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Abstract—MapReduce framework is widely used to 

parallelize batch jobs since it exploits a high degree of multi-

tasking to process them. However, it has been observed that, 

when the number of mappers increases, the map phase can take 

much longer than expected. This paper analytically shows that 

stochastic behavior of mapper nodes has a negative effect on the 

completion time of a MapReduce job, and continuously 

increasing the number of mapper nodes can degrade the overall 

performance. We analytically capture the effects of stragglers 

(delayed mappers) problem on the performance. Based on 

observed delayed exponential CDF of response time of mappers, 

we then model the map phase by means of hardware, system and 

application parameters. Mean sojourn time (MST), the time 

needed to sync the completed map tasks at one reducer, is 

mathematically formulated. Following that, we optimize MST by 

finding the task inter-arrival rate to each mapper node. Optimal 

mapping problem leads to equilibrium property investigated for 

many types of inter-arrival and service time distributions in a 

heterogeneous datacenter. Our experimental results show the 

performance and important parameters of the different types of 

schedulers. We also show that, in the case of mixed deterministic 

and stochastic schedulers, there is an optimal scheduler that can 

always achieve the lowest MST. 

I. INTRODUCTION 

MapReduce has become a popular paradigm for structuring 
large scale parallel computations in the datacenter. By 
decomposing the computation into (one or more) Map and 
Reduce phases, the work within each phase can be 
accomplished in parallel without worrying about data 
dependencies, and it is only at the boundaries between these 
phases where one needs to worry about issues such as data 
availability and dependency enforcement. At the same time, 
with the possibility of elastically creating tasks of different 
sizes within each phase, these computations can adjust 
themselves to the dynamic capacities available in the 
datacenter. There has been a lot of prior work in the past 
decade to leverage this paradigm for different applications 
[1,2,3], as well as in the systems substrate needed to efficiently 
support their execution at runtime [4,5,6]. 

While each phase is embarrassingly parallel, the 
inefficiencies in MapReduce execution manifest at the 
boundaries between the phases as data exchanges and 
synchronization stalls to ensure completion of the prior phases. 
One of these inefficiencies is commonly referred to as the 
“straggler problem” of mappers -- where a reduce phase has to 
wait until all mappers have completed their work [4]. Even if 
there is one such straggler (in the mappers), the entire 
computation is consequently slowed down. Prior work 
[7,8,9,10] has identified several reasons for such stragglers 
including load imbalance, scheduling inefficiencies, data 
locality, communication overheads, etc. There have also been 
efforts looking to address one or more of these concerns to 

mitigate the straggler problem [7,8,11,12,13]. While all these 
prior efforts are important, and useful to address this problem, 
we believe that a rigorous set of analytical tools is needed in 
order to: (i) understand the consequences of stragglers on the 
performance slowdown in the MapReduce execution, (ii) be 
able to quantify this slow-down as a function of different 
hardware (processing speed, communication bandwidth, etc.), 
system (scheduling policy, task to node assignment, data 
distribution, etc.), and application (data size, computation 
needs, etc.) parameters, (iii) study the impact of different 
scaling strategies (number of processing nodes, the 
computation to communication and data bandwidths, tasks per 
node, etc.) on this slowdown, (iv) undertake “what-if” studies 
for different alternatives (alternate scheduling policies, task 
assignments to nodes, etc.) beyond what is available to 
experiment with on the actual platform/system, and (v) use 
such capabilities for a wide range of optimizations -- determine 
resources (nodes, their memory capacities, etc.) to provision for 
the MapReduce jobs, the number of tasks to create and even 
adjust dynamically, the assignment of these tasks to different 
kinds of nodes (since datacenters could have heterogeneous 
servers available at a given time), adjust the scheduling 
policies, run redundant versions of the tasks based on the trade-
offs between estimated wait times and additional resources 
mandated, run a MapReduce computation with a budgetary 
(performance, power, cost) constraint, etc.  

However, there are no rigorous analysis tools available 
today with these capabilities for modeling and understanding 
the straggler problem in MapReduce computations for the 
purposes listed above. This paper intends to fill this critical 
void by presenting a novel analytical model for capturing the 
waiting time at the end of the Map phase due to any straggling 
mappers. We also demonstrate the benefits of having such a 
tool with a few case studies. Specifically, this paper makes the 
following contributions towards presenting and exploiting an 
analytical model for the stragglers in MapReduce 
computations: 

 We demonstrate that a delayed exponential distribution can 
be used to capture the service time of the map tasks at a 
given node. We then show that with such service times at 
each node, the aggregate completion time of mapper tasks 
across all the nodes of the cluster also follows a delayed 
exponential distribution. This is validated (less than 5% 
least square error) against a spectrum of mapper completion 
times of 10 production workloads published in prior 
research. 

 With this result, we develop a closed-form queuing model 
of the time expended (the Mean Sojourn Time) before a 
reducer node can begin its part of the computation, i.e., 
waiting time for all mappers to finish. Parameterized by the 
arrival rate of the mappers, the delayed exponential service 
times and the number of nodes, this model helps 
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conveniently study the impact of different parameters -- 
whether job characteristics, hardware capabilities or system 
operation -- on the delays before a reducer can start. 

 This model can be used for a variety of purposes as 
explained above. In this paper, we specifically illustrate a 
use case. We show how the model can be used to schedule 
map tasks on different (possibly heterogeneous) nodes of a 
datacenter cluster to reduce the Mean Sojourn Time. This is 
demonstrated to be much more effective than how the 
JobTracker does it today in the Hadoop distribution.  

II. BACKGROUND AND RELATED WORK 

In this section we describe how MapReduce [4] works, and 
explain the straggler problem that affects the efficiency of the 
framework negatively. We also discuss the related work. 

A. MapReduce Framework 

MapReduce framework [4] is a programming environment 
that can be used to execute data-intensive jobs. This framework 
can be applied to a large class of algorithms known as 
MapReduce Class (MRC) [14] with high levels of parallelism 
and low job completion times. Open-source Hadoop 
MapReduce is a fault-tolerant scalable implementation built 
upon Hadoop file system (HDFS) [5].  

Figure 1 shows a high-level view of the MapReduce 
framework. A job in this framework arrives with some ‘mean 
rate’, and is partitioned into ‘map’ tasks. More specifically 
JobTracker module in Hadoop assigns map/reduce tasks to 
TaskTracker nodes. Each map task tracker node (called mapper 
node) has threads to perform the map tasks (called mappers). 
Once the map tasks are completed, a set of intermediate 
key/value pairs is generated and passed to the associated 
reducer node in the shuffling stage. Each reducer node may 
receive values with the same intermediate key assigned to that 
node. Each reducer node employs reduce task trackers (called 
reducers) to compute and merge the received intermediate 
values. After finishing the reduce phase, the final values are 
merged into the HDFS storage again. 
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Fig. 1. MapReduce framework including map, shuffle, and reduce phases. 

For example, in a word-count application, the     mapper 
node counts the frequency of each word in its received text in 
the map phase and, then calculates and sends corresponding 

tuple (                      )  to     reducer node in the 

shuffle phase. If         ,         and         , on 
average       words go to each reducer node. For example, 
words that begin with letter “A” go to 1

st
 reducer node, words 

that begin with letters “B, C or D” (having balanced number of 
words for each) go to 2

nd
 reducer node, etc. It is important to 

note that the map and shuffle phases may overlap. Each reducer 
node calculates the total frequency of its words by summing the 
counts in reduce phase, as     reducer node does 

∑         
  
       

(   )  

  
   

(   )  

  
     

    

  
. 

For a reducer to start its execution, all mappers that have 
data to send to that reducer should finish sending. During 
execution, one may observe various imbalances across 
mappers, due to resource contention in a mapper node, 
unbalanced jobs scheduled on mapper nodes or heterogeneity 
across computational resources [8]. Clearly, the start time of a 
reduce job is dictated by slowest mapper, that is, the slowest 
mapper determines how soon a reduce task can start its 
execution. One of the major reasons for excessively long 
execution latencies of MapReduce jobs is stragglers, i.e., some 
cluster nodes that complete their assigned tasks in a time longer 
than usual. Node hardware failure, resource contention of tasks 
running on a node, and limited resource availability on a node 
can make it a straggler. 

B. Related Work 

The mathematical modeling of MapReduce framework has 
recently been researched in studies such as [15,16,17,18]. The 
main difference between these models and our work is that the 
prior models are not sufficiently rigorous in handing the 
stragglers problem. Also, most of the published studies assume 
deterministic execution times for mappers and reducers. Li et al 
[15] introduce an analytical model for I/O cost, number of I/O 
requests, and startup cost in Hadoop. They also propose a hash-
based mechanism to allow incremental processing and in-
memory processing of frequent keys. They investigate the best 
merge factor for MapReduce jobs larger than memory size.  

Ananthanarayanan et al [11] show that stragglers can slow 
down small jobs by as much as 47%. They propose a system 
called Dolly for cloning small jobs. They also claim that a 
delay assignment can improve resource contention initiated by 
cloning. However, this method does not work for stragglers of 
large tasks. In [16], the authors try to find an analytical model 
of MapReduce to minimize the execution time and find optimal 
map granularity. In comparison, [17] presents a performance 
model to estimate the cost of map and reduce functions in 
MapReduce. However, the model assumes that all mappers 
finish at the same time and they do not consider the stochastic 
behavior of execution times of mappers and reducers. Krevat et 
al [18] proposed a simple analytical model for MapReduce and 
compared the performance results of MapReduce with other 
similar frameworks in some good conditions.  

LATE [7] tries to optimize MapReduce performance in a 
heterogeneous cluster by restarting slow tasks in fast mapper 
nodes, and Tarazu [12] addresses the poor performance of 
MapReduce in heterogeneous clusters and shows that the 
traffic contention between remote tasks is the main problem in 
heterogeneous clusters. Motivated by this, they then propose a 
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communication aware and dynamic load balancing technique to 
reduce the network traffic contention between remote tasks and 
the shuffling stage. SkewTune [19] manages interactively skew 
of non-uniform input data of user-defined applications at 
runtime. It finds an idle node in the cluster and assigns slow 
task to that node. Ananthanarayanan et al. [8] discuss the main 
causes of the outliers (stragglers) and, based on an identified 
cause, they propose to restart or duplicate the task at the 
beginning of their lifetime. Scarlett [13] replicates popular 
blocks in different machine’s memory to reduce interference 
with running jobs. 

Ananthanarayanan et al. [8] propose Mantri to reduce the 
effect of outliers of Bing clusters, where outliers’ duration is 
compared to the duration of the median task in some figures 
fractionally. Also, e.g. the analysis of the workloads [9] from 
various research clusters, OpenCloud, M45 and WebMining, 
shows stragglers runtime to median task duration has a nearly 
delayed exponential distribution. Similarly, Chen et al. [10] 
evaluate the task lengths for Cloudera and Facebook workloads 
and reach similar conclusions. Tan et al [20] propose a 
coupling scheduler in MapReduce based on an analytical 
approach also modeling FIFO and fair scheduler with an index 
range for delay distribution tail. Under some circumstances, 
this scheduler delay distribution can have better performance 
than a fair scheduler, as its index is one order lower.  

Lin et al [21] try to address map and shuffle overlapping 
challenge in MapReduce. They demonstrate that the optimal 
solution is NP-hard in offline mode and they suggest 
MaxSRPT and SplitSRPT schedulers for online mode reaching 
optimal scheduling. MaxSRPT is comparable to optimal 
scheduling when the “remaining map task” to “remaining 
shuffle task” ratio is small and SplitSRPT performance is good 
when the ratio is near one. Condie et al [22] change the 
MapReduce framework to support pipelining between map, 
shuffle and reduce phases. There are some compiler-based 
architecture [23,24] for SQL-like queries in MapReduce 
framework to setup and speedup the execution of computation 
on large data sets. They work on computational DAG (directed 
acyclic graph) of large data sets queries and they need multiple 
rounds of MapReduce to be optimized. 

C. Delayed Exponential Distribution 

We start by giving the mathematical definition of Delayed 
Exponential Distribution since it is heavily used in our model. 

Definition 1: For a delayed exponential distribution with rate   
and offset  ,  ( ) is cumulative distribution function (CDF) 
and  ( ) is probability density function (PDF) as follows: 

 ( )  {
                          

     (   )    
 (     (   )) (   ) (1) 

 ( )  {
                     

    (   )    
     (   ) (   ) (2) 

where  ( )  is unit step function. Figure 2(a) shows the 
cumulative distribution of a delayed exponential function. 
Figure 2(b) shows a probability density function of delayed 
exponential distribution. 

An important observation is that the completion times of 
map tasks exhibit a delayed exponential distribution [8,9,10]. 
In fact, we show in the next section that delayed exponential 
distribution is nearly coincident with empirical data derived 
from some other papers. As illustrated in Figure 2(b), most of 

mappers finish their tasks right after threshold, but a fraction of 
mappers finish their tasks after a long time. Since reducers can 
start only after completion of all their map tasks, they will be 
delayed because of their delayed mappers. 

 
(a) 

 
(b) 

Fig. 2. CDF (a) and PDF (b) of delayed exponential distribution. 

The intrinsic properties of architecture-level heterogeneity 
(e.g., big core versus small core) can further magnify the 
impact of stragglers. In this paper, we analytically model 
stragglers and show their effect on the end-to-end delay. We 
also optimize the delay using scheduling algorithms that make 
the execution look more homogeneous. 

III. MAP PHASE MODELING 

This section gives the assumptions we make and explains 
the parameters used in our model. The delayed exponential 
distribution is justified in each sub-section based on general 
knowledge and real observations, and the response time 
distribution of mapper nodes is proved analytically and verified 
using the available data.  

A. Assumptions 

A MapReduce job (e.g., word count) can be seen as a set of 
tasks that must be completed to get the desire results (e.g., the 
frequency of each word). In our model, we assume that the 
different jobs are submitted to the system with a mean rate or 
we can say the jobs have a total mean inter-arrival time. The 
mean inter-arrival rate of the job can be interpreted as the 
average number of CPU instructions coming to the system per 
second and it is denoted by   parameter as shown in Figure 1. 
A job comes to the MapReduce framework as a bunch of tasks 
and then they are split into   map tasks with the nearly equal 
number of instructions and sent to mapper nodes by the 
scheduler. There are    mapper nodes which receive map 
tasks respectively with the probabilities            

. 

Alternately, given a scheduler,      map tasks are sent to     
mapper node. In other words, the mean inter-arrival rate of the 

task to     mapper node is         where   ∑   
  
   . 

TABLE I.  NOTATION USED IN OUR FORMULATIONS. 

Parameter Notation Explanation 

Number of mapper nodes 

(            ) 
   The number of nodes in the 

datacenter assigned for map tasks 

Mean task inter-arrival rate to 

    mapper node 

   The average rate of the tasks 

coming to     mapper node 

Mean service rate of     

mapper node (       ) 

   The average rate of the tasks 

departing from     mapper node 

Mean job inter-arrival rate or 
total inter-arrival rate 

  
  ∑   

  

   
 

Unit step function  ( )  ( )  {
 
 
    
    

 

Unit impulse function  ( )  ( )    ( )    
Offset of delayed exponential 

for     mapper node 

   The minimum amount of time 

required to complete a task 

Response time of all map tasks    The required time to finish all 
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(random variable) map tasks by all mapper nodes 

Response time of     mapper 

node (random variable) 

   
 The required time to finish a task 

by     mapper node 

Mean response rate of     

mapper node 

   The average required time to 

finish a task by     mapper node 

A mapper node may run multiple map tasks. Mapper node   
is modeled as a single queue with a mean service rate of   , i.e., 
on an average, it can service    tasks concurrently. The 
completion time of each mapper node is independent of the 
other mapper nodes, but the completion time of a map task may 
be dependent on the completion time of the other map tasks 
that reside in the same mapper node. Communication links 
(arrows in Figure 1) are assumed to have a nearly-deterministic 
delay or containing routers with a nearly-deterministic service 
rate. Small variances across communication link delays add a 
nearly-constant delay overhead on all end-to-end delay, and 
this overhead is small compared to the computation delay. This 
is because routing service rate is much higher than any 
map/reduce task service rate, and shuffling phase has overlap 
with map phase of MapReduce. Table I shows the notation 
used in this paper.  

B. Mapper Node as a Single Queue 

Mapper node can be modeled as a FCFS (first-come first-
served) infinite-buffer single queue. The distribution of 
response time of a mapper node is a function of the inter-arrival 
rates (with a mean of   ) as well as their service rates (with a 
mean of   ). In our model we investigate delayed exponential 
service rate. Later in Section 5, we study different distributions 
for task inter-arrival time and mapper node service time. Note 
that, we are not restricted to a simple M/M/1 queue; we 
investigate the other inter-arrival rates and service rates that 
correspond to other potential scenarios in modern datacenters 
like Gamma distribution or Erlang-k distribution as a general 
rational form of job inter-arrival time distribution in datacenters 
[25]. 

The clock rate of mapper node has a periodic characteristic 
and is proportional to service rate (   ) with a linear 
deterministic coefficient (say  ), i.e., most instructions can be 
executed successively with a time difference not less than 
       

 
 and other instructions that involve memory or I/O 

requests can have an even longer time difference from the 
previous instructions. Thus the distribution of clock rate is 
 (    ) where  ( )    ( )   , and the distribution of service 
rate for different instructions is exponential, as assumed by 
many prior papers [26,27,28]. The distribution of summation of 
these two random variables is equivalent to the convolution ( ) 
of these two distributions. The resulting service rate of a 
mapper node is thus a delayed exponential PDF which can be 
expressed as follows: 

   
     ( )       (    )     

   (    ) (    ) (3) 

where    is the minimum time required to execute an 
instruction. Naturally each map task contains a number of 
instructions (say  ), each having a minimum time to execute. 
Therefore, the total service time of a map task is longer 
than    ∑   

 
    giving the offset of the delayed exponential 

distribution in the service times. Note that the different mapper 
nodes can have different service rates (  s) and offset times 
(  s) which can make a datacenter heterogeneous. As far as the 
running job is concerned, we need only these parameters (   
and   ) of each mapper node to derive our desired scheduler. 
As a result, the delayed exponential service time is a 

generalization of the exponential service time and we show 
below that it matches with real data.  

C. Response Time of a Mapper Node 

Response time (completion time) of a mapper node is the 
time required for its map tasks to wait in the mapper node 
buffer (queue) plus the time required to service them. In 
Lemma 1, we show that, given the delayed exponential service 
time of each mapper node, the total completion time of map 
tasks has a delayed exponential property. To show this, the 
following lemmas are crucial. 

Lemma 1: Delayed exponential service rate approximately 
results in delayed exponential response time for a mapper node. 
(See [29] for the proof). 

Lemma 2: Given the distribution of response time of each 
mapper node is delayed exponential, the completion time of all 
mapper nodes (tasks) across the cluster also has a delayed 
exponential CDF. (See [29] for the proof). 

D. Validation of Delayed Exponential Completion Time  

We show that our defined delayed exponential distribution 
matches with the empirical completion times of map tasks that 
have been published in prior studies. We use the CDFs of 
published completion times of different MapReduce 
applications (Table II) and try to fit a delayed exponential 
distribution on this data represented by the following function: 

(     (   )) (   )  

TABLE II.  CURVE-FITTING OF THE COMPLETION TIMES OF THE 

PUBLISHED DATA TO DELAYED EXPONENTIAL DISTRIBUTION. 

Benchmark Reference Exponential Rate ( ) 
Least Square 

Error 

Bing Search Engine  [8] 0.894498571 0.04861312 

Facebook [10] 0.011891914 0.04178871 

Cloudra Customer (a) [10] 0.014479546 0.05567882 

Cloudra Customer (b) [10] 0.037436986 0.01997069 

Cloudra Customer (c) [10] 0.009922954 0.03162061 

Cloudra Customer (d) [10] 0.01703502 0.03640228 

Cloudra Customer (e) [10] 0.025387299 0.04502734 

OpenCloud [9] 0.459106034 0.04565715 

M45 [9] 0.232328761 0.05662841 

WebMining [9] 1.154299592 0.01424641 

Note that the offset time   (constant for an application) can 
be directly taken from the empirical data, and it is only the 
mean response rate ( ) that we need to estimate.  Newton’s 
method for fast convergence has been used to find the response 
rate that reduces the mean square error of the fit. As shown in 
Table II, the least square error is not greater than 5% across all 
those workloads, strengthening our rationale for modeling 
completion times as a delayed exponential distribution. Table 
III lists important parameters and their values used in our 
subsequent experiments. These values are based on the data 
from the prior studies listed in Table II. 

TABLE III.  PARAMETER VALUES USED IN EXPERIMENTS. 

Parameter Range 

Total mean inter-arrival time (   ) 0.1s-2s 

Mean service time (   ) 0.5s-2s 

Offset time (  ) 0.1s-100s 

Mean response time (   ) 0.5s-1000s 

Utilization (     ) 0.1-0.95 
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E. Mean Sojourn Time at a Reducer 

Mean sojourn time (MST) at a reducer represents the 
average time required to synchronize all completed map tasks 
before a reducer can start its execution. Assuming uniform 
mapping from mapper nodes to reducer nodes via 
homogeneous hash-based (key, value) pair mechanism, there is 
no difference amongst the delay of all paths from mapper 
nodes to a reducer node, and thus we can choose one of them 
without loss of generality. MST can be a reasonable metric to 
represent the mean delay from job split to merge in a reducer as 
a fraction of the end-to-end delay of a MapReduce job. 

Definition 2 (Mean Sojourn Time): Given general CDFs of 
independent and identically distributed (i.i.d) response times of 

mapper nodes as      
( )   (   

  )       , using 

maximum order statistics (MOS), the required time for 
synchronization of the completed map tasks at     reducer (   

) 

is the maximum of the response times of all mapper nodes, i.e., 

we can find    
    (   

    
       

) as: 

    
( )   (   

  )  ∏  (   
  )

  

   
 ∏     

( )
  

   
  

The corresponding PDF can be easily expressed as follows: 

    
( )  

 

  
    

( )      
( ) ∑

    
( )

    
( )

  

   
  

The following equations (Eq.7 and Eq.9) are used in our 
next formulations. The expected value of random sojourn time 
(MST) using the inclusion–exclusion principle [30] can be 
expressed respect to expected value of minimum of random 
response times of every subset of mapper nodes as follows: 

     {   
}   {   (   

    
       

)}

 ∑ {(  )   ∑  {   (    
     

       
)}

                        

}
  

   
 



Further, MST can be expressed in other ways, with respect 
to distribution of random response time of each mapper node 
using Eq.5 as: 

    ∫       
( )   

 

   

∫   
 

  
(∏  (   

  )
  

   
)   

 

 

 

And using Eq.6 we have: 

    ∫   
 

 

    
( ) (∑

    
( )

    
( )

  

   
)  

 ∑ ∫   
 

 

    
( )

  

   
 
    

( )

    
( )

   



Note that, the mean sojourn time (MST) is dependent on 

response time CDF of each mapper node ( (   
  )), and it 

depends on the inter-arrival rate and service rate of each 
mapper node. For heterogeneous queues with general form 
distribution of response time, we are not aware of any 
published closed-form formulations, bound or approximation 
for the MST. However, in the case of two homogeneous 
queues, there is an approximation and lower/upper bounds 
[31]. To our knowledge, the exponentially distributed response 
time of heterogeneous queues has no closed formula, no 
approximation, and no bound. In fact, only for exponentially 

distributed response time of homogeneous queues (M/M/1 
queues with the same μ), there are some approximations and 
boundaries in the statistics literature [32]. We derive the MST 
closed formula for the mapper nodes as M/M/1 queues using 
MOS in Lemma 3. 

Lemma 3: Given M/M/1 mapper nodes with    arrival rate and 
   service rate where        , using maximum order 
statistics, the MST of map tasks in a reducer is (proof in [29]): 

        

 ∑ {(  )   ∑
 

∑ (   
    

) 
                           

}
  

   




As an example, Figure 3(a) gives the sensitivity of the mean 
sojourn time to the total mean inter-arrival rate to the system, 
when the service rate of each mapper node is      and the 
number of mapper nodes is      . When the inter-arrival 
rate of the job increases, the mean sojourn time at a reducer 
homographically tends to infinity, if the number of mapper 
nodes is fixed. Figure 3(b) gives an intuition about the variation 
of MST (Eq.9) versus the number of mapper nodes of the 
system (  ), when the service rate of each mapper node is 
     and the total inter-arrival rate to the system is constant 
(   ). When the number of mapper nodes increases, if the 
total mean inter-arrival rate is fixed, the mean sojourn time 
tends to  (  ( ))  asymptotically, where   is the number of 
mapper nodes. Intuitively, there is a logarithmic algorithm to 
sync and merge completed tasks in one place, when a 
sync/merge operation can only happen between two completed 
tasks. 

 
(a) 

 
(b) 

Fig. 3. MST with respect to total mean inter-arrival rate (a) and the number 
of mapper nodes (b). 

Based on the discussion above, MST is the average time 
necessary to synchronize completed map tasks before reducer 
phase. As such, it can be expressed using the response times of 
each mapper node. We aim to minimize MST with respect to 
job mapping and number of mappers. 

IV. POTENTIAL USES OF THE MODEL 

To optimize performance of a datacenter running a 
MapReduce job, we need the performance model of the 
datacenter. Using the performance model, critical parameters 
such as response time or throughput of the MapReduce job can 
be optimized and a corresponding scheduler can be obtained.  
One of the important decisions that datacenter designers need 
to make is whether to employ homogeneous or heterogeneous 
nodes. As far as our formulation is concerned, the difference 
between two options is uniform (           

) versus 

non-uniform (           
) service rates. We envision 

three potential uses of our model with respect to architecture, 
system and application parameters of a heterogeneous 
datacenter: 
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 It is able to model the performance parameters of nodes in a 
datacenter as service times and completion times of single 
queues more accurately, because it captures the deterministic 
behavior of task completion and the stochastic notion of 
straggler problem jointly. It can be used to optimize the 
performance of each node in a heterogeneous datacenter. 

 It is able to model the performance parameters of a 
MapReduce job as a fork-join network in a fashion that is 
more detailed than an M/M/1 queuing model but easier than a 
general distribution-based model. It can be used to globally 
improve performance of a MapReduce job in a datacenter. 

 It can be used to optimize other target metrics such as power, 
and utilization of a heterogeneous datacenter. 

The delayed exponential model of service time of mapper 
node is an extended version of the exponential model. It has the 
flexibility to be used for representing the service times of 
different classes of workloads. For example, the offset time 
parameter of a CPU-bound job is higher than that of a memory-
bound job. Since the memory access times are random and take 
much longer than CPU access times, they can also be modeled 
by an exponential distribution. However, both jobs have a fixed 
delay of execution that cannot be reduced stochastically.  

The exponential distribution model cannot capture such 
situations, as the probability of having two consecutive 
completed jobs with zero delay in reality is zero but in 
exponential response time model is the highest. The delayed 
exponential response time model is also a good approximation 
of the response time of a typical datacenter server as a single 
queue, and can be used in the analysis of different types of 
distributed computing networks. Based on Lemma 1, the 
delayed exponential completion time can be obtained using the 
delayed exponential service time, and this makes most of the 
analytical formulas much simpler.  

Since the focus of our paper is on performance, we use 
MST as an end-to-end delay-aware metric; other analyses may 
use different metrics based on their focus. The potential metrics 
of interest could be power, budget, power/performance, and 
other similar combinations. First, the specification of the 
cluster and workload should be evaluated. Considering Figure 
2 and Eq.3, the service rate of the server and offset time related 
to the application can be obtained from the specs. So, the 
delayed exponential model of service time can be derived. 
Then, the response time model can be obtained by having the 
distribution of workload inter-arrival time that is discussed 
rigorously in the proof of Lemma 1 in [29]. We are interested 
in investigating the behavior of different schedulers by single 
queue model of mapper node with the delayed exponential 
response time when one type job is submitted to the datacenter. 
This can be extended to a generalized multiple queues model 
when multiple classes of jobs are submitted to a datacenter. 
Table IV gives a quick summary of the lemmas used in this 
work. 

TABLE IV.  SUMMARY OF THE LEMMAS (LEMMAS 7 THROUGH 13 CAN BE 

FOUND IN [29]). 

Lemma Explanation 

1 delayed exponential service rate   delayed exponential response time 
for a mapper node. 

2 delayed exponential service rate   delayed exponential completion 
times for all map tasks. 

3 MST formula for M/M/1 mapper node 

4 Joint optimization of MST is equivalent to two separate 

optimizations. 

5 equilibrium property for D/D/1. 

6 equilibrium property for M/M/1. 

7 equilibrium property for G/M/1 [29]. 

8 sufficient conditions for optimal scheduling [29]. 

9 optimal mapping from moments of the distribution [29]. 

10 lower bound and upper bound of MST [29]. 

11 optimal number of M/M/1 mapper nodes [29]. 

12 optimal number of homogeneous mapper nodes [29]. 

13 optimal number of mapper nodes for a fixed budget [29]. 

V. MAP PHASE OPTIMIZATION 

The delays in the critical path of a MapReduce job includes 
the delays in storage, network communications, map-task 
computation, synchronization of the map tasks, reduce-task 
computation, and merge/aggregate of the reduce tasks. 
Heterogeneity in cluster resources makes the synchronization 
delay of map tasks higher. In fact, the problem of uneven map 
task completion times has been shown to be a serious 
impediment to the scalability of MapReduce computations 
[7,8,11,12]. While this has been studied experimentally, it has 
not been investigated from an analytical perspective.  

We want to minimize this synchronization delay by 
dividing the total inter-arrival rate between mapper nodes. The 
unknown parameters are the residual inter-arrival rate to each 
mapper node and the number of mapper nodes. The cost 
function in our problem is the mean sojourn time (MST) given 
by the task inter-arrival rates of mapper nodes, and the sum of 
these inter-arrival rates is a constant (mean job inter-arrival 
rate) being the constraint of the problem. The MST of the map 
tasks is the average time taken between the start of a map task  
and reaching to a reducer. MST is the first moment (mean) of 
completion times’ distribution at a reducer. We are interested in 
reducing MST with respect to the number of mapper nodes and 
their task inter-arrival rates.  

Optimizing task inter-arrival rates (say mapping) and the 
number of mapper nodes jointly is in general a hard problem. 
JobTracker of MapReduce knows which mapper nodes are idle, 
i.e., it knows the state of the cluster. The task inter-arrival rates 
of mapper nodes can be also controlled by JobTracker to assign 
each mapper node the desired rate in mapping stage.  The 
following lemma indicates that the optimal mapping and the 
optimal number of mapper nodes can be separately optimized. 
Consequently, we can separate these two problems and solve 
each of them independently. 

Lemma 4: Joint optimization of MST with respect to the 
number of mapper nodes and their task inter-arrival rates is 
approximately equivalent to two separate optimizations, subject 
to, respectively the number of mapper nodes and their task 
inter-arrival rates. We have (see the proof in [29]): 

   
        

(   )     
  

(   
 

(   ))     
 

(   
  

(   ))

        ∑   

  

   
    [           

]
 
 



A. Optimal Mapping 

In this section, we investigate the optimal mapping of tasks 
to mapper nodes with respect to the mean sojourn time. Our 
analysis is carried out for different mapper node queues. We 
then use this to investigate efficient schedulers that address the 
straggler problem.  
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Hadoop fair job scheduler divides and sends the same 
amount of job to each mapper node with    task inter-arrival 
rate and    service rate for    mapper nodes, i.e. 

              
       

The fair job scheduler is optimal when we have a 
completely homogeneous cluster. The “no bottleneck system 
necessary condition” means that the mean job inter-arrival 
should be less than the total service rates of the mapper nodes 

(  ∑   
  
   ). Depending on the scheduling algorithm, we may 

have some tighter bounds, as in this case no bottleneck node 
necessary condition is: 

           

A fair job scheduler (like the Hadoop scheduler) makes the 
mean task inter-arrival rates equal for all mapper nodes (as 
captured by Eq.12), i.e., it gives each mapper node the same 
amount of work. Figure 4 shows the results from a cluster with 
the same number (from 40 to 200) of low-performance (service 
time         ) and high-performance (    ) nodes. The 
MST of fair job scheduler (Eq.12) with respect to the total 
inter-arrival rate and the number of M/M/1 heterogeneous 
mapper nodes always increases when the total inter-arrival rate 
increases. However, the MST with respect to the number of 
nodes has a minimum, i.e., there is an optimal number of nodes 
given by a job inter-arrival rate. If the job inter-arrival rate 
increases, this minimum number of nodes also increases.  

 
Fig. 4. MST with respect to total inter-arrival rate and the number of M/M/1 

mapper nodes for fair job scheduler. 

Assume that we have the same number (10) of low-
performance (service time        ) and high-performance 
(    ) mapper nodes in a cluster. The simulation results 
plotted in Figure 5 are based on CSIM (a queueing system 
simulator [33]) implementation of these heterogeneous mapper 
nodes with the fair job scheduler. They show that the 
throughput of the different type nodes in the cluster remains 
almost the same, but the other parameters like utilization, 
queue length and response time change based on the inter-
arrival time to the system and service time of mapper nodes. 
Next, we define a metric that can be used to mathematically 
compare the performance of the different types of  schedulers. 
We start by giving the definition of the optimal MST. 

 
Fig. 5. The mean value of important parameters of a heterogeneous 

datacenter with the fair job scheduler. 

Definition 3 (Optimal mapping based on MST): Optimal 
mapping for known number of mapper nodes (  ) finds the 
optimal values of the mean task inter-arrival rates 
(           

) which make MST minimum. The constraint is 

the mean job inter-arrival rate to the system ( ). The service 
rate of each mapper node is assumed to have a known 
distribution with the mean of   . In mathematical terms, we 
have: 

   
 

(   )     
 

∫   
 

  
(∏     

( )
  

   
)   

 

 



        ∑   
  
       [           

]
 




where     
( ) is CDF of response time of the     mapper node 

as a function of    and   . 

The optimal solution of the mapping problem is derived by 
using the Lagrange Multipliers method and solving the 
following set of non-linear equations: 

    (     (  ∑   
  
   ))    

where     ( ) is the multi-dimensional gradient operator with 

respect to   and  . We now give the following definition as a 
property for having optimal MST. 

Definition 4 (Equilibrium Property): To optimize the 
mapping of the tasks, the set of non-linear equations derived 
from Eq.15 have the Equilibrium Property (EP) with the linear 

constraint   ∑   
  
   . Solving the set of non-linear equations 

gives the optimal solution for  . The equilibrium property can 
be expressed as: 

    

   

 
    

   

   
    

    

  

The above property cannot be easily solved or practically 
used to optimize a MapReduce job scheduling. It is an Nm-
dimensional non-linear optimization problem with a linear 
constraint. Also, the following Lemmas handle certain special 
cases where Eq.9 can be easily solved and then used. 

Lemma 5: Given Def.2-4 for D/D/1 mapper nodes (   
    ), equilibrium property can be expressed as follows: 

  

  

 
  

  

   
   

   

  

We call the above property as the deterministic equilibrium 
property (D-EP), and the optimal solution for   s is: 
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∑   
  
   

          

And, the “no bottleneck node necessary” condition is: 

  
    

    

∑   

  

   
  

Proof: Eq.17 can be derived by making the deterministic 
response times of all mapper nodes equal, and using: 

  

  

 
  

  

   
   

   

 
∑   

  
   

 
 

Eq.18 is deduced, also           will give Eq.19. □ 

Fair queue, shortest queue first or μ-proportional scheduling 
make queue length equal and are the same as the pure-
deterministic scheduling in Eq.17 as we have: 

           
 

  

    

   
   

     

            




Considering          , i.e., the offset of the delayed 
exponential response time has a linear relationship with      , 
we can say that the pure-deterministic scheduling and the 
shortest queue first scheduling are equivalent. This is because 
we have: 

  

  

 
  

  

   
   

   

            
  

Figure 6 plots the MST of the pure-deterministic scheduler 
with respect to the total inter-arrival rate and the number of 
M/M/1 heterogeneous mapper nodes. The MST growth given 
by the total inter-arrival rate is homographic versus MST 
growth given by the number of mapper nodes is   (  ( )) . 
Comparing Figure 4 with Figure 6, we can find that the pure-
deterministic scheduler has a lower MST with respect to the 
fair job scheduler.  

 
Fig. 6. MST with respect to the total inter-arrival rate and the number of 
M/M/1 mapper nodes for the pure-deterministic scheduler. 

Figure 7 shows the simulation results of CSIM for 
heterogeneous mapper nodes with the pure-deterministic 
scheduler where only the utilization of the different type nodes 

is equal but all other parameters like response time are 
different, and it still makes the total delay higher. 

 
Fig. 7. Mean values of important parameters of a heterogeneous datacenter 

with the pure-deterministic scheduler. 

Lemma 6: Given Def.2-4 for M/M/1 mapper nodes (   
    ), the equilibrium property would be as follows: 

                 
    

  

We call above property as stochastic equilibrium property 
(S-EP), and the optimal   s are: 

      
  ∑   

  
   

  

          

Without having bottleneck system as the inequality    
∑   

  
   , there is no bottleneck node necessary condition for any 

mapper node, but we may have negative values for   , i.e., 
some jobs should be migrated from slow node (  ) to other 
nodes. Then no negative    necessary condition is: 

∑ (       )
  

   
    

See the proof in [29]. 

Q-proportional scheduling and pure-stochastic scheduling 
are alike, because: 

  

  

 
  

  

   
   

   

 
  

  

  

  
  

  

 
  

  

  

  
  

  

   
   

   

   

  
   

   

 

   (  
  

  

)    (  
  

  

)       
(  

   

   

) 

   (     )      (   
    

) 



Figure 8 plots the MST of the pure-stochastic scheduler 
with respect to the total inter-arrival rate and the number of 
M/M/1 (heterogeneous) mapper nodes. The MST growth trend 
is similar to that of the other scheduler. Comparing Figure 8 
with Figures 4 and 6, one can observe that the pure-stochastic 
scheduler has a lower MST, given any total inter-arrival rate 
and any number of nodes.  
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Fig. 8. MST with respect to the total inter-arrival rate and the number of 
M/M/1 mapper nodes for the pure-stochastic scheduler. 

Figure 9 plots the simulation results for heterogeneous 
mapper nodes with the pure-stochastic scheduler. In this case, 
the mean response time of all nodes are nearly equal and the 
minimum delay can be achieved for the system. 

 
Fig. 9. Mean values of important parameters of a heterogeneous datacenter 
with the pure-stochastic scheduler. 

For the M/M/1 mapper nodes, the pure-stochastic mapping 
has lower MST compared to the fair job and the pure-
deterministic mapping shown in Figure 10. The MST of the 
pure-stochastic strategy is lower than the others even for very 
low inter-arrival rates. 

Means equilibrium property (M-EP) is more suitable to be 
employed in practice. It is difficult and time-consuming to find 
the best mapping of inter-arrival time distributions to have such 
equilibrium properties. Instead of that, we can imagine to make 

first moment (mean) of response time distributions equal. The 
means equilibrium property as a lower bound [29] is: 

 {   
}   {   

}     {    
}  

Also, the derivative of means equilibrium property (DM-
EP) optimizing MST upper bound [29] can be expressed as: 

 

   
 {   }  

 

   
 {   }    

 

    

 {    
}  

 
Fig. 10. MST comparison between fair job, pure-deterministic, and pure-

stochastic schedulers. 

M-EP approximately optimizes MST and gives sub-optimal 
mean inter-arrival rates ( ) by making first moment of response 
times equal. The only degrees of freedom are mean inter-arrival 
rates ( ), so in approximate approach we can only make M-EP 
not the other higher moments absolutely equal. This 
approximation is correct when the other moments of the 
response time of mapper nodes are negligible or the deviation 
is insignificant i.e. practically there is no bottleneck node in the 
system. In fact the gap between optimal solution and this 
approximate solution is insignificant.  

In the following graphs (Figures 11a-11d), we use our 
delayed exponential model of map phase for CPU-bound job 
(when    is big or deterministic coefficient     ) and 
memory-bound job (when    is small or    ). The graphs 
show the comparison between different schedulers as 
mentioned before with respect to total mean inter-arrival rate 
and number of heterogeneous mapper nodes.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 11. MST comparison of different schedulers with respect to total inter-arrival rate  for (a) memory-bound job (   ), (b) CPU-bound job (     ), (c) 
memory-bound job (   ), and (d) CPU-bound job (     ). 
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(a) 

 
(b) 

 
(c) 

Fig. 12. Comparison of different schedulers’ parameters. 

When the target MapReduce job is memory-bound or has 
random memory access, it is more stochastic and the 
deterministic coefficient for this type of job is close to zero. For 
memory-bound jobs, optimal scheduler that tries to find   s 
minimizing MST is nearly coincident with pure-stochastic, M-
EP and DM-EP schedulers. For CPU-bound jobs, optimal 
scheduler is nearly coincident with pure-deterministic and M-
EP schedulers. As a result, M-EP is a good approximation of 
optimal solution in this model. Some schedulers sometimes 
outperform optimal scheduler, because they output negative    
but optimal scheduler always gives positive not-migratory   , 
but in non-negative regions optimal scheduler always 
outperforms the others. 

When the input job is CPU-bound, the pure-stochastic 
scheduler cannot track the optimal response time well. Figure 
12 (a,b,c) indicates that the pure-stochastic scheduler cannot 
make all nodes’ response time completely equal, and the other 
schedulers’ deviation is higher. Since MST is a function of the 
slowest node, M-EP is near to the pure-stochastic in this case. 

VI. CONCLUDING REMARKS 

Targeting MapReduce applications, in this paper, the 
service rate of mapper nodes as a single queue has been 
modeled with the delayed exponential distribution, and also it 
has been shown that their response time has a similar behavior. 
Using this analytical result, next, the map phase of a single-
pass MapReduce job has been modeled and we have 
formulated the mean sojourn time (MST) at a reducer node by 
means of task inter-arrival rates and service rates of mapper 
nodes. MST is a potential metric for optimizing end-to-end 
delay in MapReduce framework. Based on different types of 
inter-arrivals and service rates, the MST parameter has been 
optimized and equilibrium property was investigated for many 
cases. To realize the minimum map phase delay in a 
heterogeneous datacenter, we have also investigated different 
types of schedulers. 
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