
CAGE: A Contention-Aware Game-theoretic Model
for Heterogeneous Resource Assignment

Diman Zad Tootaghaj, Farshid Farhat
The Pennsylvania State University
{dxz149, fuf111}@cse.psu.edu

Abstract—Traditional resource management systems rely on a
centralized approach to manage users running on each resource.
The centralized resource management system is not scalable for
large-scale servers as the number of users running on shared
resources is increasing dramatically and the centralized manager
may not have enough information about applications’ need. In
this paper we propose a distributed game-theoretic resource
management approach using market auction mechanism to find
optimal strategy in a resource competition game. The applications
learn through repeated interactions to choose their action on
choosing the shared resources. Specifically, we look into two case
studies of cache competition game and main processor and co-
processor congestion game. We enforce costs for each resource
and derive bidding strategy. Accurate evaluation of the proposed
approach show that our distributed allocation is scalable and
outperforms the static and traditional approaches.

Index Terms—Game Theory; Contention; Resource sharing

I. INTRODUCTION

The number of cores on chip multiporcessors (CMP) is
increasing each year and it is believed that only many-core
architectures can handle the massive parallel applications.
Server-side CMPs usually have more than 16 cores and
potentially more than hundreds of applications can run on each
server. These systems are going to be the future generation
of the multi-core processor servers. Applications running on
these systems share the same resources like last level cache
(LLC), interconnection network, memory controllers, off-chip
memories, auxiliary processing capability like co-processors
etc. Along with rapid growth of core integration, the per-
formance of applications highly depend on the allocation of
resources and specially the contention for shared resources
[1, 2, 3, 4, 5, 6]. In particular, as the number of co-runners
running on the shared resource increase, the magnitude of
performance degradation increases. As a result, this new
architectural paradigm introduces several new challenges in
terms of scalability of resource management and assignment
on these large-scale servers. Therefore, a scalable competition
method between applications to reach the optimal assignment
can significantly improve the performance of co-runners on a
shared resource. Figure 1 shows an example of performance
degradation for 10 spec 2006 applications running on a shared
10MB LLC and solo run on 1MB LLC. Recently, many pro-
posals target partitioning the cache space between applications
such that (1) each application gets the minimum required
space, so that per-application performance is guaranteed to
be at an acceptable level, (2) system performance is improved

 0

 0.5

 1

 1.5

 2

 2.5

 3

m
cf

bzip2

gcc
stream

bw
aves

m
ilc

hm
m

er

om
netpp

libquantum

astar

IP
C

Shared (IPC) Solo (IPC) Slow Down

Fig. 1: Performance degradation of 10 different spec 2006
applications sharing LLC.

by deciding how the remaining space should be allocated to
each one. Prior schemes are marching towards these two goals,
usually by trading off the system complexity and maximum
system utilization. It is shown that neither a pure private LLC,
nor a pure shared LLC, can provide optimal performance for
different workloads [4]. In general Prior schemes have the
following three challanges:

1. Scalability: All of the prior schemes suffer from scalabil-
ity; especially when the approach is tracking the application’s
dynamism [7].

2. Static-based: Most of the prior works, use static co-
scheduling to degrade slow-down of co-running applications
on the same shared cache. However, static-based approaches
can not catch dynamic behavior of applications.

3. Fairness: Defining a single parameter for fairness is
challenging for multiple applications, since applications have
different performance benefits from each resource during each
phase. In prior works fairness has been defined as a unique
metric (eg. IPC, Power, Weighted Speed-up) for all applica-
tions. Therefore, in current approaches, the optimization goal
of algorithms is the same for all applications. Consequently,
we cannot sum up applications that desire different metrics in
the same platform to decide on.

In this paper, we present a distributed heterogeneous
resource assignment method to address all the above short-
comings including scalability, dynamism and fairness, while
applications can get their desired performance based on their
utility functions.

II. CAGE: A MARKET-BASED CONTENTION-AWARE
GAME-THEORETIC RESOURCE ASSIGNMENT

Game theory has been used extensively in economics, politi-
cal and mathematical decision making situations [8, 9, 10, 11].

Auction games are a class of games which has been used to
formulate real world problems of assigning different resources
between n users. Auction game framework can model resource
competition, where the payoff (cost) of each application in
the system is a function of the contention level (number of
applications) in the game.

Inspired by nature predator-prey interactions in real life
games, there exists a repeated interaction between competitors
in a resource sharing game. We show that, assuming large
number of applications the service rate of each application
on each resource converges to each other. Furthermore, we
show that the auction model is strategy-proof, such that no
application can get more utilization by bidding more or less
than the true value of the resource.

A. Model Description

Consider n applications and i instances of m different
resources. Applications arrive in the system one at a time. The
applications have to choose among m resources. There exists
a bipartite graph between the matching of the applications and
the resources.

We formulate our problem as an auction based mechanism
to enforce cost/value updates for each resource as follows:

• Valuation vi,m : Any application has a valuation function
which shows how much he benefits from ith resource.
The valuation function at time t = 0 for cache contention
case study is derived from the IPC (instruction per cycle)
curves which is found using profiling, and for processor
and co-processor contention case study is derived from
the profiling solo performance metric of the application.
However, in general, each application can choose its own
utility function.

• Observed information: The observed information at
each time step is the performance value of the selected
action in the game. Therefore, the applications repeatedly
update the history of their valuation function over time.

• Belief updating: At each iteration step of the auction,
the applications update their valuation of each resource
based on the observed performance on each resource. The
update at time T is derived using the following formula:

vi,m(T) =

T∑
t=0

δT−tvi,m(t)

T∑
t=0

δT−t
(1)

Where vi,m(t) shows the observed valuation of resource
m at time step t by user i in the system; δ shows the
discount factor between 0 and 1 which shows how much
a user relies on its past observations in the system. The
discount factor is chosen to show the dynamics in the
system. If the observed information in the system changes
fast, the discount factor is nearly zero which means
that we can’t rely on the past observations very much.
However if the system is more stable and the observed

information does not change fast, the discount factor is
chosen to be near 1. We choose the discount factor as
the absolute value of the correlation coefficient of the
observed values of the valuations at each iteration step
which is calculated as follows:

δ =
E(vi,m)2

σvi,m
2

(2)

• Action: At each time step the applications decides which
resource to bid and how much to bid for each resource.

B. Distributed Optimization Scheme

The goal is to design a repeated auction mechanism which
is run by the operating system to guide the applications
to choose their best resource allocation strategy. The
applications’ goal is to maximize their own performance and
the operating system wants to maximize the total utility it
gains from the applications. Then, each application can use
its own utility function and evaluates the resources based on
how much it likes that particular resource.

Applications’ approach: The application i want to
maximize the total utility with respect to a limited budget for
all phase p of its execution time.

∀i ∈ U maximize

Pi∑
p=1

M∑
m=1

vi,m,p − bi,m,p,

subject to

Pi∑
p=1

M∑
m=1

bi,m,p ≤ Bi. (3)

OS’s approach: The operating system wants to maximize
the social welfare function which is translated into submitted
bids from the applications in a limited resource constraints.

maximize

N∑
i=1

Pi∑
p=1

M∑
m=1

bi,m,pAi,m,p,

subject to

N∑
i=1

M∑
m=1

Ai,m,p ≤ Amax, ∀p ∈ P,

Ai,m,p ∈ {0, 1}, ∀i ∈ U, ∀m ∈ V, ∀p ∈ P. (4)

Definition 1: A strategy profile a is a pure Nash equilibrium
if for every application i and every strategy a′i 6= ai ∈ A we
have ui(ai, a−i) ≥ ui(a′i, a−i)

Theorem 1: Suppose n risk-neutral applications whose
valuations are derived uniformly and independently from the
interval [0, 1] compete for one resource which can be assigned
to m application who have the highest bid in the auction. We
will show that Bayes Nash equilibrium bidding strategy for
each application in the system is to bid n−m

n−m+1vi whre vi is
the profit of application i for getting the specified resource.

Theorem 1, states that whenever there is a single resource that
users compete to get it with different valuation functions, the
Nash equilibrium strategy profile for risk-neutral users is to

Algorithm 1: CAGE: Parallel Auction for heterogeneous
resource assignment.

Input: A bipartite Graph (U, V, E).
Output: The allocation of resources to applications.

1 At t=0 the valuation of each application for each
resource is derived using profiling while running alone.

2 For each application Ui ∈ U , the first bottleneck resource
is

Bottleneck1,i = Vi,m = arg max
m∈V

(vi,m − pm)

Next, find the second bottleneck resource for each
applications Ui ∈ U in the system:

Bottleneck2,i = Vi,k = arg max
k∈V,k 6=m

(vi,k − pk)

3 Each application submits the bid for its first bottleneck
resource using the following formula:

bi,m = Vm − Vk + pj + ε

Each resource Vj ∈ V , which can be shared between m
applications, is assigned to the m highest bidding
applications Winnerj = i1, i2, ..., im and the price for
that resource is updated as follows:

pj = arg max
i1,i2,...,im∈U

m∑
k=1

(bik,j)

4 The minBid for each resource is updated as the
minimum bid of m applications who acquired the
resource. That is

minBid = arg min
i∈Winnerj

(bi,j)

bid n−m
n−m+1vi. This term tends to the true value of the object

when n is a large number.
In case of more than one resource competition we derive

Algorithm 1 and will prove that it is Nash equilibrium in the
game. The algorithm is inspired by work of Bertsekas [12]
that uses an auction for network flow problems.

In the first step, all valuations are set to the solo-run of appli-
cation’s performance. Next, each application submits a bid for
its first bottleneck resource. The bid should be larger than the
price of the object which is intitialized to zero in the begining
of the program. The applications only have incentive to bid
a value no more than the difference of the first bottleneck
and second bottleneck resource. Otherwise, it would submit a
smaller bid to the second bottleneck and get the same revenue
as paying more for the first bottleneck resource. In order
to break the equal valuation function between two different
applications, we use ε scaling such that at each iteration of
the auction the prices should increase by a small number.

III. CASE STUDIES

A. CPU Scale-up Scale-out Game

The experiment results of this section are run on Stampede
cluster of Texas Advanced Computing Center. We executed
MiniGhost application which is a part of Mantevo project
[13] which uses difference stencils to solve partial differential
equations using numerical methods. The applications use the
profiling utility functions at t = 0 and during course of
execution can update the utility function based on the observed
performance on each core using Equation 1. Then, they can
revisit their previous action on running the code on either the
processor or co-processor during run-time.

Figure 2 shows the total execution time with respect to
congestion we made in Xeon and Xeon Phi. In this experiment
we ran the same problem size on a Xeon and Xeon Phi machine
multiple times, so that we could see the effect of load on
the total execution time of our application. It was observed
that with the same number of threads Xeon’s performance
degrades more than Xeon phi. Furthermore, it is shown
that CAGE can bring in up to 106.6% improvement in total
execution time of applications compared to static approach
when the number of co-runners is six. The performance
improvement would be significant when the number of co-
runners increase. Figure 3 shows the performance comparison
of CAGE and static approach which does not consider the
congestion dynamism in the system and the decision is only
made based on the parallelism level in the code.

 0
 2
 4
 6
 8
 10
 12
 14
 16

1 2 3 4 5 6

E
x
e
c
u
t
i
o
n

t
i
m
e

(
s
)

Load (#of tasks)

Xeon Phi Xeon

Fig. 2: Congestion effect on Xeon and Xeon Phi machines.

 0
 1
 2
 3
 4
 5
 6
 7
 8

1 2 3 4 5 6

E
x
e
c
u
t
i
o
n

t
i
m
e

(
s
)

Number of applications

Static CAGE

Fig. 3: Performance comparison of congestion-aware schedule
versus static schedule.

B. A Case Study of Private and shared cache game

We use Gem5 full system simulator in our experiment
[14, 15]. Table I shows the experimental setup in our experi-
ments.

128 K 128 K 128 K 128 K 128 K 128 K 128 K 128 K 128 K 128 K 128 K 128 K 128 K 128 K 128 K 128 K

256 k256 k256 k256 k256 k256 k256 k256 k

512 k512 k512 k512 k

1 M1 M

2 M

Fig. 4: Our proposed last level cache hierarchy model.

TABLE I: Experimental Setup.

Processors Single threaded with private L1 in-
struction and data caches

Frequency 1GHz
L1 Private ICache 32 kB, 64-byte lines, 4-way associa-

tive
L1 Private DCache 32 kB, 64-byte lines, 4-way associa-

tive
L2 Shared Cache 128 kb-2 MB, 64-byte lines, 16-way

associative
RAM 12 GB

 0.9
 0.95

 1
 1.05
 1.1

 1.15
 1.2

 1.25
 1.3

M
ix-01

M
ix-02

M
ix-03

M
ix-04

M
ix-05

M
ix-06

M
ix-07

M
ix-08

M
ix-09

M
ix-10

Th
ro

ug
hp

ut
 n

or
m

al
iz

ed
 to

 s
ha

re
d

LL
C

Shared Solo CAGE

Fig. 5: Throughput of a shared, solo and CAGE cache alloca-
tion schemes.

To evaluate the performance of our proposed approach we
use utility functions for different number of ways based on the
applications’ IPC for each cached size. These utility functions
used at the start of the execution are found using either
profiling techniques or stack distance profile [3] of applications
assuming there is no co-runners in the system. Next, during
run-time the applications can update their utility functions
based on Equation 1. Therefore, there is a learning phase
where applications learn about the state of the system and
update the utilities accordingly.

Next, we use different mixes of 4 to 16 applications
from Spec 2006 to evaluate the performance of our proposed
approach. Figure 5 shows the normalized throughput of 10
different mix of applications using CAGE, equal private cache
partitions and completely shared cache space. Figure 6 shows
the scalability of our proposed algorithm. When the number
of co-runners increases from 2 to 16, the performance im-
proves from 12.4% to 33.6% without any need to track each
applications’ performance in a central hardware.

IV. CONCLUSION

The paper proposes a distributed resource allocation mech-
anism for large scale servers. The traditional resource man-
agement system are not scalable, especially when tracking
the application’s dynamic behavior. The main cause of this

 0

 10

 20

 30

 40

 50

2-apps 4-apps 6-apps 8-apps 10-apps 12-apps 14-apps 16-apps

P
er

fo
rm

an
ce

 i
m

p
ro

v
em

en
t[

%
]

CAGE Confidence Interval

Fig. 6: Performance improvement of CAGE for different
number of applications with respect to shared LLC for the
case study of cache congestion game.

complexity is the centralized decision making which leads to
higher time and space complexity. With increasing number of
cores per chip, the scalability of assigning different resources
to different applications becomes more challenging in future
generation CMP systems. In addition, diversity in application’s
need make a single objective function inefficient to get an
optimal and fair performance metric.

We introduce a framework to map the allocation problem to
the known auction economy model where the application get
virtual money and based on the utility metric they compete
for the shared resource.

REFERENCES

[1] L. Tang et al. The impact of memory subsystem resource
sharing on datacenter applications. In Computer Architecture
(ISCA), 2011 38th Annual International Symposium on, 2011.

[2] S. Zhuravlev et al. Addressing shared resource contention
in multicore processors via scheduling. In ACM SIGARCH
Computer Architecture News. ACM, 2010.

[3] S. Kim et al. Fair cache sharing and partitioning in a chip
multiprocessor architecture. In Proceedings of the 13th Inter-
national Conference on Parallel Architectures and Compilation
Techniques. IEEE Computer Society, 2004.

[4] S. Cho et al. Managing distributed, shared l2 caches through
os-level page allocation. In MICRO, 2006.

[5] F. Farhat et al. Stochastic modeling and optimization of
stragglers. IEEE Transactions on Cloud Computing, 2016.

[6] D. Z. Tootaghaj et al. Optimal placement of cores, caches
and memory controllers in network on-chip. arXiv preprint
arXiv:1607.04298, 2016.

[7] M. K. Qureshi et al. Utility-based cache partitioning: A low-
overhead, high-performance, runtime mechanism to partition
shared caches. In MICRO. IEEE Computer Society, 2006.

[8] D. Z. Tootaghaj et al. Game-theoretic approach to mitigate
packet dropping in wireless ad-hoc networks. In IEEE CCNC,
2011.

[9] Kotobi et al. Spectrum sharing via hybrid cognitive players
evaluated by an m/d/1 queuing model. EURASIP Journal on
Wireless Communications and Networking, 2017.

[10] K. Kotobi et al. Introduction of vigilante players in cognitive
networks with moving greedy players. In Vehicular Technology
Conference (VTC Fall). IEEE, 2015.

[11] D. Z. Tootaghaj et al. Risk of attack coefficient effect on
availability of ad-hoc networks. In IEEE CCNC, 2011.

[12] D. P. Bertsekas. Network Optimization: continuous and discrete
methods. Athena Scientific, 1998.

[13] http:/manetovo.org.
[14] N. Binkert et al. The gem5 simulator. ACM SIGARCH

Computer Architecture News, 2011.
[15] http://gem5.org/.

