Tag Archives: Mohammad-Reza Pakravan

Game-theoretic model to mitigate packet dropping

Abstract:
Performance of routing is severely degraded when misbehaving nodes drop packets instead of properly forwarding them. In this paper, we propose a Game-Theoretic Adaptive Multipath Routing (GTAMR) protocol to detect and punish selfish or malicious nodes which try to drop information packets in routing phase and defend against collaborative attacks in which nodes try to disrupt communication or save their power. Our proposed algorithm outranks previous schemes because it is resilient against attacks in which more than one node coordinate their misbehavior and can be used in networks which wireless nodes use directional antennas. We then propose a game theoretic strategy, ERTFT, for nodes to promote cooperation. In comparison with other proposed TFT-like strategies, ours is resilient to systematic errors in detection of selfish nodes and does not lead to unending death spirals.

Website > Game-Theoretic Network Simulator (GTNS)

Full text > Game-theoretic approach to mitigate packet dropping in wireless ad-hoc networks

Code > GTNS

 

Risk of attack coefficient effect on availability of adhoc networks

Abstract:
Security techniques have been designed to obtain certain objectives. One of the most important objectives all security mechanisms try to achieve is the availability, which insures that network services are available to various entities in the network when required. But there has not been any certain parameter to measure this objective in network. In this paper we consider availability as a security parameter in ad-hoc networks. However this parameter can be used in other networks as well. We also present the connectivity coefficient of nodes in a network which shows how important is a node in a network and how much damage is caused if a certain node is compromised.

Risk of attack coefficient effect on availability of adhoc networks

Optical CDMA Network Simulator (OCNS)

Optical CDMA Wireless Multi-User Network System includes some transmitters and receivers. In this network, an Optical Orthogonal Code (OOC) is assigned to each user (Tx or Rx) to connect to its equivalent-OOC user and after synchronization between this two equivalent-OOC user, they can send and receive data to/from each other.
In this project, I worked to design and Implement a simulator for Optical CDMA Wireless Multi-User Network. This simulator has eliminated some of practical problems like number of users can be used by network practically.
OCNS is the name of the simulator for Optical CDMA Networks. I did this project as my BS Project. My supervisor, Prof. Pakravan, suggested me this project in April 2004. In July 2004, I finished the documentation of this project in persian language. I developed OCNS by using Visual C++ software. I’ve presented the defined classes in my project below.

 

Defined Classes:
CAboutDlg
CBit
CBuffer
CChildFrm
CChip
CCode
CCounter
CCRC
CData
CDataDialog
CFIR
CFIRDialog
CFrame
CGetNumDialog
CHeader
CMainFrame
CMedium
CMediumDialog
CMSFlexGrid
COCNSApp
COCNSCntrlItem
COCNSDoc
COCNSView
CResource
COleFont
CPicture
CRowCursor
CRx
CRxDialog
CSim
CSimDialog
CSimShowDialog
CStdAfx
CTx
CTxDialog
CTxRx

 

References:

[1] Farshid Farhat, “Optical CDMA Network Simulator,” BS Thesis, Sharif University of Technology, 2005.