
n
 S

o
jo

u
rn

 T
im

e

10 20 30 40 50 60 70
3

3.5

4

4.5

5
Mean Sojourn Time vs. Number of Mapper Nodes

Number of Mapper Nodes
M

e
a
n
 S

o
jo

u
rn

 T
im

e

6

 It is able to model the performance parameters of nodes in a
datacenter as service times and completion times of single
queues more accurately, because it captures the deterministic
behavior of task completion and the stochastic notion of
straggler problem jointly. It can be used to optimize the
performance of each node in a heterogeneous datacenter.

 It is able to model the performance parameters of a
MapReduce job as a fork-join network in a fashion that is
more detailed than an M/M/1 queuing model but easier than a
general distribution-based model. It can be used to globally
improve performance of a MapReduce job in a datacenter.

 It can be used to optimize other target metrics such as power,
and utilization of a heterogeneous datacenter.

The delayed exponential model of service time of mapper
node is an extended version of the exponential model. It has the
flexibility to be used for representing the service times of
different classes of workloads. For example, the offset time
parameter of a CPU-bound job is higher than that of a memory-
bound job. Since the memory access times are random and take
much longer than CPU access times, they can also be modeled
by an exponential distribution. However, both jobs have a fixed
delay of execution that cannot be reduced stochastically.

The exponential distribution model cannot capture such
situations, as the probability of having two consecutive
completed jobs with zero delay in reality is zero but in
exponential response time model is the highest. The delayed
exponential response time model is also a good approximation
of the response time of a typical datacenter server as a single
queue, and can be used in the analysis of different types of
distributed computing networks. Based on Lemma 1, the
delayed exponential completion time can be obtained using the
delayed exponential service time, and this makes most of the
analytical formulas much simpler.

Since the focus of our paper is on performance, we use
MST as an end-to-end delay-aware metric; other analyses may
use different metrics based on their focus. The potential metrics
of interest could be power, budget, power/performance, and
other similar combinations. First, the specification of the
cluster and workload should be evaluated. Considering Figure
2 and Eq.3, the service rate of the server and offset time related
to the application can be obtained from the specs. So, the
delayed exponential model of service time can be derived.
Then, the response time model can be obtained by having the
distribution of workload inter-arrival time that is discussed
rigorously in the proof of Lemma 1 in [29]. We are interested
in investigating the behavior of different schedulers by single
queue model of mapper node with the delayed exponential
response time when one type job is submitted to the datacenter.
This can be extended to a generalized multiple queues model
when multiple classes of jobs are submitted to a datacenter.
Table IV gives a quick summary of the lemmas used in this
work.

TABLE IV. SUMMARY OF THE LEMMAS (LEMMAS 7 THROUGH 13 CAN BE

FOUND IN [29]).

Lemma Explanation

1 delayed exponential service rate delayed exponential response time
for a mapper node.

2 delayed exponential service rate delayed exponential completion
times for all map tasks.

3 MST formula for M/M/1 mapper node

4 Joint optimization of MST is equivalent to two separate

optimizations.

5 equilibrium property for D/D/1.

6 equilibrium property for M/M/1.

7 equilibrium property for G/M/1 [29].

8 sufficient conditions for optimal scheduling [29].

9 optimal mapping from moments of the distribution [29].

10 lower bound and upper bound of MST [29].

11 optimal number of M/M/1 mapper nodes [29].

12 optimal number of homogeneous mapper nodes [29].

13 optimal number of mapper nodes for a fixed budget [29].

V. MAP PHASE OPTIMIZATION

The delays in the critical path of a MapReduce job includes
the delays in storage, network communications, map-task
computation, synchronization of the map tasks, reduce-task
computation, and merge/aggregate of the reduce tasks.
Heterogeneity in cluster resources makes the synchronization
delay of map tasks higher. In fact, the problem of uneven map
task completion times has been shown to be a serious
impediment to the scalability of MapReduce computations
[7,8,11,12]. While this has been studied experimentally, it has
not been investigated from an analytical perspective.

We want to minimize this synchronization delay by
dividing the total inter-arrival rate between mapper nodes. The
unknown parameters are the residual inter-arrival rate to each
mapper node and the number of mapper nodes. The cost
function in our problem is the mean sojourn time (MST) given
by the task inter-arrival rates of mapper nodes, and the sum of
these inter-arrival rates is a constant (mean job inter-arrival
rate) being the constraint of the problem. The MST of the map
tasks is the average time taken between the start of a map task
and reaching to a reducer. MST is the first moment (mean) of
completion times’ distribution at a reducer. We are interested in
reducing MST with respect to the number of mapper nodes and
their task inter-arrival rates.

Optimizing task inter-arrival rates (say mapping) and the
number of mapper nodes jointly is in general a hard problem.
JobTracker of MapReduce knows which mapper nodes are idle,
i.e., it knows the state of the cluster. The task inter-arrival rates
of mapper nodes can be also controlled by JobTracker to assign
each mapper node the desired rate in mapping stage. The
following lemma indicates that the optimal mapping and the
optimal number of mapper nodes can be separately optimized.
Consequently, we can separate these two problems and solve
each of them independently.

Lemma 4: Joint optimization of MST with respect to the
number of mapper nodes and their task inter-arrival rates is
approximately equivalent to two separate optimizations, subject
to, respectively the number of mapper nodes and their task
inter-arrival rates. We have (see the proof in [29]):

()

(

())

(

())

 ∑

 [

]

 



A. Optimal Mapping

In this section, we investigate the optimal mapping of tasks
to mapper nodes with respect to the mean sojourn time. Our
analysis is carried out for different mapper node queues. We
then use this to investigate efficient schedulers that address the
straggler problem.

7

Hadoop fair job scheduler divides and sends the same
amount of job to each mapper node with task inter-arrival
rate and service rate for mapper nodes, i.e.

  

The fair job scheduler is optimal when we have a
completely homogeneous cluster. The “no bottleneck system
necessary condition” means that the mean job inter-arrival
should be less than the total service rates of the mapper nodes

(∑

). Depending on the scheduling algorithm, we may

have some tighter bounds, as in this case no bottleneck node
necessary condition is:

  

A fair job scheduler (like the Hadoop scheduler) makes the
mean task inter-arrival rates equal for all mapper nodes (as
captured by Eq.12), i.e., it gives each mapper node the same
amount of work. Figure 4 shows the results from a cluster with
the same number (from 40 to 200) of low-performance (service
time) and high-performance () nodes. The
MST of fair job scheduler (Eq.12) with respect to the total
inter-arrival rate and the number of M/M/1 heterogeneous
mapper nodes always increases when the total inter-arrival rate
increases. However, the MST with respect to the number of
nodes has a minimum, i.e., there is an optimal number of nodes
given by a job inter-arrival rate. If the job inter-arrival rate
increases, this minimum number of nodes also increases.

Fig. 4. MST with respect to total inter-arrival rate and the number of M/M/1

mapper nodes for fair job scheduler.

Assume that we have the same number (10) of low-
performance (service time) and high-performance
() mapper nodes in a cluster. The simulation results
plotted in Figure 5 are based on CSIM (a queueing system
simulator [33]) implementation of these heterogeneous mapper
nodes with the fair job scheduler. They show that the
throughput of the different type nodes in the cluster remains
almost the same, but the other parameters like utilization,
queue length and response time change based on the inter-
arrival time to the system and service time of mapper nodes.
Next, we define a metric that can be used to mathematically
compare the performance of the different types of schedulers.
We start by giving the definition of the optimal MST.

Fig. 5. The mean value of important parameters of a heterogeneous

datacenter with the fair job scheduler.

Definition 3 (Optimal mapping based on MST): Optimal
mapping for known number of mapper nodes () finds the
optimal values of the mean task inter-arrival rates
(

) which make MST minimum. The constraint is

the mean job inter-arrival rate to the system (). The service
rate of each mapper node is assumed to have a known
distribution with the mean of . In mathematical terms, we
have:

()

∫

(∏

()

)



 ∑

 [

]





where
() is CDF of response time of the mapper node

as a function of and .

The optimal solution of the mapping problem is derived by
using the Lagrange Multipliers method and solving the
following set of non-linear equations:

 ((∑

))  

where () is the multi-dimensional gradient operator with

respect to and . We now give the following definition as a
property for having optimal MST.

Definition 4 (Equilibrium Property): To optimize the
mapping of the tasks, the set of non-linear equations derived
from Eq.15 have the Equilibrium Property (EP) with the linear

constraint ∑

 . Solving the set of non-linear equations

gives the optimal solution for . The equilibrium property can
be expressed as:

  

The above property cannot be easily solved or practically
used to optimize a MapReduce job scheduling. It is an Nm-
dimensional non-linear optimization problem with a linear
constraint. Also, the following Lemmas handle certain special
cases where Eq.9 can be easily solved and then used.

Lemma 5: Given Def.2-4 for D/D/1 mapper nodes (
), equilibrium property can be expressed as follows:

  

We call the above property as the deterministic equilibrium
property (D-EP), and the optimal solution for s is:

10
11

12
13

14
15

0

50

100

150

200
6.5

7

7.5

8

8.5

9

Total Inter-Arrival RateNumber of Mapper Nodes

M
e
a
n
 S

o
jo

u
rn

 T
im

e

0

2

4

6

8

Low-performance servers High-performance servers
Service time Utilization Throughput Queue length Response time

8

∑

  

And, the “no bottleneck node necessary” condition is:

∑

  

Proof: Eq.17 can be derived by making the deterministic
response times of all mapper nodes equal, and using:

∑

 

Eq.18 is deduced, also will give Eq.19. □

Fair queue, shortest queue first or μ-proportional scheduling
make queue length equal and are the same as the pure-
deterministic scheduling in Eq.17 as we have:





Considering , i.e., the offset of the delayed
exponential response time has a linear relationship with ,
we can say that the pure-deterministic scheduling and the
shortest queue first scheduling are equivalent. This is because
we have:

  

Figure 6 plots the MST of the pure-deterministic scheduler
with respect to the total inter-arrival rate and the number of
M/M/1 heterogeneous mapper nodes. The MST growth given
by the total inter-arrival rate is homographic versus MST
growth given by the number of mapper nodes is (()) .
Comparing Figure 4 with Figure 6, we can find that the pure-
deterministic scheduler has a lower MST with respect to the
fair job scheduler.

Fig. 6. MST with respect to the total inter-arrival rate and the number of
M/M/1 mapper nodes for the pure-deterministic scheduler.

Figure 7 shows the simulation results of CSIM for
heterogeneous mapper nodes with the pure-deterministic
scheduler where only the utilization of the different type nodes

is equal but all other parameters like response time are
different, and it still makes the total delay higher.

Fig. 7. Mean values of important parameters of a heterogeneous datacenter

with the pure-deterministic scheduler.

Lemma 6: Given Def.2-4 for M/M/1 mapper nodes (
), the equilibrium property would be as follows:

  

We call above property as stochastic equilibrium property
(S-EP), and the optimal s are:

 ∑

  

Without having bottleneck system as the inequality
∑

 , there is no bottleneck node necessary condition for any

mapper node, but we may have negative values for , i.e.,
some jobs should be migrated from slow node () to other
nodes. Then no negative necessary condition is:

∑ ()

  

See the proof in [29].

Q-proportional scheduling and pure-stochastic scheduling
are alike, because:

 (

) (

)
(

)

 () (

) 



Figure 8 plots the MST of the pure-stochastic scheduler
with respect to the total inter-arrival rate and the number of
M/M/1 (heterogeneous) mapper nodes. The MST growth trend
is similar to that of the other scheduler. Comparing Figure 8
with Figures 4 and 6, one can observe that the pure-stochastic
scheduler has a lower MST, given any total inter-arrival rate
and any number of nodes.

10
11

12
13

14
15

0

50

100

150

200
6.5

7

7.5

8

8.5

Total Inter-Arrival RateNumber of Mapper Nodes

M
e
a
n
 S

o
jo

u
rn

 T
im

e

0

1

2

3

4

Low-performance servers High-performance servers
Service time Utilization Throughput Queue length Response time

9

Fig. 8. MST with respect to the total inter-arrival rate and the number of
M/M/1 mapper nodes for the pure-stochastic scheduler.

Figure 9 plots the simulation results for heterogeneous
mapper nodes with the pure-stochastic scheduler. In this case,
the mean response time of all nodes are nearly equal and the
minimum delay can be achieved for the system.

Fig. 9. Mean values of important parameters of a heterogeneous datacenter
with the pure-stochastic scheduler.

For the M/M/1 mapper nodes, the pure-stochastic mapping
has lower MST compared to the fair job and the pure-
deterministic mapping shown in Figure 10. The MST of the
pure-stochastic strategy is lower than the others even for very
low inter-arrival rates.

Means equilibrium property (M-EP) is more suitable to be
employed in practice. It is difficult and time-consuming to find
the best mapping of inter-arrival time distributions to have such
equilibrium properties. Instead of that, we can imagine to make

first moment (mean) of response time distributions equal. The
means equilibrium property as a lower bound [29] is:

 {
} {

} {
}

Also, the derivative of means equilibrium property (DM-
EP) optimizing MST upper bound [29] can be expressed as:

 { }

 { }

 {
}

Fig. 10. MST comparison between fair job, pure-deterministic, and pure-

stochastic schedulers.

M-EP approximately optimizes MST and gives sub-optimal
mean inter-arrival rates () by making first moment of response
times equal. The only degrees of freedom are mean inter-arrival
rates (), so in approximate approach we can only make M-EP
not the other higher moments absolutely equal. This
approximation is correct when the other moments of the
response time of mapper nodes are negligible or the deviation
is insignificant i.e. practically there is no bottleneck node in the
system. In fact the gap between optimal solution and this
approximate solution is insignificant.

In the following graphs (Figures 11a-11d), we use our
delayed exponential model of map phase for CPU-bound job
(when is big or deterministic coefficient) and
memory-bound job (when is small or). The graphs
show the comparison between different schedulers as
mentioned before with respect to total mean inter-arrival rate
and number of heterogeneous mapper nodes.

(a)

(b)

(c)

(d)

Fig. 11. MST comparison of different schedulers with respect to total inter-arrival rate for (a) memory-bound job (), (b) CPU-bound job (), (c)
memory-bound job (), and (d) CPU-bound job ().

10
11

12
13

14
15

0

50

100

150

200
6

6.5

7

7.5

8

8.5

Total Inter-Arrival RateNumber of Mapper Nodes

M
e
a
n
 S

o
jo

u
rn

 T
im

e

0

1

2

3

4

Low-performance servers High-performance servers
Service time Utilization Throughput Queue length Response time

0 5 10 15
4

5

6

7

8

9

Total Inter-Arrival Rate

M
e
a
n
 S

o
jo

u
rn

 T
im

e

Fair Job Scheduler

Pure-Deterministic Scheduler

Pure-Stochastic Scheduler

10 12 14 16 18 20 22 24 26 28 30
6

6.5

7

7.5

8

8.5

9

9.5
Mean Sojourn Time vs. Total Inter-Arrival Rate

Total Inter-Arrival Rate

M
e
a
n
 S

o
jo

u
rn

 T
im

e

Fair Job

Pure-Deterministic

Pure-Stochastic

M-EP

DM-EP

Optimal

10 12 14 16 18 20 22 24 26 28 30
15

20

25

30

35

40

45

50
Mean Sojourn Time vs. Total Inter-Arrival Rate

Total Inter-Arrival Rate

M
e
a
n
 S

o
jo

u
rn

 T
im

e

Fair Job

Pure-Deterministic

Pure-Stochastic

M-EP

Optimal

40 60 80 100 120 140 160 180 200

6.4

6.5

6.6

6.7

6.8

6.9

7

7.1

7.2

7.3
Mean Sojourn Time vs. Number of Mapper Nodes

Number of Mapper Nodes

M
e
a
n
 S

o
jo

u
rn

 T
im

e

Fair Job

Pure-Deterministic

Pure-Stochastic

M-EP

DM-EP

Optimal

40 60 80 100 120 140 160 180 200
10

20

30

40

50

60

70
Mean Sojourn Time vs. Number of Mapper Nodes

Number of Mapper Nodes

M
e
a
n
 S

o
jo

u
rn

 T
im

e

Fair Job

Pure-Deterministic

Pure-Stochastic

M-EP

DM-EP

Optimal

10

(a)

(b)

(c)

Fig. 12. Comparison of different schedulers’ parameters.

When the target MapReduce job is memory-bound or has
random memory access, it is more stochastic and the
deterministic coefficient for this type of job is close to zero. For
memory-bound jobs, optimal scheduler that tries to find s
minimizing MST is nearly coincident with pure-stochastic, M-
EP and DM-EP schedulers. For CPU-bound jobs, optimal
scheduler is nearly coincident with pure-deterministic and M-
EP schedulers. As a result, M-EP is a good approximation of
optimal solution in this model. Some schedulers sometimes
outperform optimal scheduler, because they output negative
but optimal scheduler always gives positive not-migratory ,
but in non-negative regions optimal scheduler always
outperforms the others.

When the input job is CPU-bound, the pure-stochastic
scheduler cannot track the optimal response time well. Figure
12 (a,b,c) indicates that the pure-stochastic scheduler cannot
make all nodes’ response time completely equal, and the other
schedulers’ deviation is higher. Since MST is a function of the
slowest node, M-EP is near to the pure-stochastic in this case.

VI. CONCLUDING REMARKS

Targeting MapReduce applications, in this paper, the
service rate of mapper nodes as a single queue has been
modeled with the delayed exponential distribution, and also it
has been shown that their response time has a similar behavior.
Using this analytical result, next, the map phase of a single-
pass MapReduce job has been modeled and we have
formulated the mean sojourn time (MST) at a reducer node by
means of task inter-arrival rates and service rates of mapper
nodes. MST is a potential metric for optimizing end-to-end
delay in MapReduce framework. Based on different types of
inter-arrivals and service rates, the MST parameter has been
optimized and equilibrium property was investigated for many
cases. To realize the minimum map phase delay in a
heterogeneous datacenter, we have also investigated different
types of schedulers.

ACKNOWLEDGMENTS

We thank Amin Jadidi, Narges Shahidi and Mahdy
Zolghadr for their feedback on earlier drafts of this paper.

REFERENCES

[1] T. Gunarathne et al., “MapReduce in the clouds for science,” IEEE 2nd
CloudCom Conf., pp. 565–572, 2010.

[2] R. Ananthanarayanan et al. “Cloud analytics: Do we really need to
reinvent the storage stack?,” In Proc. of the HotCloud Workshop, 2009.

[3] R. L. Grossman, "The Case for Cloud Computing," IT Professional,
vol.11, no.2, pp.23-27, March-April 2009.

[4] J. Dean, S. Ghemawat, "MapReduce: Simplified Data Processing on
Large Clusters," In Proc. of the 6th OSDI Symp., San Francisco CA,
2004.

[5] K. Shvachko et al., “The hadoop distributed file system,” In 26th IEEE
MSST Symp., May, 2010.

[6] M. Isard et al., “Dryad: distributed data-parallel programs from
sequential building blocks,” In Proc. of the 2nd ACM SIGOPS/EuroSys,
2007.

[7] M. Zaharia et al., “Improving MapReduce Performance in
Heterogeneous Environments,” In USENIX OSDI, 2008.

[8] G. Ananthanarayanan et al., “Reining in the outliers in map-reduce
clusters using Mantri,” In Proc. of the 9th OSDI Symp., 2010.

[9] K. Ren et al. Hadoop’s adolescence: a comparative workload analysis
from three research clusters. Technical Report UW-CSE-12-06-01,
University of Washington, June 2012.

[10] Y. Chen, S. Alspaugh, and R. H. Katz. Design insights for MapReduce
from diverse production workloads. Technical Report UCB/EECS-2012-
17, EECS Department, University of California, Berkeley, 2012.

[11] G. Ananthanarayanan et al., “Effective straggler mitigation: attack of the
clones,” In Proc. of the 10th NSDI Symp., 2013.

[12] F. Ahmad et al., “Tarazu: optimizing mapreduce on heterogeneous
clusters,” In Proc. of the 17th ASPLOS Conf., pp. 61-74, New York,
NY, USA, ACM, 2012.

[13] G. Ananthanarayanan et al., “Scarlett: Coping with Skewed Popularity
Content in MapReduce Clusters,” In ACM EuroSys, 2011.

[14] H. Karloff, S. Suri, and S. Vassilvitskii. A model of computation for
MapReduce. In Symposium on Discrete Algorithms (SODA), 2010.

[15] B. Li et al., “A Platform for Scalable One-Pass Analytics using
MapReduce,” In Proc. of the 2011 ACM SIGMOD, 2011.

[16] X. Yang and J. Sun, “An analytical performance model of mapreduce,”
In IEEE International Conference on Cloud Computing and Intelligence
Systems (CCIS), pages 306-310, 2011.

[17] X. Lin et al., “A practical performance model for hadoop mapreduce,” In
CLUSTER Workshops, pp. 231–239, 2012.

[18] E. Krevat et al., “Applying Performance Models to Understand Data-
intensive Computing Efficiency,” Technical Report CMU-PDL-10-108.
Carnegie Mellon University, Pittsburgh, 2010.

[19] Y. Kwon et al. SkewTune: Mitigating skew in MapReduce applications.
In Proc. of the SIGMOD Conf., pages 25–36, 2012.

[20] J. Tan, X. Meng, and L. Zhang, “Delay tails in MapReduce scheduling,”
In Proc. of the 12th ACM SIGMETRICS/PERFORMANCE, pp. 5–16,
New York, NY, USA, ACM, 2012.

[21] M. Lin et al., “Joint optimization of overlapping phases in MapReduce,”
Performance Evaluation, 2013.

[22] T. Condie et al., “Mapreduce online,” In NSDI, 2010.

[23] R. Chaiken et. al. “Scope: Easy and Efficient Parallel Processing of
Massive Data Sets,” In Proc. of VLDB, 2008.

[24] A. Thusoo et al., “Hive - a warehousing solution over a Map-Reduce
framework,” PVLDB, vol. 2, no. 2, pp. 1626–1629, 2009.

[25] V. A. Saletore et al., “HcBench: Methodology, Development, and
Characterization of a Customer Usage Representative Big Data/Hadoop

0

2

4

6

8

Low-performance servers
with Fair Job Scheduler

High-performance servers
with Fair Job Scheduler

Service time Utilization Throughput Queue length Response time

0

1

2

3

4

Low-performance servers
with Pure-stochastic

Scheduler

High-performance servers
with Pure-stochastic

Scheduler

Service time Utilization Throughput Queue length Response time

0

2

4

Low-performance
servers with Pure-

deterministic Scheduler

High-performance
servers with Pure-

deterministic Scheduler

Service time Utilization Throughput Queue length Response time

11

Benchmark,” IEEE International Symposium on Workload
Characterization, September 2013.

[26] M. A. Marsan and G. Chiola, "On Petri Nets with Deterministic and
Exponentially Distributed Firing Times," Advances in Petri Nets, LNCS,
vol. 266, Springer, pp. 132-145, 1987.

[27] A. Feldmann and W. Whitt, "Fitting mixtures of exponentials to long-
tail distributions to analyze network performance models", Proc. IEEE
INFOCOM, 1997.

[28] J. Li, Y. Fan and M. Zhou, "Performance modeling and analysis of
workflow," IEEE Trans. Syst., Man, Cybern. A, Syst. Humans, vol. 34,
no. 2, pp.229-242 2004.

[29] F. Farhat et al., “Modeling and Optimization of Straggling Mappers,”
Technical Report PSU-CSE-14-006, Pennsylvania State University,
March 2014.

[30] R. B. J. T. Allenby, A.B. Slomson, “How to Count: An Introduction to
Combinatorics,” Discrete Mathematics and Its Applications (2ed.), CRC
Press, pp. 51–60, ISBN 9781420082609, 2010.

[31] B. Kemper, M. Mandjes, "Mean sojourn times in two-queue fork-join
systems: bounds and approximations," OR Spectrum 34, 723–742, 2012.

[32] A. S. Lebrecht, W.J. Knottenbelt, "Response Time Approximations in
Fork-Join Queues," In Proc. 23rd UK Performance Engineering
Workshop (UKPEW), Edge Hill, UK, July, 2007.

[33] H. Schwetman, “CSIM: A C-based, process oriented simulation
language,” In Proceedings of the 1986 Winter Simulation Conference,
pp. 387–396, December 1986.

