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Abstract—As the number of resources on chip multiprocessors
(CMPs) increases, the complexity of how to best allocate these
resources increases drastically. Because the higher number of ap-
plications makes the interaction and impacts of various resource
levels more complex. Also, the selection of the objective function
to define what “best” means for all applications is challenging.
Memory-level parallelism (MLP)-aware algorithms in CMPs
try to maximize the overall system performance or equalize
each application’s performance degradation due to sharing.
However, depending on the selected “performance” metric, these
algorithms are not efficiently implemented for all applications,
because these centralized approaches mostly need some further
information regarding applications’ need. In this paper, we
propose a contention-aware game-theoretic resource management
approach (CARMA) using market auction mechanism to find an
optimal strategy for each application in a resource competition
game. The applications learn through repeated interactions to
choose their action on choosing the shared resources. Specifically,
we consider two cases: (i) cache competition game, and (ii) main
processor and co-processor congestion game. We enforce costs for
each resource and derive bidding strategy. Accurate evaluation
of the proposed approach shows that our distributed allocation is
scalable and outperforms the traditional and current approaches.

Index Terms—Auction Theory, Computer Architecture,
Resource Management.

I. INTRODUCTION

THE number of cores on chip multiprocessors (CMP) is
increasing each year and it is believed that only many-

core architectures can handle the massive parallel applications.
Server-side CMPs usually have more than 16 cores and
potentially more than hundreds of applications can run on each
server. These systems are going to be the future generation
of the multi-core processor servers. Applications running on
these systems share the same resources like last level cache
(LLC), interconnection network, memory controllers, off-chip
memories or co-processors where the higher number of appli-
cations makes the interaction and impacts of various resource
levels more complex. Along with the rapid growth of core
integration, the performance of applications highly depend on
the allocation of the resources and especially the contention
for shared resources [1–11]. In particular, as the number of co-
runners running on a shared resource increases, the magnitude
of performance degradation increases. Also, the selection of
the objective function to define what “best” means for all
applications is challenging or even theoretically impossible to
improve IPC of one application and memory latency of another
application simultaneously in a system. As a result, this new
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Fig. 1: Performance degradation of 10 different spec 2006
applications sharing LLC.

architectural paradigm introduces several new challenges in
terms of scalability of resource management and assignment
on these large-scale servers. Therefore, a scalable competition
method between applications to reach the optimal assignment
can significantly improve the performance of co-runners on a
shared resource. Figure 1 shows an example of performance
degradation for 10 spec 2006 applications when running on
a shared 10MB LLC (Shared), or when running on a private
1MB LLC (Separate).

Among these shared resources, sharing CPUs and LLCs
plays an important role in overall CMP utilization and per-
formance. Modern CMPs are moving towards heterogeneous
architecture designs where one can get advantage of both small
number of high performance CPUs or higher number of low
performance cores. The advent Intel Xeon Phi co-processors
is an example of such heterogeneous architectures that during
run-time the programmer can decide to run any part of the code
on small number of Xeon processors or higher number of Xeon
Phi co-processors. Therefore, the burden of making decisions
on getting the shared resources is moving towards the applica-
tions. In addition to the shared CPUs, shared LLC keeps data
on chip and reduces off-chip communication costs [12]. Some-
times an application may flood on a cache and occupy a large
portion of available memory and hurt performance of another
application which rarely loads on memory, but its accesses
are usually latency-sensitive. Recently, many proposals target
partitioning the cache space between applications such that (1)
each application gets the minimum required space, so that per-
application performance is guaranteed to be at an acceptable
level, (2) system performance is improved by deciding how
the remaining space should be allocated to each one.

Prior schemes [3, 12–17] are marching towards these two
goals, usually by trading off the system complexity and maxi-
mum system utilization. It is shown that neither a pure private
LLC, nor a pure shared LLC, can provide optimal performance
for different workloads [6]. In general, cache partitioning tech-
niques can be divided into way partitioning and co-scheduling
techniques. In a set-associative cache, partitioning is done by
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per-way allocation. For example, in a 4-way 512KB shared
cache allocating 128KB to application A means to allow it
storing data blocks in only one way per-set, without accessing
remaining. Co-scheduling techniques try to co-schedule a
set of applications with lowest interference together at the
same time such that the magnitude of slow-down for each
application is the same or a performance metric is optimized
for all applications. However, it is shown that, depending
on the objective function for the performance metric, cache
allocation can result in totally different allocations [4]. In
general Prior schemes have the following three limitations:

1. Scalability: All of the prior schemes suffer from scalabil-
ity; especially when the approach is tracking the application’s
dynamism [3, 13, 17]. The reason is that algorithm complexity
becomes higher in dynamic approaches. The root cause of
this complexity is that all previous techniques make decisions
(cache partitioning, co-scheduling) centralized using a central
hardware or software. For example, main algorithm of [13] has
exponential complexity O(

(
N+K−1
K−1

)
) where N is the number

of applications sharing LLC and K is the number of ways.
Table I shows the state of the art cache partitioning algorithms
and their complexity of checking performance of different
permutations.

2. Static-based: Most of the prior works, use static co-
scheduling to degrade slow-down of co-running applications
on the same shared cache. However, static-based approaches
cannot catch dynamic behavior of applications. Figure 2 shows
an example of two applications’ IPC (hmmer and mcf ) from
Spec 2006 under different LLC sizes. Let us consider a case
where we have two cache sizes, a large cache of 1MB which
can be shared between applications, and two private caches
of 512KB which are not shared. The two applications are
competing for the cache space. Suppose that both applications
have two phases (0, T ) and (T, 2T ). If the first application
gets the larger cache space its IPC increases by 35 percent
in the first phase and by 20.6 percent in the second phase.
The second application’s IPC increases by 15 percent in the
first phase and by 36.84 percent in the second phase if it gets
the larger cache space. In a static-based scheduling approach,
the larger LLC is always allocated to the first application with
higher IPC in the time interval (0, 2T ), but in CARMA, the
applications compete for the shared resources, and in the first
phase, the larger LLC is allocated to the first application and
in the second phase CARMA allocates the larger LLC to the
second application. Therefore, static-based approaches cannot
capture the dynamism in application’s behavior and ultimately
degrade the performance significantly.

3. Fairness: Defining a single parameter for fairness is
challenging for multiple applications, since applications have
different performance benefits from each resource during each
phase. In prior works fairness has been defined as a unique
metric (eg. IPC, Power, Weighted Speed-up) for all applica-
tions. Therefore, in current approaches, the optimization goal
of algorithms is the same for all applications. Consequently,
we cannot sum up applications that desire different metrics in
the same platform to decide on. However, if one application
needs better IPC and another requires lower energy, the
previous algorithms are not able to model it. The only way

TABLE I: Complexity comparison of state-of-the-art LLC
partitioning/co-scheduling algorithms.

Algorithm Search Space
Utility-based main algorithm [13]

(N+K−1
N−1

)
Greedy Co-scheduling [17]
N applications and N/K caches

(N
K

)
Hierarchical perfect matching [17]
N applications N4

Local optimization [17]
N applications and N/K caches (N/K)2

(2K
K

)
CARMA
N applications and K resources O(NK)

to address diversity of metrics (to be optimized) is to have an
appropriate translation between different metrics (eg. IPC to
Power) that is not trivial, while not addressed in prior study.

In this paper, we present a game-theoretic resource assign-
ment method to address all the above shortcomings including
scalability, dynamism and fairness, while applications can get
their desired performance based on their utility functions.

1. Semi-Decentralized: Dual of each centralized problem is
decentralized, if the optimization goal is broken into a smaller
meaningful sub-problems. In the context of heterogeneous
resource assignment this is straightforward. The profiling,
analyzing and evaluating the demands are on application side,
but the final decision on assigning the resources to applications
based on the applications’ bids is easily performed by the OS
while they compete with each other for the best assignment.
Like a capitalist system, the complexity of the governing
transfers to the independent entities, and the government just
make the policies and the final decisions. To achieve this, we
introduce a novel market-based approach. Roughly speaking,
the complexity of our approach in worst case scenario (for
each application) is O(NK) where N is the number of the
applications and K is the number of available resources.
However, on average the auction terminates in less than N/2
iterations.

2. Dynamic: In order to confront the scalability problem
of previous approaches, we use a market-based approach
to move the decision making to the individual applications.
Iterative auctions have been designed to solve non-trivial
resource allocation problems with low complexity cost in
government sale of resources, eBay, real estate sales and stock
market. Similarly, decentralized computation complexity is
lower than centralized (for each application) which provides
the opportunity to make the decision revisiting the allocation
in small time quantum, or when a new application leaves or
comes into the system.

App1 27.8% App1 35%

App2 36.84%

Static approaches: 27.8% Improvement CARMA: (36.84/2+35/2)%>27.8%
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Fig. 2: Performance comparison of static and dynamic
scheduling of two applications (hmmer and mcf from Spec
2006) under two different LLC sizes.
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3. Fair: The proposed method solves the heterogeneous
resource assignment problem in the context of marketing.
Applications’ demand regardless of the global optimization
objective (IPC, Power, etc.) translates to the true valuation of
their own performance. Resource assignment to the applica-
tions with the highest bids is performed by the auctioneer (the
OS); making it local optimization objectives. Hence, resource
assignment can be performed for different applications with
different objectives known as utility functions.

Overall, the proposed approach for cache contention game
on average brings in 33.6% improvement in system perfor-
mance (when running 16 applications) compared to shared
LLC; while reaching less than 11.1% of the maximum achiev-
able performance in the best dynamic scheme. In the case
study of heterogeneous CPU assignment, it brings in 106.6%
improvement (when running 16 applications at the same time).
Also, the performance improvement increases even more as the
number of co-running applications increases in the system.

Other potentials: We introduce an auction-based resource
management approach for different applications in large-scale
competition games. In short, we as a system owner pay for
a high-end CMP system for servers and guarantee that each
application/user takes its best from the system by paying us
back, or we as an application owner bid/pay the system to
get the resources for my best performance. The auctioneer is
application-agnostic, and does not interfere with applications’
profile to globally optimize the system, but the applications
compete for their own improvement. The two case studies of
cache partitioning and CPU sharing are examples for resource
sharing and the proposed approach can be employed in other
resource partitioning algorithms.

The reminder of the paper is organized as follows. Section II
discusses the background and motivation behind this work.
In section III, we discuss our auction-based game model.
Section IV discusses the case study of cache contention
game and the case study of main processor and co-processor
contention and simulation results. Section V studies related
works and Section VI concludes the paper with a summary.

II. MOTIVATION AND BACKGROUND

A. Motivation

Different applications have different resource constraint
with respect to CPU, memory, and bandwidth usage. Having a
single resource manager for all existing resources and users in
the system result in inefficiencies since it is not scalable and
the operating system may not have enough information about
applications’ needs. For example, traditional LRU-based cache
strategy uses cache utilization as a metric to give larger cache
size to the applications which have higher utilization and lower
cache size to the applications with lower cache utilization.
However more cache utilization does not always result in bet-
ter performance. Streaming applications for example have very
high cache utilization, but very small cache reuse. In fact, the
streaming applications only need a small cache space to buffer
the streaming data. With rapid improvements in semiconductor
technology, more and more cores are being embedded into a
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Fig. 3: Phase transition in mcf with different L2 cache sizes.

single core and managing large scale application using a single
resource manager becomes more challenging.

In addition, defining a single fairness parameter for multiple
applications is non-trivial since applications have different
bottlenecks and may get different performance benefits from
each resources during each phases of their execution time.
Defining a single reasonable parameter for fairness is some-
what problematic. For instance, simple assignment algorithms
which try to equally distribute the resources between all ap-
plications ignores the fact that different applications have dif-
ferent resource constraints. As a consequence, this makes the
centralized resource management systems very inefficient in
terms of fairness as well as performance needs of applications.
We need a decentralized framework, where all applications’
performance benefit could be translated into a unique notion of
fairness and performance objective (known as utility function
in economics) and the algorithm tries to allocate resources
based on this translated notion of fairness. This translation
has been well defined in economics and marketing, where
the diversity of customer needs, makes more economically
efficient market [18]. Economists have shown that in an eco-
nomically efficient market, having diverse resource constraints
and letting the customers compete for the resources can make a
Nash equilibrium where both the applications and the resource
managers can be enriched. Furthermore, applications’ demand
changes over time. Most resource allocation schemes pre-
allocate the resources without considering the dynamism in
applications’ need and number of users sharing the same
resource over time. Therefore, applications’ performance can
degrade drastically over time. Figure 3 shows phase transitions
for instruction per cycle (IPC) of mcf application from spec
2006 over 50 billion instructions.

We try to find a game-theoretic distributed resource man-
agement approach where the shared hardware resources are
exposed to the applications and we show that by running a re-
peated auction game between different applications which are
assumed to be rational, the output of the game converges to a
balanced Nash equilibrium allocation. In addition, we compare
the convergence time of the proposed algorithm in terms of
dynamism in the system. We evaluate our model with two case
studies: 1) Private and shared last level cache problem, where
the applications have to decide if they would benefit from a
larger cache space which can potentially get more congested
or a smaller cache space which is potentially less congested. 2)
Heterogeneous processors (Intel Xeon and Xeon Phi) problem,
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where we perform experiments to show how congestion affects
the performance of different applications running on an Intel
Xeon or Xeon Phi co-processors. Depending on the amount of
congestion in the system, the application can offload the most
time consuming part of its code on the Xeon Phi co-processors
or not.

B. Background

Game theory has been used extensively in economics,
political and social decision making situations [19–26]. A
game is a situation, where the output of each player not only
depends on her own action in the game, but also on the action
of other players [27]. Auction games are a class of games
which has been used to formulate real-world problems of
assigning different resources between n users. Auction game
framework can model resource competition, where the payoff
(cost) of each application in the system is a function of the
contention level (number of applications) in the game.

Inspired by market-based interactions in real life games,
there exists a repeated interaction between competitors in a re-
source sharing game. Assuming large number of applications,
we show that the system gets to a Nash equilibrium where
all applications are happy with their resource assignment and
don’t want to change their state. Furthermore, we show that
the auction model is strategy-proof, such that no application
can get more utilization by bidding more or less than the true
value of the resource. In this paper we propose a distributed
market based approach to enforce cost on each resource in
the system and remove the complexity of resource assignment
from the central decision maker.

The traditional resource assignment is performed by the
operating system or a central hardware to assign fair amount
of resources to different applications. However, fair scheduling
is not always optimal and solving the optimization problem
of assigning m resources between n users in the system is
an integer programming which is an NP-hard problem and
finding the best assignment problem becomes computationally
infeasible. Prior works focus on designing a fair scheduling
function that maximizes all application’s benefit [28–32],
while applications might have completely different demands
and it is not possible to use the same fairness function for
all. By shifting decision making to the individual applications,
the system becomes scalable and the burden of establishing
fairness is removed from the centralized decision maker, since
individual applications have to compete for the resources they
need. Applications start by profiling the utility function for
each resource and bid for the most profitable resource. During
the course of execution time they can update their belief based
on the observed performance metrics at each round of the
auction. Updating the utility functions at each round of the
auction is based on the history of the observed performance
metrics which shows the state of the game. This state indicates
the contention on the current acquired resources. The payoff
function in each round depends on the state of the system and
on the action of other applications in the system.

1) Sequential Auction: Auction-based algorithms are used
for maximum weighted perfect matching in a bipartite graph

G = (U, V,E) [33–35]. A vertex Ui ∈ U is the application in
the auction and a vertex Vj ∈ V is interpreted as a resource.
The weight of each edge from Ui to Vj shows the utility of
getting that particular resource by Ui. The prices are initially
set to zero and will be updated during each iteration of the
auction. In sequential auctions, each resource is taken out by
the auctioneer and is sequentially auctioned to the applications,
until all the resources are sold out.

2) Parallel Auction: In a parallel auction, the applications
submit their bids for the first most profitable item. The value of
the bid at each iteration is computed based on the difference of
the highest profitable object and the second highest profitable
object. The auctioneer would assign the resources based on the
current bids. At each iteration, the valuation of each resource
is updated based on the observed information during run-time
which shows the contention on that particular resource.

III. THE METHOD

Consider n applications and i instances of m different
resources. Applications arrive in the system one at a time. The
applications have to choose among m resources. There exists
a bipartite graph between the matching of the applications and
the resources.

In general, there can be more than one application to
get a shared resource. However, each application cannot get
more than one of the available heterogeneous resources. For
example, if we have two cache spaces of size 128kB (one
way) and 256kB (two ways), each application can either get
the 128kB, or the 256kB cache space and can’t get both of
them at the same time. Furthermore, each resource Rk has a
cost pk which is defined by the applications’ bid in the auction.

Figure 4 shows our auction-based framework to support
CARMA between N applications that execute together compet-
ing for M different resources. Each application has a utility
table that shows how much performance it gets from each
M resources at each time slot. Based on the utility tables,
applications submit bids for the most profitable resource.
Based on the submitted bids, the auctioneer decides about
the resource assignment for each resource, and updates the
prices. Next, the applications who did not get any assignment
compete for the next most profitable resource based on the
updated prices repeatedly until all applications are assigned.
Figure 4 shows an example of a resource assignment and the
corresponding bipartite graph.

A. Problem Defenition

We formulate our problem as an auction to enforce
cost/value updates for each resource as follows:

• Valuation vi(t, m̃): Application i has a valuation func-
tion which shows how much it benefits from the resource
vector ~m at time t. The valuation function at time t = 0
for cache contention case study is derived from the
IPC (instruction per cycle) curves using profiling, and
for processor and co-processor contention case study is
derived from the profiling of separate cache performance
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TABLE II: Notation used in our formulations.

N Number of players or applications (fromApp1 toAppN ).
M Number of resources (from R1 to RM ).
~m A positive M × 1 vector in the resource space that shows

how much each application gets from each resource.
T Time intervals where the bidding is held
ti,j j-th phase time for i-th application during its course of

execution time.
Ti Last phase time for application i.
vi(t, ~m) The valuation function of application i for the resource

assignment ~m at time t.
vi,j(t, ~m, r) The valuation function of (application i,resource j), if we

replace the j-th resource in the resource vector m by r
δ dynamic factor that shows how much we can rely on the

past iterations.
G = (U, V,E) A bipartite graph showing the resource allocation between

the applications and the set of resources.
U The set of applications which shows the left set of nodes

in the bipartite graph G = (U, V,E).
V The set of resources which shows the right set of nodes in

the bipartite graph G = (U, V,E).
E The edges in the bipartite graph.
bi,k User i’s bid for k-th resource.
Fi The total budget (summation of bids) a user have.
Ck The total capacity of each resource.
pk The price of resource k ∈ V in the auction.
K Number of cache levels

of the application. However, in general, each application
can choose its own utility function.

• Observed information: The observed information at
each time step is the performance value of the selected
action in the game. Therefore, the applications repeatedly
update the history of their valuation function over time.

• Belief updating: Let T be the time intervals where the
bidding is held. At each iteration step of the auction, the
applications update their valuation of each resource based
on the observed performance on the resource vector. The
update at time W is derived using the following formula:

vi(W, ~m) =

∑
0≤n≤W/T

δW/T−n · vi(nT, ~m)∑
0≤n≤W/T

δW/T−n
, (1)

where vi(W, ~m) shows the observed valuation of resource

vector ~m at time W by application i in the system;
δ shows the discount factor between 0 and 1 which
shows how much a user relies on its past observations
in the system. The discount factor is chosen to show
the dynamics of the system. If the observed information
in the system changes fast, the discount factor is close
to zero, i.e. the application cannot rely on the past
observations very much. However, if the system is more
stable and the observed information does not change fast,
the discount factor is closer to 1. If a user fails in an
auction, its payoff and corresponding observed valuation
at the current time is equal to zero. So, it won’t probably
bid for the same resource vector again, since its valuation
decreases for next round. We choose the discount factor
to be the absolute value of the correlation coefficient of
the observed values of the valuations at each iteration
step which is calculated as follows:

δ =
E(vi(W, ~m))2

σvi(W,~m)
2

(2)

• Action: At each time step, the applications decide which
resource to bid and how much to bid for each resource.

Table II shows important notation used throughout the paper.
In the following sections, we describe our distributed opti-
mization scheme to solve the problem.

B. Distributed Optimization Scheme

The goal is to design a repeated auction mechanism which
runs by the operating system to guide the applications to
choose their best resource allocation strategy. The applica-
tions’ goal is to maximize their own performance and the
operating system wants to maximize the total utility gain
from the applications. Each application can use its own utility
function and evaluates the resources based on the desired value
of the resources.
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Applications’ approach: The application i wants to max-
imize the expected utility (pay-off) with respect to a limited
budget (Fi) during all phases of its execution time. We have:

∀i ∈ U maximize
∑

0<t<Ti

vi(t, ~m)− bi(t, ~m),

subject to
∑

0<t<Ti

bi(t, ~m) ≤ Fi, ∀i ∈ U. (3)

OS’s approach: The operating system wants to maximize
the social welfare function which is translated into submitted
bids from the applications in a limited resource constraints.

maximize

N∑
i=1

∑
0<t<Ti

bi(t, ~m) ·Ai(t, ~m),

subject to

N∑
i=1

Ai(t, ~m) ≤ Amax, ∀t : 0 ≤ t ≤ T,

Ai(t, ~m) ∈ {0, 1}, ∀i ∈ U, ∀~m ⊆ V, ∀t : 0 ≤ t ≤ T, (4)

where the binary variable Ai(t, ~m) represents the decision to
assign resource vector ~m to application i at time t (when
Ai(t, ~m) = 1) or not (when Ai(t, ~m) = 0); and V is the
vector space of the all resource vectors (∀~m); and Amax shows
the maximum number of the applications which can share the
resource vector ~m.

Illustrative example: As an illustrative example shown in
Figure 2, let us consider a case where we have two different
resources, a large cache of 1MB which can be shared between
applications, and two private caches of 512KB which are not
shared. The first application participates in the auctions with
35 bid at the first phase and 21 bid at the next phase. The
second application participates in the auctions with 15 bid at
the first phase and 37 bid at the next phase. The auctioneer
(OS) decides to allocate larger cache in the auctions at first
phase to the first application and at next phase to the second
application.

C. Analysis

The distributed optimization problem is hard to solve. How-
ever, in reality, the problem can split into simpler subproblems
since each application knows its bottleneck resource and would
first bid for the first bottleneck resource to maximize its utility.

We suppose all applications in the system are risk-neutral
which means they have a linear valuation of the utility func-
tion. Each risk-neutral agent wants to maximize its expected
revenue. Risk attitude behaviors are defined in [36] where the
agents can broadly be divided into risk-averse, risk-seeking
and risk neutral. Risk-averse agents prefer deterministic values
rather than risky value profits and risk-seeking applications
have a super-linear utility function and prefer risky utilities
than sure utilities. Next, we derive the Bayes Nash equilibrium
strategy profile for all agents in the system assuming risk
neutrality.

Definition 1: A strategy profile a is a pure Nash equilibrium
if for every application i and every strategy a′i 6= ai ∈ A we
have ui(ai, a−i) ≥ ui(a′i, a−i)

Algorithm 1: Parallel Auction for Heterogeneous Re-
source Assignment
Input: A bipartite Graph (U, V, E).
Output: The allocation of resources to applications.

1 The initial resource vector for each application is the
average amount across various resources. At time
t = nT , the valuation of each application for each
resource vector is updated using Eq. 1.

2 For application Ui ∈ U , the first bottleneck resource is

Vi,jmax
1

= max
1≤j1≤M

∆vi,j1(t, ~m, rj1)− pj1

where the differential valuation function is
∆vi,j(t, ~m, rj) = vi,j(t, ~m, rj)− vi(t, ~m).

3 Find the second bottleneck resource for application
Ui ∈ U in the system:

Vi,jmax
2

= max
1≤j2≤M ;j2 6=j1

∆vi,j2(t, ~m, rj2)− pj2

4 Each application calculates the partial bid for its first
bottleneck resource using the following formula:

bi,jmax
1

(t) = Vi,jmax
1
− Vi,jmax

2
+ pjmax

1
+ ε

5 Each resource rj ∈ V which can be shared between L
applications, is assigned to the L highest bidding
applications Winneri,j = {i1, i2, ..., iL} and the price
for that resource is updated as follows:

pj = max
l∈{1,...,L}

bil,j

6 The minBid for each resource is updated as the
minimum bid of l applications who acquired j-th
resource. That is:

Bminj = min
il∈Winneri,j

bil,j

7 Goto step 2 until all partial bids for all resources are
determined.

8 The total bid of the application i is as follows:

bi(t, ~m) = bi(t, [rj1 ; rj2 ; ...; rjM ]) =

M∑
j=1

bi,j(t)

where iteratively ~m = [rj1 ; rj2 ; ...; rjM ].
9 Find the estimated investment Ii(t) using Algorithm 2 to

plan the upper bound of the investment with respect to
the budget Fi. If Ii(t) ≥ bi(t, ~m), application i will
participate in this auction at time t, otherwise it quits
and other applications do the steps 2 and 3.

Theorem 1: Suppose n risk-neutral applications whose
valuations are derived uniformly and independently from the
interval [0, 1] compete for one resource which can be assigned
to m applications who have the highest bid in the auction. We
will show that Bayes Nash equilibrium bidding strategy for
each application in the system is to bid n−m

n−m+1vi where vi is
the profit of application i for getting the specified resource.
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Algorithm 2: Budget Planning
Input: A bipartite Graph (U, V, E).
Output: Participation (YES) in an auction or Quit (NO).

1 At time t = nT , assume that we have the same state in
terms of resources.

2 For application Ui ∈ U , we similarly run the steps 2, 3,
4, 5 and 6 of Algorithm 1 to find all estimated bids in
next rounds based on its various phases. We have:

bi(ti,j , ~m) =

M∑
j=1

bi,j(t);∀ti,j > t

Also, we have the previous bids of the application i:

bi(ti,j , ~m); ∀ti,j < t

3 If Fi ≥
∑
∀ti,j 6=t

bi(ti,j , ~m), then YES and the application

will participate in the auction. Otherwise NO, and the
application will update the zero valuation for current
round using Eq. 1.

Theorem 1, states that whenever there is a single resource
that users compete to get it with different valuation functions,
the Nash equilibrium strategy profile for risk-neutral users is
to bid n−m

n−m+1vi. This term tends to the true value of the object
when n is a large number.

In case of more than one resource competition we derive
Algorithm 1 for heterogeneous resource assignment and will
prove that it has a Nash equilibrium in the game. Algorithm 1
uses Algorithm 2 to do budget planning for our purpose. In the
first step, all valuations are set to the solo-run of application’s
performance. Next, each application submits a partial bid for
its first bottleneck resource. The partial bid should be larger
than the price of the object which is initialized to zero at
the beginning of the program. The applications only have the
incentive to bid a value that is no more than the difference
between the first and second bottleneck resource. Otherwise,
it submits a smaller bid to the second bottleneck and gets the
same revenue as paying more for the first bottleneck resource.
In order to break the equal valuation function between two
different applications, we use ε scaling such that at each
iteration of the auction the prices should increase by a small
number. The OS will set the resources’ price with these partial
bids, and find the minimum of the highest partial bids for
each resource. The applications recurse for all the resources,
and the total bid is the summation of the partial bids for
each application. Then, the applications execute Algorithm 2
to participate in the auction or not. Finally the participated
applications with the bids higher than Bminj will get j-th
resource.

The overhead of the auction for the auctioneer (the OS)
is very negligible. The OS during the auction only sets the
prices of the resources based on the received bids from the
applications and gives the resources to the highest bids. So
every T seconds, the OS runs these two jobs, which adds a
negligible overhead with respect to other tasks of the OS. Our
approach also satisfies the following properties: 1) Individual

TABLE III: The comparison of Intel Xeon processor and Intel
Xeon Phi processor.

Processors Xeon E5-2680 Xeon Phi SE10P
Cores/Sockets 8/2 61/1

Clock Frequency 2.7 GHz 1.1 GHz
Memory 32GB 8x4G 4-

channels DDR3-
1600MHz

8GB GDDR5

L1 cache 32 KB 32 KB
L2 cache 256 KB 512 KB
L3 cache 20 MB -

rationality (IR): Applications’ expected utility is non-negative
because the amount of the bid cannot be beyond the sum of
the difference of the valuations which is at most the highest
valuation of the application. 2) Truthfulness: Applications
cannot benefit from bidding other than their true valuation.
By contradiction, if an application bids lower than the true
value, there may be another application with a higher bid to
take the resource. But we cannot guarantee the truthfulness in
the case of collusion among applications. 3) Budget-balance:
The whole payments from the applications are less than the OS
revenue, which is trivial as we have only one seller which is the
OS. 4) Economic efficiency: It has been shown in [33] that this
assignment is optimal, but it doesn’t mean it is economically
efficient since we know that it depends on the applications’
valuation which is sub-optimal.

IV. CASE STUDIES

A. CPU Scale-up Scale-out Game

The emerging high-performance computing applications
lead to the advent of Intel Xeon Phi co-processor, that when
their highly parallel architecture is fully utilized, can run
in order of magnitude more performance than the existing
processor architectures. The Xeon Phi co-processors are the
first commercial product of Intel MIC processors where the
hardware architecture is exposed to the programmer to choose
running the code on either Xeon processor or Xeon Phi co-
processors. It is possible that, during the course of execution,
either the processor or the co-processor get congested and
the performance of the application degrades a lot. Therefore,
making a decision to offload the most time-consuming part
of the program on Xeon or Xeon Phi should be made online,
based on the contention level. In this section, we look at the
case study of our auction-based model on decision making
of running the application on the main or co-processor in a
highly congested environment.

The experimental results of this section are run on Stampede
cluster of Texas Advanced Computing Center. Table III shows
the comparison of Intel Xeon and Xeon Phi architectures
which is used in this section. It is observed that congestion
has a significant impact on the performance of running the
application on Xeon and Xeon Phi machines. Since most cloud
computing machines are shared between thousands of users,
the programmer not only should get the benefit of parallelism
by offloading the most time-consuming part of the code to the
larger number of low-performance cores (Xeon Phi) but also
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Fig. 5: Congestion effect on Xeon and Xeon Phi machines.

should consider the congestion level (number of co-runners)
in the system. To this end, we performed experiments on
Stampede clusters. We executed MiniGhost application which
is a part of Mantevo project [37] which uses difference stencils
to solve partial differential equations using numerical methods.
The applications use the profiling utility functions at t = 0 and
during the course of execution update the utility function based
on the observed performance on each core using Equation 1.
Then, they can revisit their previous action on running the
code on either the processor or co-processor during run-time.

Figure 5 shows the total execution time with respect to
congestion we made in Xeon and Xeon Phi. In this experiment
we ran the same problem size on a Xeon and Xeon Phi machine
multiple times so that we could see the effect of load on
the total execution time of our application. It was observed
that with the same number of threads Xeon’s performance
degrades more than Xeon phi. Next, we tried to change the
application behavior using a congestion-aware game theoretic
algorithm to offload the most time-consuming part of the
application based on the performance behavior of applications.
Figure 6 shows the result of our game-theoretic model during
the execution time. It is observed that during the course of
execution, the applications change their strategy on either
choosing the main processor or the co-processor and all
applications’ performance converge to an equilibrium point
where applications don’t want to change their strategy.

Furthermore, it is shown that CARMA can bring in up to
106.6% improvement in total execution time of applications
compared to static approach when the number of co-runners
is six. The performance improvement would be significant
when the number of co-runners increase. Figure 7 shows
the performance comparison of CARMA and static approach
which does not consider the congestion dynamism in the
system and the decision is only made based on the parallelism
level in the code.

B. A Case Study of Private and shared cache game

One of the challenging problems in CMP resource
management systems is whether applications benefit from a
shared large last level cache or an isolated private cache. We
evaluated CARMA’s performance, on a 10MB LLC shown in
Figure 8, where 2MB, 1MB, 512kB, 256kB and 128kB levels
of LLC can potentially be shared between 16, 8, 4, 2 and 1
applications respectively, the cache levels have 16, 8, 4, 2, and
1 ways. Table V summarizes the studies workloads and their
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Fig. 6: Performance of 6 instances of applications during the
execution time for our proposed game model.
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characteristics, including miss per kilo instructions (MPKI),
memory bandwidth usage, and IPC. We use applications from
Spec 2006 benchmark suite [38]. We use Gem5 full system
simulator in our experiment [39, 40]. Table IV shows the
experimental setup in our experiments.

To evaluate the performance of our proposed approach
we use utility functions for different number of cache ways
shown in Figure 9. These utility functions at the start of the
execution can be found using either profiling techniques or
stack distance profile [5, 41, 42] of applications assuming
there are no co-runners in the system. Next, during run-time,
the applications can update their utility functions based
on Equation 1. Therefore, there is a learning phase where
applications learn about the state of the system and update the
utilities accordingly. The stack distance profile indicates how
many more cache misses will be added if the application has
less number of ways in the cache. Based on the stack distance
profile, the applications can update their utility function and
bid for the next iteration of the auction if they like to change
their allocation. Next, we bring an example of the auction for
one time step of the game. This time step can be repeated
once an application arrives or leaves the system or when an
application’s phase changes during run-time. However, in
case of one application’s phase change or arriving or leaving
the system, the algorithm reaches the optimal assignment in
much fewer iterations since all other assignments are fixed
and a few applications would be affected.

Example: As an example, suppose we have 5 different
applications and 5 different cache levels with different
capacities of 128KB, 256KB, 512KB, 1MB and 2MB. In
addition, suppose the 128kB cache level can not accomodate
more than one application and 256kB cache can accomodate
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Fig. 8: The proposed last level cache hierarchy model.

TABLE IV: Experimental Setup.

Processors Single threaded with private L1
instruction and data caches

Frequency 1GHz
L1 Private ICache 32 kB, 64-byte lines, 4-way asso-

ciative
L1 Private DCache 32 kB, 64-byte lines, 4-way asso-

ciative
L2 Shared Cache 128 kb-2 MB, 64-byte lines, 16-

way associative
RAM 12 GB

TABLE V: Evaluated workloads.

# Benchmark MPKI Memory BW IPC
1 astar 1.319 373 MB/s 2.057
2 bwaves 10.47 1715 MB/s 0.661
3 bzip2 3.557 1194 MB/s 1.367
4 dealII 0.935 307 MB/s 2.107
5 GemsFDTD 0.004 2.19 MB/s 2.023
6 hmmer 2.113 1547 MB/s 2.861
7 lbm 19.287 3954 MB/s 0.533
8 leslie3d 8.469 1942 MB/s 1.297
9 libquantum 10.388 1589 MB/s 0.531
10 mcf 16.93 820 MB/s 0.073
11 namd 0.051 20.32 MB/s 2.362
12 omnetpp 10.34 1147 MB/s 0.504
13 sjeng 0.375 139.2 MB/s 1.403
14 soplex 4.672 390.8 MB/s 0.513
15 sphinx3 0.349 202.8 MB/s 2.223
16 streamL 31.682 3619 MB/s 0.581
17 tonto 0.260 107 MB/s 2.036
18 xalancbmk 12.703 1200 MB/s 0.558

2 applications, 512kB level can have 4 applications, 1MB
cache can have 8 applications and 2MB cache can have at
most 16 applications. Let’s assume the following matrix be
the utility function of each application on each cache level.

Some applications may get better utility from smaller
cache space since they are less congested and since these
applications have low data locality, moving to larger cache
spaces not only does not increase their performance but also
degrades the performance by evicting other applications from
the cache and making contention on the memory bandwidth
which is a more vital resource for them 1.

1libquantum, streamL, sphinx3, lbm and mcf are examples of such appli-
cations.

M =



1way 2way 4way 8way 16way

App1 1.9 1.7 1.5 1 0.9
App2 1.6 1.3 1.1 0.8 0.7
App3 1.4 1.0 0.6 0.5 0.4
App4 0.3 0.6 0.9 1.2 1.4
App5 0.7 0.8 1.1 1.4 1.7


(5)

In the first iteration of the bidding, the first 3 applications bid
for the most profitable resource which is 128kB cache and
they submit a bid equal to the difference of profit between
the first and the second most profitable resource. Therefore,
the first application, submits 0.2 bid to 128kb and the second
application submits 0.3 and the third application submits
0.4. Since only one of the players can acquire the 128kB
cache space, the first application will get it. The 4th and 5th
application compete for 2MB cache space and they both get
it with the sum bid of both which is 0.5. In the next round,
the prices will be updated and since applications 2 and 3 don’t
have any cache assignment compete for the 256kB cache space
and each bid 0.2 which is the difference between 1.7 and 1.5
and 1.3 and 1.1 in the performance matrix accordingly. Since
the second level cache can accommodate both applications
the price will be updated and the minimum bidding price for
someone to get this cache level is updated to the minimum
bid of both which is 0.2. Therefore, if some application bid
more than 0.2 it can acquire the resource and the application
with the smallest bid has to resubmit the bid to acquire the
resource. Figure 10a, 10b, and 10c show the bidding steps
and the prices and minimum price of bidding accordingly. As
seen from the figures, the auction terminates in three iterations
when there exist five applications.

C. A Case Study for Hybrid Cache Game

In hybrid cache game, each cache partition can have a
cluster of applications. We use different mixes of 4 to 16
applications from Spec 2006 to evaluate the performance
of our proposed approach compared to others. To evalu-
ate our approach, we selected the state-of-the-art centralized
cache partitioner [43] (KPart) as a competitor which aims
at maximizing the global IPC speedup. CARMA uses multi-
resource valuations, so each application can have any criteria
to maximize its payoff. In order to provide a fair comparison
with our approach, we use IPC speedup as the optimization
goal for all applications.

Figure 11 shows the normalized throughput of 10 different
mix of applications [44], using CARMA, KPart [43], equal
separate cache partitioning and completely shared cache space
after convergence. Furthermore, Figure 12 shows the scalabil-
ity of our proposed algorithm. When the number of co-runners
increases from 2 to 16, the performance improves without
any need to track each applications’ performance in a central
module. Having full information about applications’ profiles,
CARMA outperforms the other centralized competitors, when
the number of the applications increases.

Since KPart is a centralized (not an auction-based) ap-
proach, we assume that it has an unlimited budget. The budget
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Fig. 9: IPC for different size of LLC.
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Fig. 10: Cache allocation, a) first round, b) second round and c) third round of bidding.

matters in CARMA. We setup another experiment to track the
variations of the normalized throughput versus the normalized
budget for a mix of 16 applications. Figure 13 shows that the
throughput of CARMA, is very sensitive to the budget. The
throughput changes dramatically at some inflection point, and
at the end it is saturated but higher than KPart.

V. RELATED WORK

With rapid improvement in computer technology, more and
more cores are embedded in a single chip and applications
competing for a shared resource is becoming common. On
the one hand, managing scheduling of shared resources for a
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large number of applications is challenging in a sense that the
operating system doesn’t know what is the performance metric
for each application. But on the other hand, the operating
system has a global view of the whole state of the system
and can guide applications on choosing the shared resources.

There have been several works, for managing the shared
cache in multi-core systems. Qureshi et al. [13] showed that
assigning more cache space to applications with more cache
utility does not always lead to better performance since there
exist applications with very low cache reuse which may have
very high cache utilization.

Several software and hardware approaches have been pro-
posed to find the optimal partitioning of cache space for
different applications [3]. However, most of these approaches
use brute force search of all possible combinations to find
the best cache partitioning in runtime or introduce a lot
of overhead. There have been some approaches which use
binary search to reduce searching all possible combinations
[5, 14, 45]. But none of these methods are scalable for the
future many-core processor designs.

There exists prior game-theoretic approaches designing a
centralized scheduling framework that aims at a fair optimiza-
tion of applications’ utility [28–32]. Zahedi et al. in REF
[28, 31] use the Cobb-Douglas production function as a fair
allocator for cache and memory bandwidth. They show that
the Cobb-Douglas function provides game-theoretic properties
such as sharing incentives, envy-freedom, and Pareto effi-
ciency. But their approach is still centralized and spatially di-
vides the shared resources to enforce a fair near-optimal policy
sacrificing the performance. In their approach, the centralized
scheduler assumes all applications have the same priority

for cache and memory bandwidth, while we do not have
any assumption on this. Further, our auction-based resource
allocation can be used for any number of resources and any
priority for each application and the centralized scheduler does
not need to have a global knowledge of these priorities.

Ghodsi et al. in DRF [30] use another centralized fair policy
to maximize the dominant resource utilization. But in practice,
it is not possible to clone any number of instances of each
resource. Cooper [29] enhances REF to capture colocated
applications fairly, but it only addresses the special case of
having two sets of applications with matched resources. Fan
et al. [32] exploits computational sprinting architecture to
improve task throughput assuming a class of applications
where boosting their performance by increasing the power.

While all prior works use a centralized scheduling that
provides fairness and assumes the same utility function for
all, co-runners might have completely diverse needs and it
is not efficient to use the same fairness/performance policy
across them. Our auction-based resource scheduling provides
scalability since individual applications compete for the shared
resources based on their utility and the burden of decision
making is removed from the central scheduler. We believe
that future CMPs should move toward a more decentralized
approach which is more scalable and provides a fair allocation
of resources based on the applications’ needs.

Auction theory which is a subfield of economics has
recently been used as a tool to solve large-scale resource
assignment in cloud computing [46, 47]. In an auction process,
the buyers submit bids to get the commodities and sellers
want to sell their commodities with the maximum price as
possible. Also auction-based allocators [48, 49] are multi-
buyers with multi-seller but there is only one resource to bid.
So, they cannot be used for our purpose, since we have only
one seller with multiple bundled resources. That is why we
choose a simpler related scheme for a computer architecture to
get higher performance with lower transactions and auctions.

Our auction-based algorithm is inspired by work of Bert-
sekas [33] that uses an auction-based approach for network
flow problems. Our algorithm is an extension of local as-
signment problem proposed by Bertsekas et al. that has been
shown to converge to the global assignment within a linear
approximation.

VI. CONCLUSION

This paper proposes a distributed resource allocation ap-
proach for large-scale servers. The traditional resource man-
agement system is not scalable, especially when tracking
the application’s dynamic behavior. The main cause of this
complexity is the centralized decision making which leads to
higher time and space complexity. With increasing number of
cores per chip, the scalability of assigning different resources
to different applications becomes more challenging in future
generation CMP systems. In addition, diversity in application’s
need makes a single objective function inefficient to get an op-
timal and fair performance metric. We introduce a framework
to map the allocation problem to the known auction economy
model where the applications compete for the shared resources
based on their utility metrics of interest.
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