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Abstract Many people are interested in taking aston-

ishing photos and sharing with others. Emerging high-

tech hardware and software facilitate ubiquitousness

and functionality of digital photography. Because com-

position matters in photography, researchers have lever-

aged some common composition techniques to assess

the aesthetic quality of photos computationally. How-

ever, composition techniques developed by profession-

als are far more diverse than well-documented tech-

niques can cover. We leverage the vast underexplored

innovations in photography for computational compo-

sition assistance. We propose a comprehensive frame-

work, named CAPTAIN (Composition Assistance for

Photo Taking), containing integrated deep-learned se-

mantic detectors, sub-genre categorization, artistic pose

clustering, personalized aesthetics-based image retrieval,

and style set matching. The framework is backed by

a large dataset crawled from a photo-sharing Website

with mostly photography enthusiasts and profession-

als. The work proposes a sequence of steps that have

not been explored in the past by researchers. The work

addresses personal preferences for composition through

presenting a ranked-list of photographs to the user based

on user-speci�ed weights in the similarity measure. The

matching algorithm recognizes the best shot among a

sequence of shots with respect to the user's preferred
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style set. We have conducted a number of experiments

on the newly proposed components and reported �nd-

ings. A user study demonstrates that the work is useful

to those taking photos.
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1 Introduction

Digital photography is of great interest to many peo-

ple, regardless of whether they are professionals or am-

ateurs. For example, people on social networks often

share their photos with their friends and family. It has

been estimated that over a billion photos are taken ev-

ery year, and many people take photos with smart-

phones primarily. Smartphones' increasing computing

power and ability to connect to more powerful comput-

ing platforms via the network make them potentially

useful as a composition assistant to amateur photogra-

phers (Yao et al., 2012).

Besides, emerging technologies, including arti�cial

intelligence (AI)-chips and AI-aware mobile applications,

provide more opportunities for composition assistance.

Taking stunning photos often needs expertise and expe-

rience at a level that professional photographers have.

Like in other visual arts, a lack of common alphabet

similar to music notes or mathematical equations makes

transferring of knowledge in photography di�cult. To

many amateurs, as a result, photography is mysteri-

ous and gaining skills is not easy and cannot be done

quickly. Nonetheless, many people are fascinated about

professional-quality photos and desire to have the abil-

ity to create similar-quality photos themselves.
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Fig. 1: Photos retrieved from the dataset based on the photo category and/or subject gender. Each retrieved result

shows a collection of photography ideas that can be used by an amateur to compose photos for a given situation.

Photos of the dataset were crawled from the 500px Website.

Because aesthetics in photography is strongly linked

to human creativity, it is daunting for an arti�cial intel-

ligence (AI) to compose photographs at a given scene

or a given studio setup that can impress people in a way

professional photographers do. In our work, we attempt

to connect human creativity as demonstrated through

their creative works with AI.

Aesthetics and composition in photography have gen-

erally been heuristically explored and known as a col-

lection of rules or principles such as balance, geometry,

symmetry, the rule of thirds, and framing (Lauer and

Pentak, 2011; Valenzuela, 2012; Krages, 2012). It is well

known that professional photographers take a lot of pic-

tures, and through their practice they gain experience

and knowledge which in turn enable them to be cre-

ative. They have written about their knowledge in pho-

tography books (Smith, 2012; Valenzuela, 2014; Grey,

2014). Some composition rules or principles have been

well articulated and many amateurs make use of these

principles in their photo taking. However, we argue that

the set of known rules or principles can hardly cover

the creativity and experience of thousands of photog-

raphers around the world (Valenzuela, 2012; Matthew,

2010; Rice, 2006).

In order to capture an aesthetically appealing photo,

photographers often integrate di�erent visual elements.
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For instance, the beauty of a full-body portrait depends

on the foreground positions of the human limbs as well

as the constellation of the background objects (if any).

A good portrait is often a product of an appropriate

color palette, an appealing composition of shapes, and

an interesting human pose. There is no unique pho-

tography idea for a given situation, and people have

di�erent opinions on those ideas depending on their

cultural background, gender, age, experience, and emo-

tional state. As a result, if the aesthetic quality of pho-

tos is quanti�ed by one number, one is making an unre-

alistic assumption that di�erent people share the same

opinions on the same photo.

For an amateur, it would be helpful if an AI can help

select photography ideas, from thousands of such ideas

available through online photos taken with professional

quality, for a given scene or a given studio setup. The

key technical di�culties for accomplishing this goal are

(1) �nding a suitable mapping between a professional-

quality photo of a scene and the underlying photogra-

phy ideas, (2) there are virtually unlimited number of

photography ideas, and (3) to provide meaningful and

intuitive in-situ assistance to the photographer based

on personal preference. Our work tackles these chal-

lenges using a data-driven approach based on retrieval

from a large dataset of professional-quality photos.

The multimedia and computer vision research com-

munities have been leveraging some of the photography

composition rules or principles for aesthetics and com-

position assessment (Datta et al., 2006; Ke et al., 2006;

Luo and Tang, 2008; Wong and Low, 2009; Marchesotti

et al., 2011). Other approaches manipulated (modi�ed)

the photo to comply with artistic rules (Bhattacharya

et al., 2010, 2011), and such systems are referred to as

auto-composition or re-composition. The techniques in-

clude smart cropping (Suh et al., 2003; Santella et al.,

2006; Stentiford, 2007; Zhang et al., 2005; Park et al.,

2012; Samii et al., 2015; Yan et al., 2013), warping (Liu

et al., 2010; Chang et al., 2015), patch re-arrangement

(Barnes et al., 2009; Cho et al., 2008; Pritch et al.,

2009), cutting and pasting (Bhattacharya et al., 2011;

Zhang et al., 2005), and seam carving (Guo et al., 2012;

Li et al., 2015b). However, they do not help an ama-

teur photographer capture a more impressive photo to

begin with. More speci�cally in portrait photography,

there have been rule-based assessment models (Khan

and Vogel, 2012; Males et al., 2013) using known pho-

tography basics to evaluate portraits, and facial assess-

ment models (Xue et al., 2013; Lienhard et al., 2014,

2015b,a; Redi et al., 2015) exploiting features including

smile, age, and gender from face. On-site feedback sys-

tems (Yao et al., 2012; Li et al., 2015a) have been devel-

oped to help amateur photographers by retrieving im-

ages with similar composition, but the system is limited

to basic composition categories (e.g. horizontal, verti-

cal, diagonal, textured, and centered). More recently,

perspective-related techniques (Zhou et al., 2017b), the

triangle technique (He et al., 2018) and some portrait

composition techniques (Farhat et al., 2017) have also

been exploited.

We investigate a holistic framework for helping peo-

ple take a better shot with regard to their current pho-

tography location and need. The framework addresses

the di�erences in preferences of the users through ad-

justing the ranking process used to retrieve exemplars.

After getting a �rst shot from the camera, our frame-

work provides some highly-scored related photos as pre-

composed �recipes� (i.e. photography ideas) for the user

to consider. As an example, regarding some personal-

ized criteria (such as photo category and subject gen-

der), Figure 1 shows sample results retrieved from the

photo dataset. These photos illustrate various locations,

scenes, and categories. One can argue that while pho-

tos in the same row have the same category or gender,

each individual photo has a photography idea(s) that

is di�erent from those used in other photos of the same

row. For example, in the 2nd and 3rd photos from the

right in the 1st row, the subjects cross their legs and

bend one of the knees to form a triangle in the resulting

photo. As mentioned before, the triangle technique is

a popular technique used by professionals. While both

uses the technique, the way they use them is di�erent,

forming di�erent photography ideas. Similarly, the �rst

subject in the 3rd row sits beside the arch with an apro-

pos pose, creating a triangle, but is di�erent from the

triangles formed in the earlier examples.

We address the complexity of transferring photogra-

phy idea(s) to a user through providing useful exemplar-

based feedbacks. Speci�cally, we break down the scene

that the user wants to take a photo from into compo-

sition primitives, and then build them up for a better-

composed shot using highly-rated similar photos from

the dataset. To accommodate the user's individual pref-

erences, we perform personalized aesthetics-related im-

age retrieval (PAIR). Figure 2 shows the �owchart of

our approach for assisting photographers in taking an

improved photo. Based on the �rst shot as a query,

some highly-rated photos are retrieved from the col-

lected dataset using the user-speci�ed preferences (USP)

and our composition model (CM). Then, the results are

shown to the photographer to select some of them as

a user-preferred style set. The camera then takes a se-

quence of shots, from which the one that is the clos-

est match to the style set is chosen. The details of the

procedure will be explained later. The main contri-

butions of our work are as follows:
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Fig. 2: The �owchart of our composition assistance framework: The blue, black, red, and green �ows show the user

settings, the indexing process, the searching process, and the matching process, respectively. The decomposition

step (the box with dashed line) extracts the aesthetics-related information of the images and computes our com-

position model. The composition step (another box with dashed line) searches for well-composed images in our

dataset based on the aesthetics-related information and user-speci�ed preferences. The matching step (the other

small box at the bottom) considers the next shots, and �nds the shot that is closest to the user-preferred style set.

� We propose a new framework that �nds the map-

ping between a photo and its potential underly-

ing photography idea(s) through decomposing the

photo into composition ingredients. Through such

a framework, it is possible to leverage the virtu-

ally unlimited number of photography ideas avail-

able on the Internet. We design the decomposition

step to extract composition primitives of a query

shot using various detectors including newly devel-

oped integrated object detector (IOD), category de-

tector (CaDe), and artistic pose detector (ArPose).

The IOD consists of a collection of performance-

enhanced detectors, the integration of which sub-

stantially boosts the detection accuracy by hystere-

sis detection and makes them uni�ed and compati-

ble with any detector. The CaDe has top-down hi-

erarchical clustering and multi-class categorization

to leverage sub-genre information. The ArPose per-

forms pose clustering to extract pose information

using skeleton context features.

� We address the complexity of transferring photog-

raphy knowledge, caused by the existence of abun-

dant, diverse, and correlated photography ideas for

any given scene, by providing meaningful and in-

tuitive feedback to amateur photographers. We de-

sign the composition step to perform personalized

aesthetics-related image retrieval from a large man-

aged dataset containing over 200,000 highly-rated

aesthetically composed photos covering a large num-

ber of photography ideas and di�erent categories.

� We accommodate the user's personal preferences for

composition, through showing a ranked-list of pho-
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tos to the user based on user-speci�ed preferences

(USP). The framework further helps the user to se-

lect a shot among a sequence of shots that is optimal

with respect to the user's preferred style set.

Our proposed framework is not limited to any spe-

ci�c photography genre. It can be generalized to other

genres such as architectural or closeup photography.

In the remainder of the paper, we explain the re-

alization of our framework in detail. After discussing

related work, we describe the dataset that we have col-

lected and indexed, which serves as the main asset for

the computer program to analyze the available pho-

tography ideas on the Internet. Next, we explain our

decomposition and composition strategies, which are

the most signi�cant parts of the design. After that,

our matching stage will be presented as the concluding

stage in the photo taking process. We provide quali-

tative results as we describe the method, and experi-

mental results afterward to show how each part of our

framework compares with the state of the art.

2 Related Work

Existing work closely related to ours is categorized into

four groups, covering aesthetic quality assessment, com-

position, portrait, and on-site feedback, respectively.

2.1 Aesthetic Quality Assessment

Books on professional photography (Lauer and Pentak,

2011; Valenzuela, 2012; Krages, 2012; Matthew, 2010;

Rice, 2006; Smith, 2012; Valenzuela, 2014; Grey, 2014)

guide people to master skills of taking striking pho-

tos practically in various situations. However, learning

through them takes a lot of time and practice. Existing

technical approaches attempt to automatize this pro-

cess, but they are limited and mostly focused on o�ine

evaluation or active manipulation of the photos after

they are taken. Basic image aesthetics and composition

rules in visual art (Lauer and Pentak, 2011; Valenzuela,

2012; Krages, 2012), including geometry, color palette,

and the rule of thirds, have �rst been studied compu-

tationally by Datta et al. (2006) and Ke et al. (2006)

as visual aesthetic features.

Luo and Tang (2008), andWong and Low (2009) at-

tempted to leverage a saliency map method, and consid-

ered the features of the salient parts, because more ap-

pealing parts of an image often reside in the prominent

region. Marchesotti et al. (2011) showed that generic

image descriptors was useful to assess image aesthetics,

and built a generic dataset for composition assessment

- the Aesthetic Visual Analysis (AVA) dataset (Mur-

ray et al., 2012). Deep learning based approaches (Lu

et al., 2015; Mai et al., 2016; Talebi and Milanfar, 2018;

Liu et al., 2018) exploit customized architectures to

train image aesthetic-quality models with annotated

datasets, and the outcome is an estimation for actual

(average) aesthetic rating of an image.

2.2 Image Auto-Composition and Re-Composition

Auto-composition systems (Bhattacharya et al., 2010,

2011) actively manipulate and then re-compose the

taken photo for a better view. Cropping techniques

(Suh et al., 2003; Santella et al., 2006; Stentiford, 2007)

separate the region of interest (ROI) by the help of

a saliency map, an eye �xation, basic aesthetic rules

(Zhang et al., 2005), or visual aesthetics features in

the salient region(Park et al., 2012; Samii et al., 2015;

Yan et al., 2013). Warping (Liu et al., 2010) is another

type of re-composition that represents image as a tri-

angular or quad mesh, to map the image into another

mesh while keeping the semantics and perspective un-

changed. Also, R2P (Chang et al., 2015) detects the

foreground part in the reference image. Then, it re-

targets the salient part of the image to the best-�tted

position using a graph-based algorithm.

Furthermore, patch re-arrangement techniques mend

two ROIs in an image together. Pure patch rearrange-

ments (Barnes et al., 2009; Cho et al., 2008; Pritch

et al., 2009) detect a group of pixels on the border of the

patch and match this group to the other vertical or hori-

zontal group of pixels near the patched area. Also, cut-

and-paste methods (Bhattacharya et al., 2011; Zhang

et al., 2005) remove the salient part, and re-paint the

foreground with respect to the salient part and the bor-

ders, and then paste it to the desired position in the

image. Another auto-composition system, seam carv-

ing (Guo et al., 2012; Li et al., 2015b), replaces useless

seams.

2.3 Assessment of Portrait Aesthetics

While there exist prior studies on image aesthetics as-

sessment, few considered portrait photography in depth,

despite the fact that the portion of portrait genre is

very high in the photography domain. Even in this do-

main, prior works have not explored a novel method to

solve the problem in photographic portraiture, rather

than combining and using well-known features or mod-

ifying trivial ones to apply in the facial domain. We

categorize prior works into two main groups: rule-based

evaluation models (Khan and Vogel, 2012; Males et al.,
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2013) exploit known photography rules to assess por-

traits, and facial evaluation models (Xue et al., 2013;

Lienhard et al., 2014, 2015b,a; Redi et al., 2015) use

visual features on face like smiling, age, gender, etc.

In a rule-based evaluation model, Khan and Vogel

(2012) show that a small set of face-centered spatial

features extend the rule of thirds and perform better

than a large set of aesthetics-related features. Actually,

their dataset containing 500 images from Flickr scored

by 40 people is limited for a general conclusion. Their

aesthetic features, especially spatial features, are close

to well-known photography rules which were widely in-

vestigated before.

Males et al. (2013) explore the aesthetic quality of

head-shots by means of some famous photography rules

and low-level facial features. More speci�cally, sharp-

ness and depth of �eld, the rule of thirds as a compo-

sition rule, contrast, lightness, hue counts and face size

are exploited as their fundamental features. Unfortu-

nately, the experimental results of the paper are lim-

ited, and it is hard to conclude for general cases. Xue

et al. (2013) study the design inferring portrait aesthet-

ics with appealing facial features like smiling, orienta-

tion, to name but a few. Similarly, Harel et al. (2006)

exploit traditional features like hue, saturation, bright-

ness, contrast, simplicity, sharpness, and the rule of

thirds. They also extract saliency map by graph-based

visual saliency. Then, they calculate the standard devi-

ation and the main subject coincidence of the saliency

map.

The other facial evaluation models (Lienhard et al.,

2014, 2015b,a) use well-known low-level aesthetic fea-

tures such as colorfulness, sharpness, and contrast, as

well as high-level face-related features such as gender,

age, and smile. Their idea is based on exploiting these

features for all segmented parts of the face including

hair, face, eyes, and mouth. Redi et al. (2015) show that

the beauty of the portrait is related to the amount of

art used in it not the subject beauty, age, race, or gen-

der. Using a dataset derived from AVA (Murray et al.,

2012), they exploit a high-dimensional feature vector

including aesthetic rules, biometrics and demographic

features, image quality features, and fuzzy properties.

Based on lasso regression output, eyes sharpness and

uniqueness features have the highest rank for a good

portrait.

2.4 On-site Feedback on Photographic System

An aesthetic assessor may �nd a metric to evaluate aes-

thetic quality of an image, but the way it conveys this

information to photographer is also crucial. Because, an

amateur photographer probably has no idea about how

to improve the image composition. That is why provid-

ing meaningful feedback to enhance the next shots and

not just image aesthetic assessment is one of our main

intentions.

Giving feedback on a photographic system �rstly

has been introduced by Joshi et al. (2011), as they sug-

gest a real-time �lter to trace and aesthetically rate the

camera shots, and then the photographer retakes a bet-

ter shot. On-site composition and aesthetics feedback

system (Yao et al., 2012; Li et al., 2015a) helps smart-

phone users improve the quality of their taken photos

by retrieving similarly composed images as a qualitative

composition feedback. Also, it gives color combination

feedback for having colorfulness in the next photo, and

outputs the overall aesthetic rating of the input photo

as well. OSCAR (Yao et al., 2012) is assumed to ful�ll

future needs of an amateur photographer, but giving

such a feedback may be unrelated or unrealistic to the

user, and also it is restricted to a small database in

terms of coverage, diversity, and copyright.

Xu et al. (2015) suggest using a three-camera array

to enhance the quality of the taken photos by the rule

of thirds. In fact, the smartphone interface using the

camera array information shows some real-time guide-

line to the user for taking a photo from another posi-

tion. More recently general aesthetic techniques includ-

ing perspective-related techniques (Zhou et al., 2016)

and triangle technique (He et al., 2018) are exploited

to retrieve proper images as an on-site guidance to am-

ateur photographers, but they are limited to basic ideas

in photography while many aspects such as human pose

or scene content are ignored, and these methods just

try to retrieve similar photos to query photo having

perspective or triangles, but the retrieved results may

not be necessarily useful to amateur photographer.

3 The Dataset

The most valuable resource used by the computer pro-

gram developed in this work is the collected dataset

because it contains a large number of innovative pho-

tography ideas from around the world. We have at-

tempted many photo-sharing websites for photography

purposes including Flickr, Photo.net, DPChallenge, In-

stagram, Pinterest, and Unsplash. However, none of

them properly cover several categories such as full-body

and upper-body in portrait photography as well as ur-

ban in landscape photography. The process of search-

ing, collecting, and updating the dataset is time con-

suming and taxing, hence, automating this process is

quite helpful.
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3.1 Portrait and Landscape Dataset

The dataset is gradually collected by crawling the 500px

website which contains photos from millions of photog-

raphers around the world expanding their social net-

works of colleagues while exploiting technical and aes-

thetic skills to make money by marketing their pho-

tographs. To get the �le list and then the images sorted

by rating, we have implemented a distributed multi-

IP address, block-free Python script that collects the

photos having tags such as portrait, pose, human, per-

son, woman, man, studio, model, fashion, male, female,

landscape, nature and so on.

Nearly half a million images for the current dataset

have been collected. The dataset has diverse photogra-

phy ideas specially for the aforementioned portrait cat-

egories (full body, upper body, facial, group, couple or

any two-body, side-view, hand-only, and leg-only) and

landscape categories (nature, urban, etc.) from highly-

rated images taken by mostly photography enthusiasts

and professionals. Figure 3 illustrates some sample im-

ages from the dataset including portrait categories such

as facial, full-body, seated, upper-body, no-face, side-

view, group, hand-only and leg-only as well as land-

scape categories such as nature, plain, water, sky, and

trees.

Figure 12 in Section 7.1 shows the logarithmic distri-

bution of the view counts, the distribution of the rat-

ings, the logarithmic distribution of the vote counts,

and the logarithmic distribution of the favorite counts

of the dataset respectively. The probability of a bin rep-

resents the frequency of the images which reside in the

interval starting from the current bin threshold to the

next bin threshold divided by the total number of im-

ages. As a result, more than 90% of the images were

viewed more than 100, and nearly half of the images in

the dataset had a rating between 40 to 50, which is a

high rating.

3.2 Automating Dataset Annotation

The number of images in the dataset (about half a mil-

lion by the end of 2017) is large. While we have manu-

ally annotated around 10% of the dataset for training,

veri�cation, and testing purposes, to annotate the rest,

we leverage multiple highly-accurate detectors to auto-

mate and accelerate the process. However, the accuracy

of the annotation is not perfect, but it is high enough

for getting feedback by our aesthetics-based image re-

trieval from the dataset. Also, the redundancy across

our designed detectors makes the annotation process

more accurate that we will discuss later in Section 4.

To automate image categorization, we formulate the

problem as a multi-class model for support vector ma-

chines (SVM). Therefore, we train an SVM model using

radial basis function (RBF or Gaussian) kernel to pre-

dict image category (e.g. facial, upper-body, full-body,

urban, nature, etc.) from multiple classes. Pose features

(later explained in detail) are extracted to train our

SVM model on a random subset of images from the

dataset including 20K diverse images which are man-

ually labeled. Figure 18 depicts the distribution of the

categories with respect to the number of corresponding

images in each category divided by the total number of

images. Consequently, the number of images for some

categories like full-body, upper-body, facial, group, two,

and side-view is higher than the others to cover the di-

versity of our image retrieval.

Instead of directly labeling photography ideas, we

detect all detectable semantic classes in the scene using

the object detectors and the scene parsers. In fact, we

believe the scene snapshot captured by camera consists

of various static and dynamic objects that constructs

the constellation of the scene. The object detector parti-

tions each shot into several boundaries (not necessarily

segments) with a detection probability for each, while

these boundaries can also have overlapping region. The

scene parser predicts the potential objects available in

each shot in pixel level, i.e. each pixel has an object

label detectable by scene parser.

We enhanced the deep-learned model of object de-

tector YOLO (Redmon et al., 2016) and scene parser

PSPNet (Zhao et al., 2017) to annotate the dataset.

To improve the accuracy, we have trained our purpose-

driven architecture of the object detector on an ex-

tended dataset including a subset of common failure

cases (CFC) from the dataset with MSCOCO dataset (Lin

et al., 2014). Similarly, we have trained a customized

architecture of the scene parser on CFC with ADE20K

dataset Zhou et al. (2017a) as an augmented training

set.

After getting all automatized annotations of the im-

ages in the dataset, we just keep those detected objects

having an area greater than the 1.15% of the image

area. The probabilities of the highly-repeated semantic

classes in the dataset (i.e. the frequency of the seman-

tic class divided by the total number of images) are

shown in Figure 16, while we have removed �person�

(probability=0.9) and �wall� (probability=0.78) from

the �gure because they are dominant semantic classes in

most of the images. De�nitely having diverse semantic

classes with high frequency in the dataset makes the

proposed recommendations with respect to the query

shot more helpful. After collecting the dataset, �ltering

unrelated images including low-quality or nudity, and
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Fig. 3: Sample images from the collected dataset. First row: facial, full-body, seated, and upper-body. Second row:

no-face, side-view, group, hand-only, and leg-only. Third row: nature, plain, water, sky, and trees.

auto-annotating them, we start indexing to extract the

aesthetics-related information from them to accelerate

the retrieval process.

4 Photo Decomposition

To suggest a better composed photo to the user, we de-

compose query image from camera (i.e. shot into com-

position ingredients called aesthetics-related informa-

tion. This information includes high-level features (such

as semantic classes, photography categories, human poses,

subject gender, photo tags, and photo rating) as well as

low-level features (such as color, texture, and etc). To

accelerate the retrieval process from the dataset based

on query image, we perform the decomposition proce-

dure on all images in the dataset as an o�ine process,

called indexing, shown as black arrows in Figure 2. We

construct the composition model (CM) after indexing

the whole dataset. If new images join the dataset, we

index them and update our CM. In the searching step

shown as red arrows in Figure 2, we decompose query

image, and compare with our CM. Then, we retrieve

the highly-ranked photos from the dataset based on

the decomposed values of the shot and user-speci�ed

preferences (USP).

Through this section, we describe our integrated

object detector (IOD) to determine semantic classes

in query image more comprehensively and more ac-

curately than a single object detector. Also, our cat-

egory detector (CaDe) speci�es the photography genre

and style. Furthermore, our artistic pose clustering (Ar-

Pose) extracts pose information specially for portrait

photography. The other properties such as rating, tags,

and gender in the shot are extracted from the image

descriptor as a JSON �le. For the low-level features,

we collect all 4096 generic descriptors via public pre-

trained CNN model (Chat�eld et al., 2014) on Ima-

geNet (Deng et al., 2009) and the conventional fea-

tures of Mitro (2016)'s method as shown in the follow-

ing equation. Note that there is no limit to collect any

other aesthetics-related information from query image

to extend our work depending on image style or func-

tionality.

FI,vgg =
[
fvggI,1 fvggI,2 ... fvggI,4096

]T
, (1)

where FI,vgg is a vector containing generic features of

image I, and fvggI,i ∀i is i-th generic feature. The super-

script �T � represents the transpose of the vector/matrix.

Also, we extract available statistical data via the image

properties including rating, view counts, and gender.

Then, we similarly have them as follows:

FI,stat =
[
fratingI,1 fviewsI,2

]T
, (2)

FI,gender =
[
fmaleI,1 ffemaleI,2 funknownI,3

]T
, (3)

where FI,stat is a vector containing the statistical data

of image I including its rating fratingI,1 and its view

counts fviewsI,2 . Furthermore, FI,gender is a vector con-

taining the gender speci�cation of image I represented

by [1 0 0] as male, [0 1 0] as female, or [0 0 1] as un-

known.

4.1 Integrated Object Detectors (IOD)

Deep learning based models help computer vision re-

searchers map from an unbounded correlated data (e.g.
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an image) to a bounded classi�ed range (object labels),

but there are many restrictions to exploit them for ap-

plied problems. As mentioned before, there is no limit

to innovation in visual arts. Hence, it is very di�cult

if not impossible for available deep learning architec-

tures to learn all of these correlated ideas and clas-

sify based on the input query with high accuracy. As

the number of ideas increases, mean average precision

(MAP) falls abruptly at the rate of O
(
1
n

)
. Also, man-

ual idea labeling of a large dataset is costly in terms of

computational time and available budget (Farhat and

Tootaghaj, 2017; Farhat et al., 2016a; Tootaghaj and

Farhat, 2017; Farhat et al., 2016b).

To tackle the problem of classifying to a large num-

ber of ideas, we detect as many components as possible

in the scene instead of photography ideas. In fact, we

believe the scene captured in view�nder consists of vari-

ous static and dynamic objects as its high-level features.

We improve the detection accuracy by training our cus-

tomized object detector on an augmented dataset in-

cluding a subset of common failure cases (CFC) from

the 500px dataset with MSCOCO dataset (Lin et al.,

2014). We train our scene parser on our CFC with

ADE20K dataset (Zhou et al., 2017a) as an extended

training dataset, and also our human pose estimator is

trained on our CFC with MSCOCO dataset (Lin et al.,

2014) and MPII dataset (Andriluka et al., 2014).

We start from state-of-the-art deep-learned detec-

tors, YOLO (Redmon et al., 2016), PSPNet (Zhao et al.,

2017) and RTMPPE (Cao et al., 2017), and we extend,

improve and integrate them for our purpose. YOLO

network partitions the query photo into several bound-

ing boxes predicting their probabilities. Pyramid scene

parsing network (PSPNet) uses global context informa-

tion through a pyramid pooling module, and predicts

the scene objects in the pixel level. Real-time multi-

person 2D pose estimation (RTMPPE) predicts vec-

tor �elds to represent the associative locations of the

anatomical parts by means of two sequential prediction

process exposing the part con�dence maps and the vec-

tor �elds.

Figure 4 illustrates a small subset of common fail-

ure cases (CFC) across object detector (YOLO), human

pose estimator (RTMPPE), and scene parser (PSPNet).

Occasionally RTMPPE misses at facial photos to detect

human parts like neck in close-up photos, and it is not

very accurate at �two� or �group� categories to associate

parts overlapping. The non-person detection of YOLO

under 30% probability is sometimes not reliable. PSP-

Net detection is partially not accurate enough at photos

with many objects, as it partitions the photo into small

chunks and it never considers overlapped area. Gener-

ally, to improve the accuracy of the detectors, we have

Fig. 4: Sample failed cases generated by detectors de-

veloped in the computer vision �eld. In each row, the

images are the original, the YOLO result, the RTMPPE

result, and the PSPNet result, respectively.

changed the transformation parameters of the architec-

ture such as maximum rotation, crop size, scale min

and max. Because higher rotation and bigger portrait

are more important in our work.

For comparison with YOLO, we use the regular MAP

on all intended objects. Table 1 in Section 7.2.1 shows

the MAP and the average accuracies of some objects

by our trained model versus pre-trained YOLO model.

For comparison with RTMPPE, we measure MAP of

all body parts (left and right are combined) as men-

tioned in DeeperCut (Insafutdinov et al., 2016). Table 2

in Section 7.2.2 compares MAP performance between

ours and RTMPPE on a subset of testing images ran-

domly selected from the 500px dataset. For scene pars-

ing evaluation, we measure pixel-wise accuracy (Pix-

Acc) and mean of class-wise intersection over union

(CIoU), where the performance values of our trained

scene parser are 78.6% PixAcc and 42.5% CIoU better

than PSPNet with 101-depth ResNet (74.9% PixAcc

and 40.8% CIoU) listed in Table 3 of Section 7.2.3.

Figure 5 illustrates four di�erent qualitative results,

where YOLO object names are shown in a red rectangle

with a probability, RTMPPE poses are shown as a col-

orful connection of skeleton joints, and PSPNet scenes

are colorized pixel-wisely based on the pixel codename.



10 Farshid Farhat et al.

Fig. 5: Qualitative results generated by the enhanced

integrated object detector (IOD) show re�ned samples

after training. In each row, the images are the original,

the object detector result, the pose estimator result,

and the scene parser result, respectively.

4.1.1 Value Uni�cation

To work more conveniently on the outputs of our cus-

tomized detectors in next steps, we need to unify the

outputs in terms of pixel-level tensors. Our object de-

tector outputs MSCOCO object-IDs among 80 cate-

gories (from 1 to 80). We de�ne their scores as the mi-

nus logarithm of their NOT probability (− log (1− p))
for each pixel of the image. The object-ID and its score

for each pixel is represented as a mxnx2 tensor. Also,

our scene parser outputs ADE20K object-IDs among

150 categories (from 1 to 150), and the object-ID with

its score for each pixel of the image is represented as

a tensor. Similarly, our human pose estimator gives 18

anatomical part IDs with their scores as a tensor. Thus,

for any image (Im×n) we have:

T I,odm×n×2 =
[
tI,odi,j,k

]
, (4)

tI,odi,j,1 = CI,idi,j , tI,odi,j,2 = − log2 (1− p
I,od
i,j ),

T I,spm×n×2 =
[
tI,spi,j,k

]
, (5)

tI,spi,j,1 = AI,idi,j , tI,spi,j,2 = − log2 (1− p
I,sp
i,j ),

T I,pem×n×2 =
[
tI,pei,j,k

]
, (6)

tI,pei,j,1 = JI,idi,j , tI,pei,j,2 = − log2 (1− p
I,pe
i,j ) ,

where I is an input image, m is the number of rows, n

is the number of columns in the image, T I,od is corre-

sponding tensor of object detector (e.g. YOLO), CI,idi,j ∈
{1..80} is MSCOCO ID of the pixel at (i, j), pI,odi,j is the

MSCOCO ID probability of the pixel at (i, j), T I,sp is

tensor of scene parser (e.g. PSPNet), AI,idi,j ∈ {1..150} is
ADE20K ID of the pixel at (i, j), pI,spi,j is the ADE20K

ID probability of the pixel at (i, j), T I,pe is tensor of

pose estimator (e.g. RTMPPE), JI,idi,j ∈ {1..18} is the
joint ID of the pixel at (i, j), and pI,pei,j is the joint ID

probability of the pixel at (i, j).

To auto-tag or auto-label the 500px dataset in in-

dexing step, we combine these uni�ed results in terms of

the semantic classes, their coordinates, and their scores

(or probabilities). The number of the detectable classes

is 210 semantic objects by merging MSCOCO (80 cat-

egories) and ADE20K (150 categories) objects and de-

duplicating 20 semantic objects (such as person and

sky). Also we have 18 joints from RTMPPE including

nose, neck, right shoulder, right elbow, right wrist, left

shoulder, left elbow, left wrist, right hip, right knee,

right ankle, left hip, left knee, left ankle, left eye, right

eye, left ear, and right ear. YOLO detection for a small

full-body person in the image is poor, but it detects big

limbs of the body (as a person label) well. RTMPPE

detection for occluded bodies is poor but the detec-

tion for a full-body person is acceptable. Also, PSPNet

detection for objects, not a person, is relatively good

compared to others.

4.1.2 Hysteresis Detection

To expand our framework coverage, using our available

detectors, we detect the potential objects in the image.

Our detector's integration scheme has LOW (usually

with the probability less than 0.09) and HIGH (usu-

ally with the probability higher than 0.44) thresholds

for each binary (object,detector). These thresholds are

tuned by a random set of highly-rated ground-truth

images. If the average probability (score) of the pixels

with object ID X in the image is higher than its HIGH

threshold, there is an object ID X in the image, oth-

erwise if the average probability (score) of the pixels

with object ID X in the image is lower than the cor-

responding LOW threshold, there is no object ID X in

the image, and we examine other objects for indexing

purpose or another image for searching purpose. We

call our detector's integration scheme as hysteresis de-

tection.
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Fig. 6: The 2D histogram of the portrait images binned

by the object detector and pose estimator scores.

Hysteresis detection guarantees that con�dence ra-

tio of existence of an object in an image is at least

higher than a tuned detection threshold for one of the

detectors. A person may be detected by one detector

but not by another one. Therefore, if we do not want

to miss any shared detectable object, we consider the

union of the detectors, i.e., if any detector outputs the

object with HIGH probability, the object is considered

inside the image. For example, if we use the hystere-

sis detection of the 500px dataset for �person� object,

90.5% (400K+) of the images pass. The 2D histogram

of the portrait dataset in Figure 6 illustrates the fre-

quency of the images smart-binned by the normalized

object detector and pose estimator scores. In fact, it

shows the e�ectiveness of integrating these detectors to

use the coverage of the dataset more precisely, because

we are unifying the detection results for a more broad

range of ideas rather than intersecting them to have a

more con�dent narrow range of ideas.

To tune the boundaries, we conduct the experiments

and consider detection probability and normalized area

as two features of a dominant object from the object

detector, and detection score and normalized area as

two features of a dominant object from the pose es-

timator. From the 2D ROC results in Figure 13, we

infer that probability = 45% for the object detector

and area = 10% for the pose estimator are the opti-

mized cut-o� thresholds to decide about the existence

of a person in the image.

4.1.3 Object Importance

To prioritize the prominence of the objects in the im-

age, we seek to use the importance map of the objects,

because the subject of the image should be more impor-

tant even if its detection probability is lower. To rank

the order of the objects, we exploit the max score mul-

tiply by a saliency map (S) features with our centric

distance (D) feature to get our weighted saliency map

(W).

W I(i, j) = max
(
T I,od∗,∗,2, T

I,sp
∗,∗,2

)
H
SI(i, j)DI(i, j) , (7)

DI(i, j) =
1

K
e−‖[i,j]−c

I‖
k , (8)

cI =

∑
i,j S

I(i, j).[i, j]∑
i,j S

I(i, j)
, (9)

whereW I(i, j) is our weighted saliency map pointwisely

for image I, max(.)H operation is a hysteresis max on

the 2nd plane of the tensors (score matrix), SI(i, j) is

the saliency map of image I inspired by Itti et al. (1998),

and DI(i, j) is our centric distance feature of image I,

K is a tunable constant equal to
∑
i,j e
−‖[i,j]−cI‖

k for

image I, the binary value cI is the center of the mass

coordinate, and ‖.‖k is the k-th norm operator where

k = 1 in our experiments.

Our weighted saliency map makes the detected ob-

jects prioritized, because we sum up the scores from

the semantic classes, and we end up with a total score

for each semantic class. The output of this step is a

weighted vector of detected semantic classes (undetected

object has zero weight) in the query image. We show

it as the following vector where the elements represent

the importance (normalized as a probability) of the cor-

responding object in the image:

FI,iod =
[
f imp1 f imp2 ... f imp210

]
, (10)

f impk =

∑
∀objID(i,j)=kW (i, j)∑

∀i,jW (i, j)
, (11)

∀k ∈ {1, 2, ..., 210},

where f impk is the importance (imp) value of k-th object

which is the summation of the weighted saliency of the

pixel (i, j) with ID k, i.e., objID(i, j) = k, and FI,iod
is the importance vector of all objects. As we index

the 500px dataset by integrated object detectors, the

union of the objects by the detectors is recognized. The

distribution of the highly-repeated semantic classes in

the 500px dataset is shown in Figure 16 in Section 7.2.5,

where the �person� and �wall� were removed from the

�gure as mentioned before.

4.2 Category Detector (CaDe)

The photo categories in portrait include two (couple or

two people), group (more than two people), full-body,

upper-body, facial, side-view, faceless, headless, hand-

only, and leg-only, which are ten classes. In landscape
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photography, there are sea, mountain, forest, cloud, and

urban, which are �ve classes. While we focus on portrait

and landscape photography genres, we believe that this

work can be extended to other genres as well.

Knowing the photo genres and categories help our

framework guide the photographer more adequately be-

cause it retrieves better-related results based on the

photographer preferences. The downside can be the low

coverage or a limited number of contents on the leaves

of this hierarchical tree of the photo styles, but the com-

prehensive dataset addresses this potential issue.

4.2.1 Top-down Hierarchical Clustering

To distinguish a portrait from a landscape photo, the

number of people in the image is estimated by the max

(union) number of person-IDs higher than their corre-

sponding HIGH thresholds across the detectors in inte-

grated object detector (IOD). If the score for detecting

a person is lower than a LOW threshold for all detec-

tors in IOD, there is no person in the image. Then, if

there is a water-like, mountain-like, plant-like, cloud-

like, or building-like object in the image with total area

higher than 26.5% (optimized for landscape), the land-

scape category will be recognized as well. Otherwise, if

there is a person in the image, detecting the right cat-

egory by a decision tree is one heuristic approach, i.e.,

if the image contains a nose, two eyes, a hand and a

leg OR a nose, an eye, two hands and two legs, it will

be categorized as full body. Such combinations are de-

termined after trying tens of random images as ground

truth, because pose estimator model is not perfect and,

in some cases, the limbs are occluded. After examining

full-body, if the image contains a nose and two eyes and

one hand, it will be categorized as upper-body. But, we

do not follow this approach, because this hierarchical

approach for portrait images is not very accurate, as

some leaves of its decision tree have some correlations

like full-body and group categories. Also, the coverage

is not fair, since upper levels like full-body attract most

of the photos, and the rest will remain for the lower lev-

els.

4.2.2 Portrait Multi-class Categorization

Our more e�cient and accurate approach to automate

portrait categorization formulates the problem as a multi-

class model for support vector machines (MCMSVM).

The inputs are our feature vectors and the correspond-

ing class labels, and the trained MCMSVM is a fully

trained multi-class error-correcting output codes (ECOC)

model, while we are using 10 portrait categories or

unique class labels, it needs 45 (= 10(10 − 1)/2) bi-

nary SVM models with radial basis function (RBF or

Gaussian) as its kernel and a one-vs-one coding design.

We have annotated 5% (about 25K+) of portrait pho-

tos uniformly selected at random from the dataset as

the ground truth of the portrait categories. Then, we

train an MCMSVM with the feature vectors and the

corresponding labels of 80% (about 20K) of our ground

truth and leave the rest for testing our MCMSVM. Our

feature vector for each photo includes 40 di�erent fea-

tures as follows:

� General MAX: (1,2) max scores for detected people

from IOD, (3,4) max areas for the detected people

from IOD.

� Intersected Area: (5) intersected area between highly

probable people from IOD, (6,7) scores of the highly

probable people for each detector in IOD, (8,9) ar-

eas of the highly probable people for each detector

in IOD.

� Number of people: (10,11) number of people higher

than HIGH threshold for each detector in IOD, (12,13)

number of people with area higher than 5% for each

detector in IOD, (14) max number of people by score

from IOD, (15) max number of people by area from

IOD, (16) max of (14) and (15).

� Limb Features: (from 17 to 40) the limbs respec-

tively including nose, neck, right shoulder, right el-

bow, right wrist, right hand, left shoulder, left el-

bow, left wrist, left hand, right hip, right knee, right

ankle, right leg, left hip, left knee, left ankle, left leg,

right eye, left eye, eyes, right ear, left ear, ears which

add up to 40 features.

The output of this step for an image query is the

following unitary vector that shows its category (facial,

full-body, upper-body, two, group, side-view, leg, no-

face, hand, and no-head) as:

FI,cade = [ffacial1 ffullbody2 fupperbody3 f two4 fgroup5

fsideview6 f leg7 fnoface8 fhand9 fnohead10 ], (12)

where FI,cade shows the unitary category vector of the

image I by CaDe detector, and only one of the vector

element is one and the rest are zero.

The mean average accuracy of our category detec-

tion is shown in Table 4 in Section 7.2.6 for the dataset

images divided by various styles. The CaDe indexing

of the dataset results the distribution of the portrait

categories shown in Figure 18 in Section 7.2.6. Conse-

quently, the number of photos in the categories con-

taining full-body, upper-body, facial, group, two, and

side-view is adequate.
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4.3 Artistic Pose Clustering (ArPose)

Posing, one of the essential ingredients of the portrait

photography, could substantially di�erentiate between

amateur and professional shots. Having little experi-

ence in portrait photography, �nding correct postures

or coming up with novel poses is hard for amateur pho-

tographers. Hence, it is vital for our system to have an

understanding of di�erent poses and how to categorize

them. Recently, there have been numerous e�orts in the

computer vision �eld for human pose estimation of im-

ages and videos. With the rise of deep learning models,

these approaches are getting more accurate and more

robust. One of the state-of-the-art algorithms for pose

estimation is RTMPPE (Cao et al., 2017), where they

use VGG features as an input and then exploit a two-

stage CNN to �nd the probability of joints and their

connections together. Their architecture predicts vec-

tor �elds to represent the associative locations of the

anatomical parts via two sequential prediction process

exposing the part con�dence maps and the vector �elds

on MSCOCO (Lin et al., 2014) and MPII (Andriluka

et al., 2014) datasets. Although RTMPPE extract body

joints in images, these joints are merely considered as

our features for pose detection. Hence, we use two sets

of features on top of RTMPPE in order to de�ne the

distance between di�erent poses. These set of features

are scale invariant, thus regardless of the scale of the

human body in images, we measure the similarity of

two poses. These features are de�ned as follows:

� Joint to Line Distance (J2L): Li et al. (2017)

apply this distance in their action recognition sys-

tem from body joints skeleton. They capture the dis-

tance of each joint from any line that connects two

other joints. To have the scale invariant distance, we

normalize these distances with the maximum J2L

distance in each body in the picture. Having the

joint jl and the line crossing two joints, jm and jn,

Joint to Line Distance is calculated as follows:

J2L(l,m, n) = 2S∆lmn/||jm − jn||2, (13)

where S∆lmn is the area under the triangle formed

by three joints. Based on the total number of joints

in each body, which is 18, and the total number of

di�erent distances is 18×
(
17
2

)
= 2448.

� Skeleton Context (SC): Kamani et al. (2016,

2017) introduce a scale invariant feature applied to

a skeleton matching task. Skeleton context is a polar

histogram of each point in the skeleton indicating

the angular and distance distribution of other points

in the skeleton around that point. We bene�t from

the angular distribution of each point and create an

18× 18 angular matrix for each body in the image.

These features are designed to capture the relative po-

sition of each joint with respect to other points, hence,

they are used as a measure of distance between di�er-

ent poses. Next, we use these features to cluster images

based on various poses.

4.3.1 Pose Clustering

To rank each body posture in images, and �nd the

nearest professional poses to the amateur one in the

query image, we use a clustering method. The clus-

tering method should be able to distinguish between

di�erent poses and group similar ones using the fea-

tures explained in Section 4.3. In order to do so, we use

two clustering algorithms, Kmeans and Deep Embed-

ding (Xie et al., 2016). We compare the result of these

two clustering on this task. In order to do the clustering,

we �rst need to determine the number of clusters. There

are several heuristic methods to estimate the optimal

number of clusters for each dataset, including but not

limited to elbow and silhouette methods. In this cluster-

ing task, having too many clusters would diminish the

novelty and diversity of the results, in a sense that it

tries to have samples as close as possible to one cluster.

On the other hand, keeping the number of clusters low

would a�ect the quality of clustering, such that irrele-

vant poses might appear in the same cluster. The result

of our experiment using elbow method shows that the

optimal number of cluster heads is around 10-15 as de-

picted in Figure 19 in Section 7.2.7.

After �nding the number of clusters, we set up two

clustering algorithms, namely, Kmeans and Deep Em-

bedding Clustering (DEC). As for the Kmeans, the only

parameter that we should set is the number of clusters,

but in DEC we should setup the auto-encoder network

in addition to the number of clusters. As suggested

by Xie et al. (2016) and tested by ourselves, the network

with 4 layers of encoder consisting of 500, 500, 2000,

and 10 neurons in each unit performs astonishingly well

on the clustering task of di�erent supervised datasets

including but not limited to MNIST (LeCun et al.,

1998), STL (Coates et al., 2011), and REUTERS (Lewis

et al., 2004). Although DEC works great on these su-

pervised datasets, it has not been tested on an actual

unsupervised dataset, simply because there is not a

gold standard to evaluate the performance on those

datasets. However, visual data like the unsupervised

portrait dataset reveals how these algorithms perform,

based on human vision evaluation of the output. Hence,

we compare the results of this deep model for clustering

with the base clustering algorithm, Kmeans.

In Kmeans, to de�ne the probability that each sam-

ple is in the cluster or the degree to which each sample
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Fig. 7: First 8 clusters derived from our algorithm on the portrait dataset. Each row represents the top poses of

each cluster �tted in a line.
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Fig. 8: The rest of 7 clusters derived from our algorithm on the portrait dataset. Each row represents the top poses

of each cluster �tted in a line.

belongs to a cluster, we use the same quantity in fuzzy

C-means clustering (Dunn, 1973):

qij =
1∑K

k=1

(
||xi−cj ||2
||xi−ck||2

) 2
m−1

, (14)

where xi is the sample, cj is the center of the cluster

j, and m is positive real number greater than 1 which

de�nes the smoothness of the function. qij represents

the probability or degree to which each sample belongs

to a cluster. Also, DEC has a similar quantity de�ned

by Xie et al. (2016), using Student's t-distribution:

qij =
(1 + ||zi − cj ||22/α)−

α+1
2∑

j′(1 + ||zi − cj′ ||22/α)−
α+1
2

, (15)
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in which zi is the embedded version of xi, and α is

the degree of freedom in Student's t-distribution. Us-

ing these metrics we estimate the probability that each

sample belongs to a cluster.

The qualitative results of Kmeans-based clustering

algorithm are depicted in Figure 7 and Figure 8, show-

ing the top ranked poses in all �fteen major clusters,

and those of DEC algorithm are depicted in Figure 9

showing the best ranked poses of �rst 5 clusters. The

top images are ranked based on their probability, calcu-

lated as above. As shown in the �gures, Kmeans clus-

ters surprisingly better represent poses in images, that

is, di�erent pose clusters distinguish between di�erent

poses and each cluster represents visually the same pose.

However, DEC fails to accomplish the goal of cluster-

ing task based on poses of human subjects. Since the

input features are intelligently chosen to be related to

the goal, the input space is linearly separable, however,

the result of the DEC shows information loss in the au-

toencoder. We tried the Kmeans algorithm with PCA

to reduce the dimension of the input space to 10 (as it is

in the output of the autoencoder in DEC), and still the

results of the Kmeans surpasses DEC's. Through that,

we successfully categorize the input portrait image and

retrieve similar poses close to the query or novel ideas

in that pose category based on the probability of the

poses.

4.4 Construction of Composition Model

In order to index all photos in our dataset, we de-

compose their values and construct our composition

model (CM). If more photos are added to the dataset,

we execute the decomposition for them, and update

our composition model. In fact, FIi,vgg, FIi,iod, FIi,cade,

FIi,arpose and other aesthetic information vectors for all

(∀i) images are calculated and appended to correspond-
ing matrices respectively including generic feature ma-

trix Mvgg, integrated object detector matrix Miod, cat-

egory detector matrixMcade, artistic pose detector ma-

trix Map, statistics matrix Mstat and gender matrix

Mgnd. Algorithm 1 describes di�erent steps of our de-

composition method precisely to make each row of our

composition model. We have:

∀ feat ∈ {vgg, iod, cade, ap, stat, gnd} ,
∀i ∈ {1, ..., N} ,

FIi =



FIi,vgg
FIi,iod
FIi,cade
FIi,ap
FIi,stat
FIi,gnd

 , (16)

where �feat� is feature type from the set {vgg, iod,

cade, ap, stat, gnd}, FIi is the feature vector of the

image Ii. Then, we compute the corresponding feature

matrix.

Mfeat =


FTI1,feat
FTI2,feat
...

FTIN ,feat

 , (17)

M = [Mvgg Miod Mcade Map Mstat Mgnd] , (18)

=


FTI1
FTI2
...

FTIN

 ,

where matrixMfeat is the corresponding feature matrix

containing feature vector of each image in each row. The

�nal feature matrixM is the composition model matrix

which is the concatenation of all feature matrices or

equivalently all feature vectors.

5 Composition of Visual Elements

The goal of composition step is to retrieve related pho-

tography ideas as highly-rated photos from our col-

lected 500px dataset satisfying the proximity to the de-

composed aesthetics-related information of the query

image. In fact, the input to this step is the decomposed

values of the image query and user-speci�ed preferences

(USP) with our composition model. The output of this

stage is a collection of well-composed images from the

dataset. If we focus on portraits, we desire a feedback

that contains well-posed portraits with similar seman-

tics but better aesthetic quality w.r.t USP. The �inter-

action� between the subject(s) and the objects in the

image is important because system's proposed compo-

sition depends on them.

As we have collected the 500px dataset contain-

ing generally well-composed images, we should dig into

the dataset and look for images with �pretty� simi-

lar color, pattern, category, pose, or object constella-

tion where the term �pretty� is framed by USP to ad-

dress the user's needs and subjectivity. The existence of

this professional-quality dataset makes it possible that

the retrieved photos have highly-accepted photography

ideas by the people. Our image retrieval system is not

supposed to �nd images with exactly similar colors, pat-

terns, or poses, but it �nds images with better compo-

sition having similar semantic classes. Thus, the loca-

tion of the movable objects does not matter, but the

detected objects are important.
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Fig. 9: Qualitative results of four clusters derived from the portrait dataset by DEC algorithm. Each row represents

the top poses in each cluster. The DEC algorithm fails in clustering poses because the poses in the same cluster

are not all consistent.

To look for a semantically composed version with

respect to the image query, we exploit all of the de-

composed values of the image query. Because we do

not assume the query image taken by an amateur pho-

tographer to be well-composed enough to be the basic

query for our personalized aesthetics-based image re-

trieval (PAIR). In fact, we just want to understand the

location/setup around the subject, and then based on

the scene ingredients, a well-composed image taken by

a professional is proposed to the photographer.

5.1 Similarity Scores and Normalization

Having our composition model for all images in the

500px dataset and the query image, we �rst calculate

the similarity score between the query image and any

image in the dataset. The similarity metric is di�er-

ent for each detector. For generic CNN descriptors is

just matrix Mvgg by the query vector Fvgg multiplica-

tion. Similarly, category detector has a matrix by vector

multiplication. For integrated object detectors, we use

Gaussian function after masking unrelated objects. For

statistics and gender information, it is trivial as in the

following equations.

Svgg(I,Q) = FTI,vggFQ,vgg , (19)

Scade(I,Q) = FTI,cadeFQ,cade , (20)

Siod(I,Q) = e−(
∑

(FI,iod◦sgn(FQ,iod)−FI,iod))2 , (21)

Sstat(I,Q) = FirstColumn(Istat) = Iratingstat , (22)

Sgender(I,Q) =

{
1, if FI,gender = FQ,gender

−1, otherwise
(23)

where FT means the transpose of F , e is a mathe-

matical constant about 2.72, the ◦ operation is the

element-wise multiplication, sgn(.) is the sign function

operating on each element separately. Also, Svgg(I,Q),

Scade(I,Q), Siod(I,Q), and Sstat(I,Q) are similarity

score values between image I and image Q respectively

for generic CNN descriptors, category detection, inte-

grated object detectors, and statistics and gender infor-

mation.

The similarity score function is easily generalized

to a function between two di�erent set of images, i.e.,

Im×1 and Qn×1 can be a set of images not only one

image, and the output will be a m × n matrix. Since

we want to score the similarity between the images in
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Algorithm 1 Decomposition
Input: image query Q.
Output: the feature vector of the query FTQ .

1: procedure Decomposition(Q)
2: Get the generic features of the query:

FQ,vgg ←
[
fvggQ,1 fvggQ,2 ... fvggQ,4096

]T
3: Get stat and gender features:

FQ,stat ←
[
fratingQ,1 fviewsQ,2

]T
FQ,gnd ←

[
fmaleQ,1 ffemaleQ,2 funknownQ,3

]T
4: Get the tensor of the object detector (od):

TQ,odm×n×2 ← Object_Detect(Q)
5: Get the tensor of the scene parser (sp):

TQ,spm×n×2 ← Scene_Parse(Q)
6: Get the tensor of the pose estimator (pe):

TQ,pem×n×2 ← Pose_Estimate(Q)
7: Get the center of the mass coordinate of the query:

cQ ←
∑
i,j ‖[i,j]−[0,0]‖k×S(i,j)∑

i,j ‖[i,j]−[0,0]‖k
8: Get the centric distance feature of the query:

DQ(i, j)← 1
K
e−‖[i,j]−c

Q‖
k

9: Get the weighted saliency ID map for the query:
CQ(i, j)← SQ(i, j)DQ(i, j)

WQ(i, j)← max
(
TQ,od∗,∗,2 , T

Q,sp
∗,∗,2

)
CQ(i, j)

10: Get the IOD feature vector as Eq. 12:

fimpk ←
∑
∀objID(i,j)=kW (i,j)∑

∀i,jW (i,j)
, ∀k ∈ {1, 2, ..., 210}

FQ,iod ←
[
fimp1 fimp2 ... fimp210

]
11: Get the category feature FQ,cade as Eq. 12.
12: Get the artistic pose feature FQ,ap as Eq. 13.
13: Get the whole feature vector:

FTQ =
[
FTQ,vgg FTQ,iod FTQ,cade FTQ,ap FTQ,stat F

T
Q,gnd

]
14: If Q is a dataset image, add F tQ to the last row of com-

position model matrix M in Equation 19, otherwise the
output is used in Algorithm 2 to retrieve better composed
photos and match with the �nal shot.

15: end procedure

the 500px dataset (say I) and an image query (Q), in

the above equations, vector F tI,det will be substituted by

matrixMdet, and the output will be a similarity vector,

while det can be any detector as follows:

det ∈ {vgg, iod, cade, arpose, stat, gender}

To make the scores uniform across various detectors,

we normalize each detector score vector dividing by the

summation of the whole output. Thus, each detector's

similarity score is like a probability distribution over all

images. We have:

SNfeat(I, Q) =
Sfeat(I, Q)∑

i∈I,q∈Q Sfeat(i, q)
, (24)

feat ∈ {vgg, iod, cade, arpose, stat, gender} , (25)

where SNfeat(I, Q) is a normalized similarity score ma-

trix between each image in I and each image in Q for

detector feat which can be any of the mentioned de-

tectors. Also, we combine the similarity scores across

various detectors to create a tensor of similarity scores

for each pair of images from (I, Q). We have:

SNd×m×n(I, Q) (26)

=
[
SNvgg SNiod SNcade SNarpose SNstat S

N
gender

]
,

where SNd×m×n(I, Q) is a tensor of size d×m×n where

d is the number of the feat detectors (||feat|| here is
6), m is the number of the images in I, and n is the

number of the images in Q.

5.2 User Preferences and Ranking

The user-speci�ed preferences are a probability vector

containing the weights of the decomposed vectors of the

image query. We have:

WUSP (27)

= [Wvgg Wiod Wcade Warpose Wstat Wgender]
T
,

whereWUSP is a d×1 vector showing the weights of the
user for each feat detector, and �t� shows the transpose

operation. Then, to retrieve the highest-ranked candi-

dates as the results, the normalized similarity score ma-

trix is multiplied by the USP vector. Consequently, we

have:

Vpref (I, Q) =WT
USPS

N (I, Q) , (28)

where Vpref (X, Q) is the user's preferred image vector,

and if we sort it in a descending manner with respect to

the vector values, the indexes of the rows represent the

highest-ranked candidates with the nearest feedbacks

to the image query (Q). The whole process of the pho-

tography idea retrieval for an input image query (Q)

is shown in Algorithm 2, and our experimental results

show the quality of the results. Also, sample results for

some queries with USP are shown in Figure 10.

5.3 O�ine Indexing and Real-time Searching

Our framework consists of the �ows of indexing, search-

ing, and matching shown in Figure 2. Practically, there

are many challenges in image retrieval systems (Smeul-

ders et al., 2000; Lew et al., 2006; Datta et al., 2008) as

well as in our case. To improve the performance of our

image retrieval system, we compute the decomposition

step for all images (i.e., indexing as an o�ine process).

Indexing procedure is lengthy for the �rst time, but at

the time of update, it is faster because the detections

for an image is real-time using GPU. Furthermore, in-

dexing procedure for our retrieval system organizes the

decomposed values of the images into categorized ma-

trices. Consequently, the composition step is real-time

using GPU, as it just extracts the decomposed values
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Fig. 10: Qualitative results of the composition step. Each row shows a query image and the images retrieved w.r.t.

the query and user-speci�ed preferences (USP). Last two rows show failed cases because of an undetected object

(e.g. helicopter) or incompletely entered USP. The USP for each row is: 1) Wcade = Wstat = 0.5, 2) Wcade =

Wvgg = 0.5, 3) like (2), 4) like (2), 5) Wcade =Wiod = 0.5, 6) Wgender =Wvgg = 0.5, 7) Wgender =Wiod = 0.5, 8)

Wstat =Wvgg = 0.5, 9) Wcade =Wvgg =Wiod = 0.33, and 10) Wvgg =Wstat = 0.5.
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Fig. 11: The frequency of the portrait shots with respect

to the highly-requested portrait categories.

of the query image similar to updating process, and

then �nds the target similar images, and �nally re-

trieves best results from the dataset with respect to

USP and normalized similarity score vector (Eq. 28).

Having various semantic classes for portrait genre in

the dataset, we have indexed the 500px dataset from

previous step. Figure 11 depicts the results as the num-

ber of portrait shots for some of the highly-frequent

portrait categories.

6 Matching

Professional photographers arrange the photograph from

top to down (general to detail) step-by-step, while there

are many to-do lists and not-to-do lists for photography

in his/her mind. We want to create the same environ-

ment in a smart camera to accompany an amateur pho-

tographer gradually to his/her perfect shot. From com-

position step, we retrieve the proper photography ideas

given a query shot from the camera. We assume that

the photographer has chosen some of the retrieved im-

ages as a preferred style set, and disregarded the others

as an ignored set. Now we explain how to capture the

proper moment of the subject in the scene, and trigger

the �moment shot� for the camera.

6.1 Pose Shot

The best-�tting genre for matching step is portrait pho-

tography that we start with, and then we extend for

general genre. The variant component in our framework

is the human pose. In this scenario, it is assumed that

the user has no personal preference on human pose, i.e.,

the user has given zero weight to the ArPose detec-

tor to see various proper poses via PAIR, and then the

user has selected a preferred style set from the available

choices. In this case, we need a mechanism to continue

guiding the user to a desired shot by tracking his/her

pose via camera view�nder.

The relative positions of the human body compo-

nents (including nose, eyes, ears, neck, shoulders, el-

bows, wrists, hips, knees, and ankles) with respect to

the nose position as portrait origin are consisting our

pose model. Preferably, we would like to start from the

position of the nose (J0 = (0, 0)) that is connected to

neck (J1), right eye (J2), and left eye (J3) are connected

to right ear (J4) and left ear (J5) as they are on a plane

of the head. Also, shoulders (J6 and J7) are recognized

by a length and an angle from neck, and similarly el-

bows (J8 and J9) from shoulders, wrists (J10 and J11)

from elbows, hips (J12 and J13) from neck, knees (J14
and J15) from hips, and ankles (J16 and J17) from knees,

i.e. these joints are connected as follows:

Pre (Ji) = J0 , i ∈ {0, 1, 2, 3} , (29)

Pre (Jj) = J1 , j ∈ {6, 7, 12, 13} , (30)

Pre (Jk) = Jk−2 , (31)

k ∈ {4, 5, 8, 9, 10, 11, 14, 15, 16, 17} .

Thus, we always calculate the absolute position using

2D polar coordinates as follows:

Ji = Jj + ri,j .e
iθi,j , i ∈ {0..17} , (32)

where j = Pre(i) i.e. part j is the previous part con-

nected to part i, ri,j is the length from joint Ji to joint

Jj , θi,j is the angle between the line from joint Ji to

joint Jj and the line from joint Jj to joint Pre(Jj),

and the line crossing J0 is the image horizon. i is the

unit imaginary number. Note that for a 2D human

body {ri,j |∀i, j} are �xed, but θi,j ;∀i, j can be changed

to some �xed not arbitrary extents. Similarly, having

3D pose-annotated/estimated single depth images, we

can calculate the relative 3D position of the joints us-

ing spherical coordinates. Thus, we have such action

boundaries for joints as follows:

θmini,j ≤ θi,j ≤ θmaxi,j , j = Pre(i) , (33)

φmini,j ≤ φi,j ≤ φmaxi,j , j = Pre(i) . (34)

As a result, a human body pose (J) is represented by:

Jk =
(
Jk1 , J

k
2 , ..., J

k
17

)
, (35)

where Jk is the pose for k-th person (or k-th image

with one person), and ∀i ∈ {1..17} : Jki is the i-th co-

ordinate of the k-th person. Also, we need a distance

metric to calculate the di�erence between two pose fea-

tures. Thus, we de�ne the distance metric as follows:

D
(
Jk, Jl

) .
=

17∑
i=1

‖Phase(Jki )− Phase(J li )‖q , (36)

where D (.) is the distance operator, Jk is the pose fea-

ture for k-th person (or k-th image with one person),

∀i ∈ {1..17} : Jki is the i-th coordinate of the k-th

person, and ‖.‖q (usually L1-norm or L2-norm) is the
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Lq−norm function of two equal-length tuples. Our cho-

sen function to track phase, Phase(Ji), is sin(θi,i−1)

which θi,i−1 (the angle between current joint and the

previous one) is from −Π/2 to +Π/2. Because the

length of the limb may change by going far or near, but

the angles between consecutive limbs matter for posing

purposes.

Now, the camera may take and hold several photos

gradually from the scene, and �nally choose the best

among them to save onto the camera storage. Actu-

ally, our matching algorithm searches among the taken

photos to get the nearest pose to one of the collected

ideas. The problem is formulated as an integer program-

ming problem to �nd the best seed among all photog-

raphy ideas. Given the distance operator of two pose

features explored in 36, we construct our optimization

problem by maximizing the di�erence of the minimum

distance of the ignored set and the minimum distance

of the preferred style set of taken photos. Mathemati-

cally, we compute the following optimization problem

subject to 33 and 34:

Iw = argmax
∀Ii∈It

(37)(
min
∀Qgj∈Qg

D
(
JQ

g
j , JIi

)
− min
∀Qdk∈Qd

D
(
JQ

d
k , JIi

))
,

where Iw is the wish-image, It is the set of taken photos,

Qg is the set of ignored ideas, Qd is the set of preferred

ideas, D (.) is the distance operator in 36, and Jx is

the pose for x-th image with one person in 35. The

optimization problem in continuous mode (not over all

taken image set) may have (a) solution(s) in feasible

region, and in L1-norm case, it is equivalent to multiple

linear programming problems but the complexity of the

problem is exponential. Further, the solution does not

always give the desired shot.

6.2 User Favorite Shot

Given a query shot from the camera, related photog-

raphy ideas have been already retrieved. Suppose that

the photographer selects a preferred style set, denoted

as C = {C1, C2, ..., Cm}, and we also have a set of

shots from camera called next query shots, denoted as

Q = {Q1, Q2, ..., Qn}. The problem of �nding the user

favorite shot among query shots while satisfying the

closest similarity score to the preferred style set is an

integer programming. We have:

Qfav = argmax
q∈Q

∑
j∈{1,...,m}

WT
USPS

N (Cj , q) , (38)

where Qfav is the favorite shot, Q is the set of the

query shots by camera, W t
USP is the transpose of the

Algorithm 2 Composition and Matching
Input: query Q, user pref. WUSP , and the set of the

images in the 500px dataset I.
Output: user favorite shot Qfav.

1: procedure IdeaRetrieval(Q, WUSP , I)
2: Get F tQ from Algorithm 1.
3: Get the similarity score through Eq. 23, 25, and 27:

SN (I, Q) =
[
SNvgg SNiod SNcade SNarpose SNstat S

N
gender

]
4: Get the preferred image vector through Eq. 28:

Vpref (I, Q) = W t
USPSN (I, Q)

5: Retrieved_Indexes← Index_Sort(Vpref (I, Q))
6: Show_Top(Retrieved_Indexes)
7: Now, the user selects some of the retrieved results,

and the camera takes multiple shot as Q.
8: Find the favorite shot through Eq. 38:

Qfav = argmaxq∈Q(
∑
j∈1,...,m(W t

USPSN (C, q)))
9: Take Qfav as user favorite shot.
10: end procedure

user-speci�ed preference vector, and SN (Cj , q) is the

similarity vector between query q and each photo Cj
in the preferred style set of the user C. The compu-

tational detail of the composition and matching steps

has been explained in Algorithm 2 and inspired from

(Diyanat et al., 2011; Farhat et al., 2011, 2012; Farhat

and Ghaemmaghami, 2014).

Mathematically Q set is not �nite, or its size n is

not bounded. Also, there are many constraints such as

color value ranges, human pose angles, category limits,

and etc. In the reality, the number of the query shots is

limited, and the matching solver gradually determines

and updates the user favorite shot. But the solution

is not necessarily optimal, because �nding the optimal

shot needs the whole shot space which is impractical.

The good news is that the user can follow the retrieved

professional shots to optimize his/her photography ad-

venture, and the last shot would be close enough to the

optimal shot.

Our approach to giving hints to the user includes

two steps: 1) de�ning the query shot space with dy-

namic parameters in the scene like movable objects or

human pose, 2) �nding the max over the de�ned space.

This second step is similar to pose shot approach, and

some extra parameters such as photographic lighting

may be adjustable as well. The solution of the prob-

lem can give a hint to the user to make a change in

his/her lighting condition, pose, or any other dynamic

parameter.

7 Experiments

In the following sub-sections, we describe our experi-

mental results which are categorized into di�erent com-

ponents of our method including (i) the dataset, (ii)
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the decomposition step, and (iii) composition step. Fur-

thermore, the decomposition step includes object detec-

tor, pose estimator, scene parser has multiple parts to

demonstrate the e�ectiveness of our method compared

to an state-of-the-art available approach.
7.1 Dataset Properties

We have collected the images in the portrait and land-

scape categories from 500px Website and saved them as

smaller images where their highest dimension has been

resized to 500 pixels. Then, we have collected available

metadata for each image including the number of views,

the average ratings, the number of vote clicks, and the

number of favorite clicks. Both jobs are very time con-

suming, and we are still crawling and managing to up-

date the dataset for better coverage with up-to-date

data.

We conduct statistical experiments to get the prop-

erties of the collected dataset. The best way to show

the distribution of the number of views, the number of

votes, and the number of favorites is using the logarith-

mic bin interval versus the frequency or probability of

each bin interval. Because, these properties change dra-

matically in linear scale, and their trends can be cap-

tured intuitively in logarithmic x-axis. But, we show

the average ratings using a normal bin interval. Fig-

ure 12 illustrates the distributions of the view counts,

ratings, vote counts, and favorite counts of the dataset.

Each bar represents a bin where its interval is from the

corresponding number written under the bin to right

before the number written under the next bin. The last

bin interval is from its corresponding number to the

next predictable number in the sequence of the axis.

Figure 12 shows that most of the images have been

seen more than 100 times, i.e., 500px Website has a live

community, while many images have at least 1-10 votes

or favorite clicks. Having a rating higher than 10 is con-

sidered high by us, because the rating trend changes its

slope direction from bin 0-9 to bin 10-19 negatively,

and after that, the slope will positively grow until bin

40-49. Most of the images in the dataset have a rating

more than 40 which is a very high rating, and it indi-

cates that the 500px community of the photographer

has many highly-rated photos.

7.2 Decomposition Analysis

To show the improvement and the e�ectiveness of our

decomposition step, we conduct some experiments on

various detectors used in our framework including ob-

ject detector, human pose estimator, and scene parser.

Also, we examine our hysteresis detection, category de-

tector, and pose clustering.

Method MAP person seat plant animal car

YOLO 52.0 73.5 40.1 33.2 71.2 54.8

Ours 60.2 78.1 53.2 46.8 69.8 58.2

Table 1: The accuracy comparison between our object

detector model versus the YOLO model on the 500px

dataset to detect some of its known objects.

7.2.1 Object Detection

Our network for object detection is inspired by YOLO

as it is fast compared to the others(Redmon et al.,

2016). The output of the network is some bounding

boxes where detected objects are respectively with their

detection probabilities. As we have tested, non-person

object detection of YOLO under 30% probability is not

accurate enough on the 500px dataset, and any wrong

detection a�ects all pixels in the bounding box based

on our method. As a result, we divide the input im-

age into bigger chunks of 5x5 grid for a higher accu-

racy, and small objects are less important for detection

as a secondary subject of photography. We implement

our model as 24 convolutional layers with two fully

connected layers. We train the whole network on Im-

ageNet (Deng et al., 2009) for about a week, and three

times on a labeled subset of 768 common failure cases

(CFC) from the 500px dataset.

We evaluate our model compared to YOLO on a test

subset from the dataset. We use the regular MAP on

all intended objects. Table 1 shows the MAP and the

average accuracies of some objects (person, seat, plant,

animal, and car) for our trained model versus YOLO

model. The �seat� average accuracy is the average for

�seat, bench, and chair�, �plant� average accuracy is the

average for �plant, tree, and grass�, and �animal� aver-

age accuracy is the average for �bird, cat, dog, cow, and

sheep�.

7.2.2 Pose Estimator

Our pose estimator architecture has two parallel lines

predicting limb con�dence map and encoding limb-to-

limb association, which is inspired by RTMPPE archi-

tecture (Cao et al., 2017). We adjust the transformation

parameters of the architecture including maximum ro-

tation degree to 60, crop size to 500, scale min to 0.6

and scale max to 1.0. Since higher rotation degrees and

bigger persons are used frequently in our work. Then,

we train our model on MSCOCO (Lin et al., 2014),

MPII (Andriluka et al., 2014) and three times on our

317 CFC from the 500px dataset.

To evaluate the performance of our pose estima-

tor model, we leverage MAP of all limbs like Deeper-

Cut (Insafutdinov et al., 2016). The comparison results
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Fig. 12: The properties of the managed 500px dataset respectively from left to right including (a) the logarithmic

distribution of the view counts, (b) the distribution of the ratings, (c) the logarithmic distribution of the vote

counts and (d) the logarithmic distribution of the favorite counts.

Method MAP hea sho elb wri hip kne ank

RTMPPE 73.3 90.4 83.3 74.6 65.1 70.9 66.3 62.6

Ours 74.3 92.2 86.7 75.3 64.8 70.4 67.3 63.4

Table 2: The comparison between our pose estimator

model versus the RTMPPE model on the 500px dataset

to detect body parts.

of the MAP performance between RTMPPE and our

approach on a subset of 507 testing images from our

dataset are shown in Table 2, where the left limb and

the right limb are merged.

7.2.3 Scene Parser

To parse any scene, we ignore confused categories like

building and skyscraper. We place the related objects

in the same object category. Also, our scene parser ar-

chitecture exploits a 4-level pyramid pooling module

(Zhao et al., 2017) with sizes of 11, 22, 33 and 44 re-

spectively. We do not consider detecting small objects

in the scene since they are mostly not the main subject

of the photographer.

To train our model, we use ADE20K dataset (Zhou

et al., 2017a) with 576 common failure cases annotated

by LabelMe (Russell et al., 2008). To evaluate scene

parsing performance, pixel-wise accuracy (PixAcc) and

mean of class-wise intersection over union (CIoU) are

measured. The performance values of our scene parser

model versus PSPNet (Zhao et al., 2017) with 101-

depth ResNet is shown in Table 3 where indicates better

PixAcc and CIoU than PSPNet has been achieved on

the 500px dataset.

7.2.4 Hysteresis Detection

Hysteresis detection covers more photos by allowing

the union of all images above HIGH thresholds across

Method Pixel Accuracy (%) Mean IoU (%)

PSPNet 74.9 40.8

Ours 78.6 42.5

Table 3: The accuracy comparison between our scene

parser model versus the PSPNet model with 101-depth

ResNet on the 500px dataset.

the detectors. We show how we con�gure these tun-

able thresholds, while we trade-o� between the total

coverage and the partial accuracies by the detectors.

When we have more than one detector with common

detectable objects, we consider multiple features from

all detectors to decide about the detection of the com-

mon objects. For example, �person� is a common object

between object detector and pose estimation. We per-

form our pose estimator on our ground-truth images

with a person or without any person from the dataset,

and calculate (a) the detection score (as mentioned in

Eq. 7) and (b) the normalized area (i.e. the detected

object area divided by the image area) of the dominant

person (i.e. the person with the highest score) detected

in each image as our pose estimator features. Also, we

perform our object detector on those images, and com-

pute (c) the detection probability and (d) the normal-

ized areas of the dominant person (i.e. the person with

the highest probability) detected in each image as our

object detector features.

Figure 13 shows the distributions of the features ob-

tained from our pose estimator and our object detector

for �person� as a common object between the pose es-

timator and the object detector. In some images, no

person is detected by the pose estimator and the object

detector, because the pose estimator or the objector

have detection error or actually there is no person in

the image. We consider such detections as non-person

object detection. Figure 14 shows the distributions of

those features obtained from our pose estimator and

our object detector, when there is no person in our
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Fig. 13: The distributions of (a) the score obtained from the pose estimator, (b) the normalized area obtained from

the pose estimator, (c) the detection probability obtained from the object detector, and (d) the normalized area

obtained from the object detector for our ground-truth images with a �person� as a common detectable object by

the pose estimator and the object detector.

ground-truth images. We have removed the frequency

of the �rst component, i.e. score or area == 0, from

all of the curved in Figure 14, because probability of

zero score/area is very high and we want to bold the

probabilities of the other score/area values.

Figure 13a shows pose estimator's score does not

have enough sensitivity to detect a person, because the

distribution is similar to a uniform probability mass

function (PMF). Similarly, Figure 13d shows object de-

tector's normalized area does not have enough sensi-

tivity to detect a person, because the distribution is

pretty uniform. But, object detector's probability in

Figure 13c and pose estimator's normalized area in Fig-

ure 14b are not similar to uniform distribution, and we

can infer some cut-o� thresholds from them.

First, we derive the 2D probability density function

(PDF) of the these mutual features including the nor-

malized area by the pose estimator and the detection

probability by the object detector. Second, we deter-

mine the 2D receiver operating characteristic (ROC)

curve of these two parameters as a heat map. Finally,

we search on the heat map and �nd the optimal point

for these two mutual features. As shown in Figure 15,

it can be inferred from 2D ROC of these two features

that the optimal cut-o� thresholds for �person� object

detection in an image are object detector's probabil-

ity 40% and pose estimator's normalized area 10% that

leads to a detection accuracy (i.e. 92.2%) higher than

other detectors' accuracy solely.

7.2.5 Indexing with Integrated Object Detection

As shown in Figure 2, we do indexing of the 500px

dataset by performing various detections. It is observed

that once we integrate the object detectors in the dataset,

all of the potentially detectable objects appear in the

output. In addition, by collecting and distributing the

results, the distribution (i.e., the frequency of the total)

of the semantic classes detected in our dataset except

for the highly-repetitive ones ("person" and "wall") is

illustrated in Figure 16.

The detectable objects by the IOD are not complete

list of all available objects in any photo, but they can

cover mostly-used objects in the photos. To investigate

the case, we manually extract the available objects in

1600 random images from the dataset. Figure 17 shows

the distribution of the objects highly available in the

photos of the dataset.

7.2.6 Portrait Category Detection

As mentioned in Section 4.2, we start with top-down

hierarchical clustering to specify the genre of the in-

put image, and then we do multi-class categorization

for portrait images. We train our model having 40 sug-

gested features on a set of 6407 annotated portraits

from the 500px dataset, and we test the model on an-

other set of 1508 annotated portraits. The mean average

accuracy of the model is listed in Table 4 categorized

by various styles.

Also, we just consider the �rst 16 features for ob-

ject detectors including general max and number of de-

tected people in the image as mentioned in Section 4.2,

and train a model using the same ground truth as be-

fore. The current model is our baseline model, because

it can be used for any other object detector, as the fea-

tures can be de�ned in other object detector domains as

well. To compare rationally with this baseline, we test

the same set of images from our ground truth. The sec-

ond line in Table 4 listed the baseline results. Because

we remove limb features, the baseline has no ability to

detect sub-genres such as hand-only, leg-only, no-face,

and sideview.

After portrait category indexing of the 500px dataset,

the distribution of the portrait categories with respect

to the number of corresponding images in each cate-

gory divided by the total number of images is shown

in Figure 18 stating the number of photos in full-body,
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Fig. 14: For the ground-truth images without any �person�, the distributions of (a) the highest score (if any)

obtained from the pose estimator, (b) the highest normalized area of the highest score object (if any) obtained

from the pose estimator, (c) the detection probability for the dominant object (if any) obtained from the object

detector, and (d) the normalized area of the dominant object (if any) obtained from the object detector.

facial full-body group hand leg no-face sideview two upper-body

Our CaDe 94.35 92.40 85.90 44.0 74.57 79.35 67.50 74.74 90.81

16-feat Baseline 61.81 77.50 62.81 N/A N/A N/A N/A 51.92 47.95

Table 4: The accuracy results of our category detector (CaDe) for ground-truth images from the 500px dataset

compared to a baseline.
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the pose estimator and the detection probability of the

object detector as a heat map.

Fig. 16: The distribution of the highly-repetitive seman-

tic classes detected in the dataset.

upper-body, facial, two, group, and side-view categories

are high, but there are not enough samples for face-less,

head-less, leg-only, and hand-only categories which is

not a big deal, because these categories are not very

popular.
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extracted.

Fig. 18: The distribution of the portrait categories with

respect to the number of corresponding images.

7.2.7 Artistic Pose Clustering

Regarding artistic pose clustering, we conduct an ex-

periment to cluster similar professional poses using our

features explained in Section 4.3. We do the clustering

with a various number of cluster heads, and we �nd the

optimal number of cluster heads for the 500px dataset

using elbow method. That being said, we use the el-

bow method and do the clustering 40 times with the

di�erent number of clusters ranged from 1 to 40. This

method calculates the sum of squared errors (the dis-

tance of each point to the center of its cluster) and it

is expected to see an elbow pattern in the plot of this
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Fig. 19: The result of elbow method on the dataset. We

could spot the elbow around 13-17 clusters. We are also

showing the �rst derivative of the distortion, to show

where it is going to �atten out.

error when the number of clusters is increasing. The

result of this method on the 500px dataset is depicted

in Figure 19 in Section 7.2.7, which indicates that the

best choice for the number of clusters in this dataset is

between 13 and 17.

7.3 User Study for Composition

Many computer vision papers compare with their peers

to show the e�ectiveness of their approach, but cur-

rently there exists no other similar or comparable sys-

tem in the literature to compare with our proposed

framework. To evaluate the functionality and the per-

formance of our method, and measure how much the

recommended photos are relevant to the query and help-

ful to the photographer, we conduct a quantitative user

study based on the human subject results to compare

our method with two other reasonable baselines. The

�rst baseline is a semantic and scene retrieval method

based on state-of-the-art CNN model (Sharif Razavian

et al., 2014) and the other baseline is a non-CNN re-

trieval method based on the color, shape, and texture

features (Mitro, 2016). To create the baselines, all 4096

generic descriptors via public CNN model (Chat�eld

et al., 2014) trained on ImageNet (Deng et al., 2009)

are extracted for the 500px dataset images as well as

the features of non-CNN method (Mitro, 2016).

We select a variety of image queries (38 queries)

based on many types of categories such as background

scene and semantics, single versus group, full-body, upper-

body, facial, standing versus sitting, and male versus

female. To be fair, we do not use customized queries as

shown in Figure 10, and we just focus on a single high-

lighted feature in each image query with the same ques-

tion throughout the study. Using a PHP-based website

with a usage guidance, the hypothesis tests are asked,

and the outputs of the methods are randomly shown in

each row to be chosen by 87 participants. Our frame-

work received 74.20% of the 1st ranks among the tests

Fig. 20: The results of CNN (1st row), non-CNN (2nd

row), and our method (3rd row) for a sample shot at

the left side.

compared to 20.76% CNN as 2nd rank and 5.04% non-

CNN as 3rd rank. Figure 20 illustrates the results of all

methods (CNN: 1st, non-CNN: 2nd, ours: 3rd row) with

respect to a similar shot at the left side. As it is realized

from Figure 20 and our study, because the other meth-

ods cannot capture genre categories, scene structure,

and corresponding poses of the query shot, it is common

as shown in the �gure that mixed categories are sug-

gested by other semantic/category/pose-agnostic meth-

ods. As we hierarchically index the 500px dataset and

recognize the right genre, category, pose and semantic

classes, our semantic/category/pose-aware framework

accessing to the indexed dataset can retrieve better re-

lated photography ideas.

As mentioned, the expected value of the accepted

recommended photos by the participants with respect

to the total number of recommendations including the

baselines is 74.20%. More accurately, the histogram of

the acceptability rate for the queries of the user study is

shown in Figure 21. The x-axis shows the acceptability

rate ranged from 0 to 1 with 0.1-width bins, i.e., what

percentage of the participants has accepted our recom-

mended photos for some queries. The y-axis shows the

frequency of our accepted recommendations by the to-

tal number of the examined corresponding queries (i.e.

probabilities) which fall into each bin. The histogram

has indicated that 23.2% of our recommended photos

were accepted by over 90% of the participants, 44.6%

of them with over 80%, 58.9% of them with over 70%,

and 92.8% of them with over 50%. Consequently, the

majority of the recommended photos are accepted with

a mean of 74.20%.
7.4 Runtime Analysis

For training purposes, we mostly used an NVIDIA Tesla

K40 GPU which took couple of days for the intensive
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Fig. 21: The histogram of the acceptability rate for our

recommended photos versus the total number of recom-

mendations including other baselines.

computations on the dataset. To analyze the runtime

performance of our method, we collect images with var-

ious styles and categories. O�ine processing (indexing)

of the 500px dataset is not included in the runtime re-

sults. We next perform IOD (including object detection,

pose estimator, and scene parser), CaDe, ArPose as

three parallel processes on those images to measure the

average duration of the decomposition step. We then

perform PAIR in composition step to get a ranked list

of retrieved results for each image. Also, we randomly

select the preferred style set, and perform the match-

ing algorithm for each image as a single available shot.

We sum up the average time for these three sequential

steps to get the average runtime. The runtime is roughly

proportional to the number of decomposed images be-

cause the IOD step which uses deep-learned models for

detection is time-consuming. Among the detectors in

IOD, pose estimator takes longer than the others and

pretty independent from the number of people in the

image with an average duration around 94.7 ms. Using

a parallel structure shown in Figure 2, the end-to-end

runtime is around 103.5 ms.

8 Conclusions and Discussions

We have collected a large dataset for portrait and land-

scape photography ideas and introduced a new frame-

work for composition assistance which guides amateur

photographers to capture better shots. As the number

of photography ideas increases, retrieving and matching

the camera photo directly with an image in the dataset

becomes more challenging. Furthermore, the retrieving

system not only �nds similar images but also searches

for images with similar semantic constellations with

better composition through decomposition and com-

position steps. After providing feedback for the pho-

tographer, the camera tries to match the �nal pose

with one of the retrieved feedbacks, and make an as-

tonishing shot. The performance of our framework has

been evaluated by various experiments. Another merit

of this work is the integration of the deep-based detec-

tors which can make the whole process automatic.

8.1 Genre Extendibility

The general idea behind this work can be extended to

other photography genres such as candid, fashion, close-

up, and architectural photography using other appro-

priate detectors. The criteria for one genre are generally

di�erent from those for another. For instance, the pose

is crucial in portrait photography, while leading lines

and vanishing points can be important in architectural

photography.

8.2 Enhancement in User Interaction

The user-speci�ed preferences (USP) should be quanti-

�ed by the individual, but it may be di�cult for them

to accurately adjust the detectors' importance for their

personal preference. They may want to do hierarchi-

cal preference, as some results are eliminated in each

branch when going down the user-speci�ed decision tree.

Qualitatively they check the results and come up with a

better decision, but it may be time-consuming for them.

One can optimize the decision weights for a speci�c user

after learning his/her behavior, and then they can just

request for the ordering (not the weight values). We be-

lieve that there is still room to improve the interactions

with the individual.

8.3 Clustering of Photography Ideas

Some future directions include working on an unsuper-

vised learning approach that can cluster all the images

based on various photography ideas. Recognizing the

ideas is not easy for amateurs, and one shot can have

multiple ideas. After clustering, we might detect new

ideas. Therefore, it would be interesting to explore a

metric to estimate the potential novelty of the current

shot based on computing similarity to other shots.

8.4 Innovative Shot

Another promising idea is to design a system where

the camera automatically detects an innovative situa-

tion and takes a shot. Conventional methods in ma-

chine learning just use the history of the �eld to help

amateurs take professional photos, and of course, these
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approaches can not go beyond it. After recognizing new

photography ideas, the system can think of it as a com-

pact space, not a �nite discrete space, and it attempts

to �nd a solution in this compact space. Fortunately,

the complexity of the problem can change from an in-

teger programming to a linear programming, but the

way we de�ne these compact spaces is hard based on

the complexity of �nding new photography ideas.
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