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INTRODUCTION
Predicting how likely an individual is to fall could
improve rehabilitation outcomes, thereby improving
the quality of life for millions of individuals. Vari-
ability in gait temporal parameters is correlated with
fall risk [1] and with clinical measures of gait im-
pairment [2]. Since changes in temporal parameters
occur due to changes in joint movements, leg joint
variability may provide valuable information about
fall risk. Joint variability has been parameterized for
young, healthy adults walking at their self-selected
speed [3] but not for other populations. Since stroke
is a common cause of impaired gait, this abstract
presents initial work in parameterizing joint variabil-
ity for stroke victims. Specifically, it shows that joint
variability can be parameterized mathematically us-
ing low-order Fourier series for both stroke victims
and healthy adults.

METHODS
Joint angle data from 7 stroke patients (average speed
0.5 m/s), 6 slow, healthy adults (average speed 0.5
m/s), and 7 young, healthy adults (average speed
1.2 m/s) walking overground at their self-selected
speed were used. The data from the stroke and slow,
healthy subjects were collected using a Coda CX1
(Charnwood Dynamics, Leicestershire, England) ac-
tive marker motion analysis system system. The data
from the young, healthy subjects were collected us-
ing a Vicon (camera model: T20S, Oxford, UK)
motion capture system. For comparison, artificial
joint angle data were created with known variabil-
ity (filtered zero-mean random noise). A total of 34
strides from each population were used, except for
the slow, healthy subject data which had 29 strides.
(The young subject data were a subset of the data
from [3]). Each stride was divided into stance and
swing periods, and the periods were analyzed sepa-
rately. The affected and contralateral sides were an-
alyzed separately for the stroke subject data, while
only the right leg was analyzed for the healthy data.

The per-subject mean motion for each joint was de-
termined and subtracted from the total joint motion
for each step (Fig. 1). This gave a time history of
the joint variability. To parameterize the variabil-
ity mathematically, a second-order Fourier series was
fit to the stance period variability and a first-order
Fourier series was fit to the swing period variability
(Fig. 1). The quality of each fit was calculated using
the R2-value and the normalized root mean square
error (RMSE). The normalized RMSE is the RMSE
divided by the range of the variability. Pairwise t-
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Figure 1: Top: The total (thin lines) and mean (thick
line) joint angles. The pointwise difference between
the mean and total angle is the variability. Bottom:
The experimental variability and the best fit second-
order Fourier series. The Fourier series fits the data
very well. Both plots show the affected-side stance
hip angles for a stroke subject.
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Figure 2: The R2 values for all groups (Young healthy, Slow healthy, stroke Affected side, stroke Contralateral
side, aRtificial), joints (Hip, Knee, Ankle), and periods (Stance, Swing). Larger values indicate better fit. Statis-
tically significant differences are indicated: * = p-value < 0.05, ** = p-value < 0.01, *** = p-value < 0.001.
Statistical significance was similar for the RMSE values. Blue dots indicate outliers.

tests using the R2-value and the normalized RMSE
were conducted between each of the five groups for
each joint and period.

RESULTS AND DISCUSSION
With the exception of the young swing ankle, low-
order Fourier series fit the true experimental data sig-
nificantly better than the artificial data as expected
using both goodness of fit measures (Fig. 2). This
provides confidence that the variability is not sim-
ply measurement noise and that similarities or dif-
ferences between populations are true. The fits for
the true experimental data were quite good, with R2-
values consistently above 0.8 and normalized RMSE
consistently below 8% of the variability range. For
all joints and periods of the stroke subjects, the good-
ness of fit between the affected and contralateral
sides were similar. For the stance joints, the good-
ness of fit was similar between the young, slow, and
stroke subjects. For the swing joints, the goodness
of fit was slightly better for the stroke and slow sub-
jects than for the young subjects. This indicates that
a second (or first)-order Fourier series well captures
the joint variability as a function of step progression
in stance (or swing) joints for both healthy adults and
stroke victims. This is true despite considerable dif-

ferences in mean walking speed. Further, the systems
used to collect the experimental data were different,
indicating that joint variability and this parameteriza-
tion is robust to different data collection methods, at
least some gait impairments, and walking speed.

CONCLUSIONS
The joint variability during walking for both healthy
adults and stroke victims has a remarkably similar
structure and can be parameterized mathematically
using the same method for both populations. Further,
the accuracy of the parameterization is similar. The
values that define the Fourier series may be different
for each population, although this work remains to
be done. The full characterization of joint variability
will be included in physics-based models of human
gait [4] and used to investigate fall risk.
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